當前位置:首頁 » 編程語言 » sql語義合並
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

sql語義合並

發布時間: 2022-05-13 12:06:56

1. sql語句執行流程與順序原理解析

SQL語句執行流程與順序原理解析
Oracle語句執行流程
第一步:客戶端把語句發給伺服器端執行
當我們在客戶端執行SQL語句時,客戶端會把這條SQL語句發送給伺服器端,讓伺服器端的進程來處理這語句。也就是說,Oracle 客戶端是不會做任何的操作,他的主要任務就是把客戶端產生的一些SQL語句發送給伺服器端。伺服器進程從用戶進程把信息接收到後, 在PGA 中就要此進程分配所需內存,存儲相關的信息,如:在會話內存存儲相關的登錄信息等。
雖然在客戶端也有一個資料庫進程,但是,這個進程的作用跟伺服器上的進程作用是不相同的,伺服器上的資料庫進程才會對SQL 語句進行相關的處理。不過,有個問題需要說明,就是客戶端的進程跟伺服器的進程是一一對應的。也就是說,在客戶端連接上伺服器後,在客戶端與伺服器端都會形成一個進程,客戶端上的我們叫做客戶端進程,而伺服器上的我們叫做伺服器進程。
第二步:語句解析
當客戶端把SQL語句傳送到伺服器後,伺服器進程會對該語句進行解析。這個解析的工作是在伺服器端所進行的,解析動作又可分為很多小動作。
1)查詢高速緩存(library cache)
伺服器進程在接到客戶端傳送過來的SQL語句時,不會直接去資料庫查詢。伺服器進程把這個SQL語句的字元轉化為ASCII等效數字碼,接著這個ASCII碼被傳遞給一個HASH函數,並返回一個hash值,然後伺服器進程將到shared pool中的library cache(高速緩存)中去查找是否存在相同的hash值。如果存在,伺服器進程將使用這條語句已高速緩存在SHARED POOL的library cache中的已分析過的版本來執行,省去後續的解析工作,這便是軟解析。若調整緩存中不存在,則需要進行後面的步驟,這便是硬解析。硬解析通常是昂貴的操作,大約占整個SQL執行的70%左右的時間,硬解析會生成執行樹,執行計劃,等等。
所以,採用高速數據緩存的話,可以提高SQL 語句的查詢效率。其原因有兩方面:一方面是從內存中讀取數據要比從硬碟中的數據文件中讀取數據效率要高,另一方面也是因為避免語句解析而節省了時間。
不過這里要注意一點,這個數據緩存跟有些客戶端軟體的數據緩存是兩碼事。有些客戶端軟體為了提高查詢效率,會在應用軟體的客戶端設置數據緩存。由於這些數據緩存的存在,可以提高客戶端應用軟體的查詢效率。但是,若其他人在伺服器進行了相關的修改,由於應用軟體數據緩存的存在,導致修改的數據不能及時反映到客戶端上。從這也可以看出,應用軟體的數據緩存跟資料庫伺服器的高速數據緩存不是一碼事。
2)語句合法性檢查(data dict cache)
當在高速緩存中找不到對應的SQL語句時,則伺服器進程就會開始檢查這條語句的合法性。這里主要是對SQL語句的語法進行檢查,看看其是否合乎語法規則。如果伺服器進程認為這條SQL語句不符合語法規則的時候,就會把這個錯誤信息反饋給客戶端。在這個語法檢查的過程中,不會對SQL語句中所包含的表名、列名等等進行檢查,只是檢查語法。
3)語言含義檢查(data dict cache)
若SQL 語句符合語法上的定義的話,則伺服器進程接下去會對語句中涉及的表、索引、視圖等對象進行解析,並對照數據字典檢查這些對象的名稱以及相關結構,看看這些欄位、表、視圖等是否在資料庫中。如果表名與列名不準確的話,則資料庫會就會反饋錯誤信息給客戶端。
所以,有時候我們寫select語句的時候,若語法與表名或者列名同時寫錯的話,則系統是先提示說語法錯誤,等到語法完全正確後再提示說列名或表名錯誤。
4)獲得對象解析鎖(control structer)
當語法、語義都正確後,系統就會對我們需要查詢的對象加鎖。這主要是為了保障數據的一致性,防止我們在查詢的過程中,其他用戶對這個對象的結構發生改變。
5)數據訪問許可權的核對(data dict cache)
當語法、語義通過檢查之後,客戶端還不一定能夠取得數據,伺服器進程還會檢查連接用戶是否有這個數據訪問的許可權。若用戶不具有數據訪問許可權的話,則客戶端就不能夠取得這些數據。要注意的是資料庫伺服器進程先檢查語法與語義,然後才會檢查訪問許可權。
6)確定最佳執行計劃
