『壹』 c語言time_t timer ;time(&timer)什麼意思
time_t timer;
time_t是一個結構體。
time(&timer);
time是一個庫函數,接收一個time_t*做參數。time(&timer);的作用是用當前時間填充結構體變數timer。
『貳』 請問大牛們怎樣在C語言中實現一個timer事件
api中的SetTimer函數實現
注意在無窗口的控制台程序中要加上消息循環
函數原型
UINT SetTimer(
HWND hWnd,
UINT nIDEvent,
UINT uElapse,
TIMERPROC lpTimerFunc );
回調事件
void CALLBACK TimerProc(
HWND hwnd,
UINT uMsg,
UINT idEvent,
DWORD dwTime );
如果是MFC的程序 就直接響應 WM_TIMER 消息
『叄』 c語言中怎麼設置計時器
#include <iostream>
#include <time.h>
using namespace std;
int main()
{
clock_t start = clock();
//do some process here
clock_t end = (clock() - start)/CLOCKS_PER_SEC;
cout<<"time comsumption is "<<end<<endl;
}
(3)c語言timet擴展閱讀
使用linux的系統設置計時器
#include <sys/time.h>
int main()
{
timeval starttime,endtime;
gettimeofday(&starttime,0);
//do some process here
gettimeofday(&endtime,0);
double timeuse = 1000000*(endtime.tv_sec - starttime.tv_sec) + endtime.tv_usec - startime.tv_usec;
timeuse /=1000;//除以1000則進行毫秒計時,如果除以1000000則進行秒級別計時,如果除以1則進行微妙級別計時
}
timeval的結構如下:
strut timeval
{
long tv_sec; /* 秒數 */
long tv_usec; /* 微秒數 */
};
『肆』 怎麼用C語言編定時器
Windows提供了定時器,幫助我們編寫定期發送消息的程序。定時器一般通過一下兩中方式通知應用程序間隔時間已到。
⑴ 給指定窗口發送WM_TIMER消息,也就是下面的給出在窗口類中使用的方法。
⑵ 調用一個應用程序定義的回調函數,也就是在非窗口類中使用方法。
4.1 在窗口類中使用定時器
在窗口類中使用定時器比較簡單。假如我們想讓這個窗口上放置一個電子鍾,這樣我們必須每1秒或者0.5秒鍾去更新顯示顯見。按照下面的步驟,就可以完成這個電子鍾程序,並且知道如何在窗口類中使用定時器:
首先做在我們新建項目的主窗口上添加一個Label控制項,用來顯示時間。接著
⑴ 用函數SetTimer設置一個定時器,函數格式如下: UINT SetTimer( UINT nIDEvent,
UINT nElapse,
void (CALLBACK EXPORT* lpfnTimer)(HWND, UINT, UINT, DWORD));
這個函數是CWnd類的一個成員函數,其參數意義如下:
nIDEvent: 為設定的定時器指定的定時器標志值,設置多個定時器的時候,每個定時器的值都不同,消息處理函數就是通過這個參數來判斷是哪個定時器的。這里我們設定為1。
nElapse: 指定發送消息的時間間隔,單位是毫秒。這里我們設定為1000,也就是一秒。
lpfnTimer: 指定定時器消息由哪個回調函數來執行,如果為空,WM_TIMER將加入到應用程序的消息隊列中,並由CWnd類來處理。這里我們設定為NULL。
最後代碼如下:SetTimer(1,1000,NULL);
⑵ 通過Class Wizard給主窗口類添加一個WM_TIMER消息的映射函數,默認為OnTimer(UINT nIDEvent)。
⑶ 然後我們就可以在OnTimer(UINT nIDEvent)的函數實現中添加我們的代碼了。參數nIDEvent就是我們先前設定定時器時指定的標志值,在這里我們就可以通過它來區別不同的定時器,而作出不同的處理。添加的代碼如下:switch(nIDEvent)