當語法與語義都沒有問題許可權也匹配,伺服器進程還是不會直接對資料庫文件進行查詢。伺服器進程會根據一定的規則,對這條語句進行優化。在執行計劃開發之前會有一步查詢轉換,如:視圖合並、子查詢解嵌套、謂語前推及物化視圖重寫查詢等。為了確定採用哪個執行計劃,Oracle還需要收集統計信息確定表的訪問聯結方法等,最終確定可能的最低成本的執行計劃。
不過要注意,這個優化是有限的。一般在應用軟體開發的過程中,需要對資料庫的sql語句進行優化,這個優化的作用要大大地大於伺服器進程的自我優化。
當伺服器進程的優化器確定這條查詢語句的最佳執行計劃後, 就會將這條SQL語句與執行計劃保存到數據高速緩存(library cache)。如此,等以後還有這個查詢時,就會省略以上的語法、語義與許可權檢查的步驟,而直接執行SQL語句,提高SQL語句處理效率。
第三步:綁定變數賦值
如果SQL語句中使用了綁定變數,掃描綁定變數的聲明,給綁定變數賦值,將變數值帶入執行計劃。若在解析的第一個步驟,SQL在高速緩沖中存在,則直接跳到該步驟。
第四步:語句執行
語句解析只是對SQL語句的語法進行解析,以確保伺服器能夠知道這條語句到底表達的是什麼意思。等到語句解析完成之後,資料庫伺服器進程才會真正的執行這條SQL語句。
對於SELECT語句:
1)首先伺服器進程要判斷所需數據是否在db buffer存在,如果存在且可用,則直接獲取該數據而不是從資料庫文件中去查詢數據,同時根據LRU 演算法增加其訪問計數;
2)若數據不在緩沖區中,則伺服器進程將從資料庫文件中查詢相關數據,並把這些數據放入到數據緩沖區中(buffer cache)。
其中,若數據存在於db buffer,其可用性檢查方式為:查看db buffer塊的頭部是否有事務,如果有事務,則從回滾段中讀取數據;如果沒有事務,則比較select的scn和db buffer塊頭部的scn,如果前者小於後者,仍然要從回滾段中讀取數據;如果前者大於後者,說明這是一非臟緩存,可以直接讀取這個db buffer塊的中內容。
對於DML語句(insert、delete、update):
1)檢查所需的資料庫是否已經被讀取到緩沖區緩存中。如果已經存在緩沖區緩存,則直接執行步驟3;
2)若所需的資料庫並不在緩沖區緩存中,則伺服器將數據塊從數據文件讀取到緩沖區緩存中;
3)對想要修改的表取得的數據行鎖定(Row Exclusive Lock),之後對所需要修改的數據行取得獨占鎖;
4)將數據的Redo記錄復制到redo log buffer;
5)產生數據修改的undo數據;
6)修改db buffer;
7)dbwr將修改寫入數據文件;
其中,第2步,伺服器將數據從數據文件讀取到db buffer經經歷以下步驟:
1)首先伺服器進程將在表頭部請求TM鎖(保證此事務執行過程其他用戶不能修改表的結構),如果成功加TM鎖,再請求一些行級鎖(TX鎖),如果TM、TX鎖都成功加鎖,那麼才開始從數據文件讀數據。
2)在讀數據之前,要先為讀取的文件准備好buffer空間。伺服器進程需要掃描LRU list尋找free db buffer,掃描的過程中,伺服器進程會把發現的所有已經被修改過的db buffer注冊到dirty list中。如果free db buffer及非臟數據塊緩沖區不足時,會觸發dbwr將dirty buffer中指向的緩沖塊寫入數據文件,並且清洗掉這些緩沖區來騰出空間緩沖新讀入的數據。
3)找到了足夠的空閑buffer,伺服器進程將從數據文件中讀入這些行所在的每一個數據塊(db block)(DB BLOCK是ORACLE的最小操作單元,即使你想要的數據只是DB BLOCK中很多行中的一行或幾行,ORACLE也會把這個DB BLOCK中的所有行都讀入Oracle DB BUFFER中)放入db buffer的空閑的區域或者覆蓋已被擠出LRU list的非臟數據塊緩沖區,並且排列在LRU列表的頭部,也就是在數據塊放入db buffer之前也是要先申請db buffer中的鎖存器,成功加鎖後,才能讀數據到db buffer。
若數據塊已經存在於db buffer cache(有時也稱db buffer或db cache),即使在db buffer中找到一個沒有事務,而且SCN比自己小的非臟緩存數據塊,伺服器進程仍然要到表的頭部對這條記錄申請加鎖,加鎖成功才能進行後續動作,如果不成功,則要等待前面的進程解鎖後才能進行動作(這個時候阻塞是tx鎖阻塞)。
在記redo日誌時,其具體步驟如下:
1)數據被讀入到db buffer後,伺服器進程將該語句所影響的並被讀入db buffer中的這些行數據的rowid及要更新的原值和新值及scn等信息從PGA逐條的寫入redo log buffer中。在寫入redo log buffer之前也要事先請求redo log buffer的鎖存器,成功加鎖後才開始寫入。