{
case 1:
CTime m_SysTime = CTime::GetCurrentTime();
SetDlgItemText(IDC_STATIC_TIME,m_SysTime.Format("%Y年%m月%d日 %H:%M:%S"));
break;
}
代碼中的IDC_STATIC_TIME就是我們先前添加的Label控制項的ID。
至此,我們的電子鍾的程序就完成了。
4.2 在非窗口類中使用定時器
在非窗口類中使用定時器就要用到前面我們介紹到的所有知識了。因為是無窗口類,所以我們不能使用在窗口類中用消息映射的方法來設置定時器,這時候就必須要用到回調函數。又因為回調函數是具有一定格式的,它的參數不能由我們自己來決定,所以我們沒辦法利用參數將this傳遞進去。可是靜態成員函數是可以訪問靜態成員變數的,因此我們可以把this保存在一個靜態成員變數中,在靜態成員函數中就可以使用該指針,對於只有一個實例的指針,這種方法還是行的通的,由於在一個類中該靜態成員變數只有一個拷貝,對於有多個實例的類,我們就不能用區分了。解決的辦法就是把定時器標志值作為關鍵字,類實例的指針作為項,保存在一個靜態映射表中,因為是標志值是唯一的,用它就可以快速檢索出映射表中對應的該實例的指針,因為是靜態的,所以回調函數是可以訪問他們的。
首先介紹一下用於設置定時的函數:
UINT SetTimer(
HWND hWnd, // handle of window for timer messages
UINT nIDEvent, // timer identifier
UINT uElapse, // time-out value
TIMERPROC lpTimerFunc // address of timer procere
);
其中的參數意義如下:
hWnd: 指定與定時器相關聯的窗口的句柄。這里我們設為NULL。
nIDEvent: 定時器標志值,如果hWnd參數為NULL,它將會被跳過,所以我們也設定為NULL。
uElapse: 指定發送消息的時間間隔,單位是毫秒。這里我們不指定,用參數傳入。
lpTimerFunc: 指定當間隔時間到的時候被統治的函數的地址,也就是這里的回調函數。這個函數的格式必須為以下格式:
VOID CALLBACK TimerProc(
HWND hwnd, // handle of window for timer messages
UINT uMsg, // WM_TIMER message
UINT idEvent, // timer identifier
DWORD dwTime // current system time
);
其中的參數意義如下:
hwnd: 與定時器相關聯的窗口的句柄。
uMsg: WM_TIMER消息。
idEvent: 定時器標志值。
deTime: 系統啟動後所以經過的時間,單位毫秒。
最後設定定時器的代碼為:m_nTimerID = SetTimer(NULL,NULL,nElapse,MyTimerProc);
先通過Class Wizard創建一個非窗口類,選擇Generic Class類類型,類名稱為CMyTimer,該類的作用是每隔一段時間提醒我們做某件事情,然後用這個類創建三個實例,每個實例以不同的時間間隔提醒我們做不同的事情。
MyTimer.h#include
class CMyTimer;
//用模板類中的映射表類定義一種數據類型
typedef CMap CTimerMap;
class CMyTimer
{
public:
//設置定時器,nElapse表示時間間隔,sz表示要提示的內容
void SetMyTimer(UINT nElapse,CString sz);
//銷毀該實例的定時器
void KillMyTimer();
//保存該實例的定時器標志值
UINT m_nTimerID;
//靜態數據成員要提示的內容
CString szContent;
//聲明靜態數據成員,映射表類,用於保存所有的定時器信息
static CTimerMap m_sTimeMap;
//靜態成員函數,用於處理定時器的消息
static void CALLBACK MyTimerProc(HWND hwnd,UINT uMsg,UINT idEvent,DWORD dwTime);
CMyTimer();
virtual ~CMyTimer();
};
MyTimer.cpp#include "stdafx.h"
#include "MyTimer.h"
//必須要在外部定義一下靜態數據成員
CTimerMap CMyTimer::m_sTimeMap;
CMyTimer::CMyTimer()
{
m_nTimerID = 0;
}
CMyTimer::~CMyTimer()
{
}
void CALLBACK CMyTimer::MyTimerProc(HWND hwnd,UINT uMsg,UINT idEvent,DWORD dwTime)
{
CString sz;
sz.Format("%d號定時器:%s",
idEvent,
m_sTimeMap[idEvent]->szContent);
AfxMessageBox(sz);
}
void CMyTimer::SetMyTimer(UINT nElapse,CString sz)
{
szContent = sz;
m_nTimerID = SetTimer(NULL,NULL,nElapse,MyTimerProc);
m_sTimeMap[m_nTimerID] = this;
}
void CMyTimer::KillMyTimer()
{
KillTimer(NULL,m_nTimerID);
m_sTimeMap.RemoveKey(m_nTimerID);
}
這樣就完成了在非窗口類中使用定時器的方法。以上這些代碼都在Windwos 2000 Professional 和 Visual C++ 6.0中編譯通過。
『伍』 c語言 時間函數
c語言時間函數:
1、獲得日歷時間函數:
可以通過time()函數來獲得日歷時間(Calendar Time),其原型為:time_t time(time_t * timer);
如果已經聲明了參數timer,可以從參數timer返回現在的日歷時間,同時也可以通過返回值返回現在的日歷時間,即從一個時間點(例如:1970年1月1日0時0分0秒)到現在此時的秒數。如果參數為空(NUL),函數將只通過返回值返回現在的日歷時間,比如下面這個例子用來顯示當前的日歷時間:
2、獲得日期和時間函數:
這里說的日期和時間就是平時所說的年、月、日、時、分、秒等信息。從第2節我們已經知道這些信息都保存在一個名為tm的結構體中,那麼如何將一個日歷時間保存為一個tm結構的對象呢?
其中可以使用的函數是gmtime()和localtime(),這兩個函數的原型為:
struct tm * gmtime(const time_t *timer);
struct tm * localtime(const time_t * timer);
其中gmtime()函數是將日歷時間轉化為世界標准時間(即格林尼治時間),並返回一個tm結構體來保存這個時間,而localtime()函數是將日歷時間轉化為本地時間。比如現在用gmtime()函數獲得的世界標准時間是2005年7月30日7點18分20秒,那麼用localtime()函數在中國地區獲得的本地時間會比世界標准時間晚8個小時,即2005年7月30日15點18分20秒。
『陸』 C語言定時器
這個程序用多線程比較好解決.
#include <windows.h>
#include <iostream>
#include <conio.h>
using namespace std;
const int MAX_SECOND = 1000 * 60;
DWORD WINAPI MyThread(PVOID pParam)
{
int nSum = 0;
DWORD dwFirstTime = GetTickCount();
cout<<"做題開始,請在"<<MAX_SECOND / 1000 <<"秒內回答."<<endl;
do
{
cout<<"1 + 2 = ? 請回答:"<<endl;
nSum = getch();
cout<<char(nSum)<<endl;
if(nSum == 3 + '0')
{
cout<<"答案正確"<<endl;
return 0;
}
}while(GetTickCount() - dwFirstTime <= MAX_SECOND);
return 0;
}
int main()
{
HANDLE hThread = CreateThread(NULL, 0, MyThread, 0, NULL, NULL);
WaitForSingleObject(hThread, MAX_SECOND);