2)當寫入達到redo log buffer大小的三分之一或寫入量達到1M或超過三秒後或發生檢查點時或者dbwr之前發生,都會觸發lgwr進程把redo log buffer的數據寫入磁碟上的redo file文件中(這個時候會產生log file sync等待事件)。
3)已經被寫入redo file的redo log buffer所持有的鎖存器會被釋放,並可被後來的寫入信息覆蓋,redo log buffer是循環使用的。Redo file也是循環使用的,當一個redo file寫滿後,lgwr進程會自動切換到下一redo file(這個時候可能出現log file switch(check point complete)等待事件)。如果是歸檔模式,歸檔進程還要將前一個寫滿的redo file文件的內容寫到歸檔日誌文件中(這個時候可能出現log file switch(archiving needed)。
在為事務建立undo信息時,其具體步驟如下:
1)在完成本事務所有相關的redo log buffer之後,伺服器進程開始改寫這個db buffer的塊頭部事務列表並寫入scn(一開始scn是寫在redo log buffer中的,並未寫在db buffer)。
2)然後包含這個塊的頭部事務列表及scn信息的數據副本放入回滾段中,將這時回滾段中的信息稱為數據塊的「前映像」,這個「前映像」用於以後的回滾、恢復和一致性讀。(回滾段可以存儲在專門的回滾表空間中,這個表空間由一個或多個物理文件組成,並專用於回滾表空間,回滾段也可在其它表空間中的數據文件中開辟)。
在修改信息寫入數據文件時,其具體步驟如下:
1)改寫db buffer塊的數據內容,並在塊的頭部寫入回滾段的地址。
2)將db buffer指針放入dirty list。如果一個行數據多次update而未commit,則在回滾段中將會有多個「前映像」,除了第一個「前映像」含有scn信息外,其他每個"前映像"的頭部都有scn信息和"前前映像"回滾段地址。一個update只對應一個scn,然後伺服器進程將在dirty list中建立一條指向此db buffer塊的指針(方便dbwr進程可以找到dirty list的db buffer數據塊並寫入數據文件中)。接著伺服器進程會從數據文件中繼續讀入第二個數據塊,重復前一數據塊的動作,數據塊的讀入、記日誌、建立回滾段、修改數據塊、放入dirty list。
3)當dirty queue的長度達到閥值(一般是25%),伺服器進程將通知dbwr把臟數據寫出,就是釋放db buffer上的鎖存器,騰出更多的free db buffer。前面一直都是在說明oracle一次讀一個數據塊,其實oracle可以一次讀入多個數據塊(db_file_multiblock_read_count來設置一次讀入塊的個數)
當執行commit時,具體步驟如下:
1)commit觸發lgwr進程,但不強制dbwr立即釋放所有相應db buffer塊的鎖。也就是說有可能雖然已經commit了,但在隨後的一段時間內dbwr還在寫這條sql語句所涉及的數據塊。表頭部的行鎖並不在commit之後立即釋放,而是要等dbwr進程完成之後才釋放,這就可能會出現一個用戶請求另一用戶已經commit的資源不成功的現象。
2)從Commit和dbwr進程結束之間的時間很短,如果恰巧在commit之後,dbwr未結束之前斷電,因為commit之後的數據已經屬於數據文件的內容,但這部分文件沒有完全寫入到數據文件中。所以需要前滾。由於commit已經觸發lgwr,這些所有未來得及寫入數據文件的更改會在實例重啟後,由smon進程根據重做日誌文件來前滾,完成之前commit未完成的工作(即把更改寫入數據文件)。
3)如果未commit就斷電了,因為數據已經在db buffer更改了,沒有commit,說明這部分數據不屬於數據文件。由於dbwr之前觸發lgwr也就是只要數據更改,(肯定要先有log)所有dbwr在數據文件上的修改都會被先一步記入重做日誌文件,實例重啟後,SMON進程再根據重做日誌文件來回滾。
其實smon的前滾回滾是根據檢查點來完成的,當一個全部檢查點發生的時候,首先讓LGWR進程將redologbuffer中的所有緩沖(包含未提交的重做信息)寫入重做日誌文件,然後讓dbwr進程將dbbuffer已提交的緩沖寫入數據文件(不強制寫未提交的)。然後更新控制文件和數據文件頭部的SCN,表明當前資料庫是一致的,在相鄰的兩個檢查點之間有很多事務,有提交和未提交的。