CloseHandle(hThread);
return 0;
}
『柒』 C語言 timer函數 和time函數
Timer()函數
語法:Timer ( interval {, windowname } )
參數:指定兩次觸發Timer事件之間的時間間隔,有效值在0到65之間。如果該參數的值指定為0,那麼關閉定時器,不再觸發指定窗口的Timer事件。windowname:窗口名,指定時間間隔到時要觸發哪個窗口的Timer事件。省略該參數時,觸發當前窗口的Timer事件返回值Integer。函數執行成功時返回1,發生錯誤時返回-1。如果任何參數的值為NULL,Timer()函數返回NULL。用法使用Timer()函數可以周期性地觸發指定窗口的Timer事件,這樣,每當時間間隔過去時,應用程序都可以完成一些周期性的工作,比如繪制簡單動畫等。將Timer()的interval參數設置為非0值時啟動定時器並開始計時;將該函數的interval參數設置為0時關閉定時器,終止計時任務。需要注意的是,在Microsoft Windows系統中,該函數能夠計時的最小時間間隔為0.055秒(約1/18秒),如果把interval參數的值設置小於0.055,那麼該定時器將每隔0.055秒觸發一次窗口的Timer事件。Microsoft Windows 3.x最多隻支持系統中同時啟動16個定時器。
用法:
啟動定時器。
啟動定時器就需要使用CWnd類的成員函數SetTimer。CWnd::SetTimer的原型如下:
UINT_PTR SetTimer(
UINT_PTR nIDEvent,
UINT nElapse,
void (CALLBACK* lpfnTimer)(
HWND,
UINT,
UINT_PTR,
DWORD
)
);
參數nIDEvent指定一個非零的定時器ID;參數nElapse指定間隔時間,單位為毫秒;參數lpfnTimer指定一個回調函數的地址,如果該參數為NULL,則WM_TIMER消息被發送到應用程序的消息隊列,並被CWnd對象處理。如果此函數成功則返回一個新的定時器的ID,我們可以使用此ID通過KillTimer成員函數來銷毀該定時器,如果函數失敗則返回0。
通過SetTimer成員函數我們可以看出,處理定時事件可以有兩種方式,一種是通過WM_TIMER消息的消息響應函數,一種是通過回調函數。
如果要啟動多個定時器就多次調用SetTimer成員函數。另外,在不同的CWnd中可以有ID相同的定時器,並不沖突。
time函數
返回某一特定時間的小數值。如果在輸入函數前,單元格的格式為「常規」,則結果將設為日期格式。
函數 TIME 返回的小數值為 0(零)到 0.99999999 之間的數值,代表從 0:00:00 (12:00:00 AM) 到 23:59:59 (11:59:59 P.M.) 之間的時間。
語法:
TIME(hour, minute, second)
TIME 函數語法具有以下參數:
Hour 必需。0(零)到 32767 之間的數值,代表小時。任何大於 23 的數值將除以 24,其餘數將視為小時。例如,TIME(27,0,0) = TIME(3,0,0) = .125 或 3:00 AM。
Minute 必需。0 到 32767 之間的數值,代表分鍾。任何大於 59 的數值將被轉換為小時和分鍾。例如,TIME(0,750,0) = TIME(12,30,0) = .520833 或 12:30 PM。
Second 必需。0 到 32767 之間的數值,代表秒。任何大於 59 的數值將被轉換為小時、分鍾和秒。例如,TIME(0,0,2000) = TIME(0,33,22) = .023148 或 12:33:20 AM。
例子:
<?php$t=time();echo($t . "<br />");echo(date("D F d Y",$t));?>
輸出:
1138618081Mon January 30 2006
『捌』 C語言如圖Timer0_isr 什麼意思 什麼時候執行
這個是一個中斷。
注意後面的interrupt 1 using 1
當中斷產生時,就會執行這個函數了,
在這里 這是一個定時器中斷,所以中斷函數會定時被調用,程序運行表現就是led1 周期性亮滅。
『玖』 C語言for循環條件為什麼timer>0前面沒有值但是有分號 time沒有初始值 可以這么寫嗎