當執行rollback時,具體步驟如下:
伺服器進程會根據數據文件塊和db buffer中塊的頭部的事務列表和SCN以及回滾段地址找到回滾段中相應的修改前的副本,並且用這些原值來還原當前數據文件中已修改但未提交的改變。如果有多個」前映像「,伺服器進程會在一個「前映像」的頭部找到「前前映像」的回滾段地址,一直找到同一事務下的最早的一個「前映像」為止。一旦發出了commit,用戶就不能rollback,這使得commit後dbwr進程還沒有全部完成的後續動作得到了保障。
第五步:提取數據
當語句執行完成之後,查詢到的數據還是在伺服器進程中,還沒有被傳送到客戶端的用戶進程。所以,在伺服器端的進程中,有一個專門負責數據提取的一段代碼。他的作用就是把查詢到的數據結果返回給用戶端進程,從而完成整個查詢動作。
從這整個查詢處理過程中,我們在資料庫開發或者應用軟體開發過程中,需要注意以下幾點:
一是要了解資料庫緩存跟應用軟體緩存是兩碼事情。資料庫緩存只有在資料庫伺服器端才存在,在客戶端是不存在的。只有如此,才能夠保證資料庫緩存中的內容跟資料庫文件的內容一致。才能夠根據相關的規則,防止數據臟讀、錯讀的發生。而應用軟體所涉及的數據緩存,由於跟資料庫緩存不是一碼事情,所以,應用軟體的數據緩存雖然可以提高數據的查詢效率,但是,卻打破了數據一致性的要求,有時候會發生臟讀、錯讀等情況的發生。所以,有時候,在應用軟體上有專門一個功能,用來在必要的時候清除數據緩存。不過,這個數據緩存的清除,也只是清除本機上的數據緩存,或者說,只是清除這個應用程序的數據緩存,而不會清除資料庫的數據緩存。
二是絕大部分SQL語句都是按照這個處理過程處理的。我們DBA或者基於Oracle資料庫的開發人員了解這些語句的處理過程,對於我們進行涉及到SQL語句的開發與調試,是非常有幫助的。有時候,掌握這些處理原則,可以減少我們排錯的時間。特別要注意,資料庫是把數據查詢許可權的審查放在語法語義的後面進行檢查的。所以,有時會若光用資料庫的許可權控制原則,可能還不能滿足應用軟體許可權控制的需要。此時,就需要應用軟體的前台設置,實現許可權管理的要求。而且,有時應用資料庫的許可權管理,也有點顯得繁瑣,會增加伺服器處理的工作量。因此,對於記錄、欄位等的查詢許可權控制,大部分程序涉及人員喜歡在應用程序中實現,而不是在資料庫上實現。
Oracle SQL語句執行順序
(8)SELECT (9) DISTINCT (11) <select_list>
(1) FROM <left_table>
(3) <join_type> JOIN <right_table>
(2) ON <join_condition>
(4) WHERE <where_condition>
(5) GROUP BY <group_by_list>
(6) WITH {CUBE | ROLLUP}
(7) HAVING <having_condition>
(10) ORDER BY <order_by_list>
1)FROM:對FROM子句中的表執行笛卡爾積(交叉聯接),生成虛擬表VT1。
2)ON:對VT1應用ON篩選器,只有那些使為真才被插入到TV2。
3)OUTER (JOIN):如果指定了OUTER JOIN(相對於CROSS JOIN或INNER JOIN),保留表中未找到匹配的行將作為外部行添加到VT2,生成TV3。如果FROM子句包含兩個以上的表,則對上一個聯接生成的結果表和下一個表重復執行步驟1到步驟3,直到處理完所有的表位置。
4)WHERE:對TV3應用WHERE篩選器,只有使為true的行才插入TV4。
5)GROUP BY:按GROUP BY子句中的列列表對TV4中的行進行分組,生成TV5。
6)CUTE|ROLLUP:把超組插入VT5,生成VT6。
7)HAVING:對VT6應用HAVING篩選器,只有使為true的組插入到VT7。
8)SELECT:處理SELECT列表,產生VT8。
9)DISTINCT:將重復的行從VT8中刪除,產品VT9。
10)ORDER BY:將VT9中的行按ORDER BY子句中的列列表順序,生成一個游標(VC10),生成表TV11,並返回給調用者。
以上每個步驟都會產生一個虛擬表,該虛擬表被用作下一個步驟的輸入。這些虛擬表對調用者(客戶端應用程序或者外部查詢)不可用。只有最後一步生成的表才會會給調用者。如果沒有在查詢中指定某一個子句,將跳過相應的步驟。