time是delay函數的參數,它的值在調用delay函數的時候就傳入了,所以在for循環中不需要再定義初始值。但分號是不能省的,它是語句的分隔符,time>0是循環條件,必須在循環變數賦初值的語句後面,如果去掉那個分號,time>0就變成第1句了。
『拾』 c語言如何計時
C語言中提供了許多庫函數來實現計時功能
下面介紹一些常用的計時函數
1. time()
頭文件:time.h
函數原型:time_t time(time_t * timer)
功能:返回以格林尼治時間(GMT)為標准,從1970年1月1日00:00:00到現在的時此刻所經過的秒數
用time()函數結合其他函數(如:localtime、gmtime、asctime、ctime)可以獲得當前系統時間或是標准時間。
用difftime函數可以計算兩個time_t類型的時間的差值,可以用於計時。用difftime(t2,t1)要比t2-t1更准確,因為C標准中並沒有規定time_t的單位一定是秒,而difftime會根據機器進行轉換,更可靠。
說明:C標准庫中的函數,可移植性最好,性能也很穩定,但精度太低,只能精確到秒,對於一般的事件計時還算夠用,而對運算時間的計時就明顯不夠用了。
2. clock()
頭文件:time.h
函數原型:clock_t clock(void);
功能:該函數返回值是硬體滴答數,要換算成秒,需要除以CLK_TCK或者 CLK_TCKCLOCKS_PER_SEC。比如,在VC++6.0下,這兩個量的值都是1000。
說明:可以精確到毫秒,適合一般場合的使用。
3. timeGetTime()
頭文件:Mmsystem.h引用庫: Winmm.lib
函數原型:DWORD timeGetTime(VOID);
功能:返回系統時間,以毫秒為單位。系統時間是從系統啟動到調用函數時所經過的毫秒數。注意,這個值是32位的,會在0到2^32之間循環,約49.71天。
說明:該函數的時間精度是五毫秒或更大一些,這取決於機器的性能。可用timeBeginPeriod和timeEndPeriod函數提高timeGetTime函數的精度。如果使用了,連續調用timeGetTime函數,一系列返回值的差異由timeBeginPeriod和timeEndPeriod決定。
4. GetTickCount()
頭文件:windows.h
函數原型:DWORD WINAPI GetTickCount(void);
功能:返回自設備啟動後的毫秒數(不含系統暫停時間)。
說明:精確到毫秒。對於一般的實時控制,使用GetTickCount()函數就可以滿足精度要求。
5. QueryPerformanceCounter()、QueryPerformanceFrequency()
頭文件:windows.h
函數原型:BOOLQueryPerformanceCounter(LARGE_INTEGER *lpPerformanceCount);
BOOLQueryPerformanceFrequency(LARGE_INTEGER *lpFrequency);
功能:前者獲得的是CPU從開機以來執行的時鍾周期數。後者用於獲得你的機器一秒鍾執行多少次,就是你的時鍾周期。
補充:LARGE_INTEGER既可以是一個8位元組長的整型數,也可以是兩個4位元組長的整型數的聯合結構, 其具體用法根據編譯器是否支持64位而定:
在進行定時之前,先調用QueryPerformanceFrequency()函數獲得機器內部定時器的時鍾頻率,然後在需要嚴格定時的事件發生之前和發生之後分別調用QueryPerformanceCounter()函數,利用兩次獲得的計數之差及時鍾頻率,計算出事件經歷的精確時間。
說明:這種方法的定時誤差不超過1微秒,精度與CPU等機器配置有關,一般認為精度為透微秒級。在Windows平台下進行高精度計時的時候可以考慮這種方法。
6. gettimeofday()
Linux C函數。
頭文件:sys/time.h
函數原型:int gettimeofday(struct timeval *tv,struct timezone *tz);
說明:其參數tv是保存獲取時間結果的結構體,參數tz用於保存時區結果(若不使用則傳入NULL即可)。
timeval的定義為:
structtimeval{
longtv_sec;//秒數
longtv_usec;//微秒數
}
可見該函數可用於在linux中獲得微秒精度的時間。
說明:使用這種方式計時,精度可達微秒。經驗證,在arm+linux的環境下此函數仍可使用。