2. 試說明下面SQL語句的語義

select distinct x.s# 只顯示一次所選擇的欄位名x.s#
from sc as x,sc as y 表示欄位名x.s來自欄位名sc中的,相當於一個位置
where 這里的條件最關鍵, 前面 form那句 相當於把 sc賦給了 x y
在條件where中可以直接使用x y 直接引出 sc中的列屬性 進行條件判斷

好久沒用過這樣的用法了,個人理解 呵呵

3. SQL語句,在查詢的同時進行更新

如果是在vb或c#等語言中,可以這么寫,兩個sql語句用分號分隔,做為一條語句運行,但不建議這么做。

4. 標准sql有集合操作嗎

SQL集合操作Union實現 .
Union的語義是把兩部分查詢的結果合並起來,最終結果的列名和類型定義與第一個查詢一致。Union語句可以是Union All或者Union Distinct,默認情況下最好採用前者,即只有Union關鍵字時等價於Union All。下面看看Union All/Union Distinct的例子。

ALL
如果是Union All,那麼MergeUnion的兩個輸入表沒有必要是有序的,MergeUnion只需要先輸出第一個表的數據,再輸出第二個表的數據就可以了。

Distinct
如果是Union Distinct,MergeUnion演算法要求兩個輸入表數據都有相同的排序。假設兩個輸入表的行數分別為M、N,則MergeUnion演算法復雜度為O(M+N)。

具體實現如下:

1. 如果第一個表的當前元組小於第二個表的當前元組,或者第二個表結束,那麼輸出第一個表的元組,且跳過相等的元組。

2. 如果第一個表的當前元組大於第二個表的當前元組,或者第一個表結束,那麼輸出第二個表的元組,且跳過相等的元組。

3. 如果第一個表的當前元組等於第二個表的當前元組,那麼輸出第一個表的元組,且跳過第一個和第二個表的相同元組。

4 如果兩個表都結束,則返回結束。

5. SQL資料庫的操作

SQL包括了所有對資料庫的操作,主要是由4個部分組成:
1.數據定義:這一部分又稱為「SQL DDL」,定義資料庫的邏輯結構,包括定義資料庫、基本表、視圖和索引4部分。
2.數據操縱:這一部分又稱為「SQL DML」,其中包括數據查詢和數據更新兩大類操作,其中數據更新又包括插入、刪除和更新三種操作。
3.數據控制:對用戶訪問數據的控制有基本表和視圖的授權、完整性規則的描述,事務控制語句等。
4.嵌入式SQL語言的使用規定:規定SQL語句在宿主語言的程序中使用的規則。
下面我們將分別介紹: SQL數據定義功能包括定義資料庫、基本表、索引和視圖。
首先,讓我們了解一下SQL所提供的基本數據類型:(如^00100009b^)
1.資料庫的建立與刪除
(1)建立資料庫:資料庫是一個包括了多個基本表的數據集,其語句格式為:
CREATE DATABASE <資料庫名> 〔其它參數〕
其中,<資料庫名>在系統中必須是唯一的,不能重復,不然將導致數據存取失誤。〔其它參數〕因具體資料庫實現系統不同而異。
例:要建立項目管理資料庫(xmmanage),其語句應為:
CREATE DATABASE xmmanage
(2)資料庫的刪除:將資料庫及其全部內容從系統中刪除。
其語句格式為:DROP DATABASE <資料庫名>
例:刪除項目管理資料庫(xmmanage),其語句應為: DROP DATABASE xmmanage
2.基本表的定義及變更
本身獨立存在的表稱為基本表,在SQL語言中一個關系唯一對應一個基本表。基本表的定義指建立基本關系模式,而變更則是指對資料庫中已存在的基本表進行刪除與修改。 SQL是一種查詢功能很強的語言,只要是資料庫存在的數據,總能通過適當的方法將它從資料庫中查找出來。SQL中的查詢語句只有一個:SELECT,它可與其它語句配合完成所有的查詢功能。SELECT語句的完整語法,可以有6個子句。完整的語法如下:SELECT 目標表的列名或列表達式集合FROM 基本表或(和)視圖集合〔WHERE條件表達式〕〔GROUP BY列名集合〔HAVING組條件表達式〕〕〔ORDER BY列名〔集合〕…〕
簡單查詢,使用TOP子句
查詢結果排序order by
帶條件的查詢where,使用算術表達式,使用邏輯表達式,使用between關鍵字,使用in關鍵字,
模糊查詢like
整個語句的語義如下:從FROM子句中列出的表中,選擇滿足WHERE子句中給出的條件表達式的元組,然後按GROUPBY子句(分組子句)中指定列的值分組,再提取滿足HAVING子句中組條件表達式的那些組,按SELECT子句給出的列名或列表達式求值輸出。ORDER子句(排序子句)是對輸出的目標表進行重新排序,並可附加說明ASC(升序)或DESC(降序)排列。在WHERE子句中的條件表達式F中可出現下列操作符和運算函數:算術比較運算符:<,<=,>,>=,=,<>。邏輯運算符:AND,OR,NOT。集合運算符:UNION(並),INTERSECT(交),EXCEPT(差)。集合成員資格運算符:IN,NOT IN謂詞:EXISTS(存在量詞),ALL,SOME,UNIQUE。聚合函數:AVG(平均值),MIN(最小值),MAX(最大值),SUM(和),COUNT(計數)。F中運算對象還可以是另一個SELECT語句,即SELECT語句可以嵌套。上面只是列出了WHERE子句中可出現的幾種主要操作,由於WHERE子句中的條件表達式可以很復雜,因此SELECT句型能表達的語義遠比其數學原形要復雜得多。下面,我們以上面所建立的三個基本表為例,演示一下SELECT的應用:1.無條件查詢例:找出所有學生的的選課情況SELECT st_no,su_noFROM score例:找出所有學生的情況SELECT*FROM student「*」為通配符,表示查找FROM中所指出關系的所有屬性的值。2.條件查詢條件查詢即帶有WHERE子句的查詢,所要查詢的對象必須滿足WHERE子句給出的條件。例:找出任何一門課成績在70以上的學生情況、課號及分數SELECT UNIQUE student.st_class,student.st_no,student.st_name,student.st_sex,student.st_age,score.su_no,score.scoreFROM student,scoreWHERE score.score>=70 AND score.stno=student,st_no這里使用UNIQUE是不從查詢結果集中去掉重復行,如果使用DISTINCT則會去掉重復行。另外邏輯運算符的優先順序為NOT→AND→OR。例:找出課程號為c02的,考試成績不及格的學生SELECT st_noFROM scoreWHERE su_no=『c02』AND score<603.排序查詢排序查詢是指將查詢結果按指定屬性的升序(ASC)或降序(DESC)排列,由ORDER BY子句指明。例:查找不及格的課程,並將結果按課程號從大到小排列SELECT UNIQUE su_noFROM scoreWHERE score<60ORDER BY su_no DESC4.嵌套查詢嵌套查詢是指WHERE子句中又包含SELECT子句,它用於較復雜的跨多個基本表查詢的情況。例:查找課程編號為c03且課程成績在80分以上的學生的學號、姓名SELECT st_no,st_nameFROM studentWHERE stno IN (SELECT st_noFROM scoreWHERE su_no=『c03』 AND score>80 )這里需要明確的是:當查詢涉及多個基本表時用嵌套查詢逐次求解層次分明,具有結構程序設計特點。在嵌套查詢中,IN是常用到的謂詞。若用戶能確切知道內層查詢返回的是單值,那麼也可用算術比較運算符表示用戶的要求。5.計算查詢計算查詢是指通過系統提供的特定函數(聚合函數)在語句中的直接使用而獲得某些只有經過計算才能得到的結果。常用的函數有:COUNT(*) 計算元組的個數COUNT(列名) 對某一列中的值計算個數SUM(列名) 求某一列值的總和(此列值是數值型)AVG(列名) 求某一列值的平均值(此列值是數值型)MAX(列名) 求某一列值中的最大值MIN(列名) 求某一列值中的最小值例:求男學生的總人數和平均年齡SELECT COUNT(*),AVG(st_age)FROM studentWHERE st_sex=『男』例:統計選修了課程的學生的人數SELECT COUNT(DISTINCT st_no)FROM score注意:這里一定要加入DISTINCT,因為有的學生可能選修了多門課程,但統計時只能按1人統計,所以要使用DISTINCT進行過濾。 由於資料庫管理系統是一個多用戶系統,為了控制用戶對數據的存取權利,保持數據的共享及完全性,SQL語言提供了一系列的數據控制功能。其中,主要包括安全性控制、完整性控制、事務控制和並發控制。1.安全性控制數據的安全性是指保護資料庫,以防非法使用造成數據泄露和破壞。保證數據安全性的主要方法是通過對資料庫存取權力的控制來防止非法使用資料庫中的數據。即限定不同用戶操作不同的數據對象的許可權。存取權控制包括權力的授予、檢查和撤消。權力授予和撤消命令由資料庫管理員或特定應用人員使用。系統在對資料庫操作前,先核實相應用戶是否有權在相應數據上進行所要求的操作。(1)權力授予:權力授有資料庫管理員專用的授權和用戶可用的授權兩種形式。資料庫管理員專用授權命令格式如下:|CONNECT |GRANT|RESOURCE|TO 用戶名〔IDENTIFED BY 口令〕|DBA |其中,CONNECT表示資料庫管理員允許指定的用戶具有連接到資料庫的權力,這種授權是針對新用戶;RESOURCE表示允許用戶建立自己的新關系模式,用戶獲得CONNECT權力後,必須獲得RESOURCE權力才能創建自己的新表;DBA表示資料庫管理員將自己的特權授予指定的用戶。若要同時授予某用戶上述三種授權中的多種權力,則必須通過三個相應的GRANT命令指定。另外,具有CONNECT和RESOURCE授權的用戶可以建立自己的表,並在自己建立的表和視圖上具有查詢、插入、修改和刪除的權力。但通常不能使用其他用戶的關系,除非能獲得其他用戶轉授給他的相應權力。例:若允許用戶SSE連接到資料庫並可以建立他自己的關系,則可通過如下命令授予權力:GRANT CONNECT TO SSE INENTIFIED BY BD1928GRANT RESOURCE TO SSE用戶可用的授權是指用戶將自己擁有的部分或全部權力轉授給其他用戶的命令形式,其命令格式如下:|SELECT ||INSERT ||DELETE |GRANT|UPDATE(列名1[,列名2]…)|ON|表名 |TO|用戶名|〔WITH GRANT OPTION〕|ALTER | |視圖名| |PUBLIC||NDEX ||ALL |若對某一用戶同時授予多種操作權力,則操作命令符號可用「,」相隔。PUBLIC 表示將權力授予資料庫的所有用戶,使用時要注意:任選項WITH GRANT OPTION表示接到授權的用戶,具有將其所得到的同時權力再轉授給其他用戶權力。例:如果將表student的查詢權授予所有用戶,可使用以下命令:GRANT SELECT ON student TO PUBLIC例:若將表subject的插入及修改權力授予用戶SSE並使得他具有將這種權力轉授他人的權力,則可使用以下命令:GRANT INSERT,UPDATE(su_subject) ON subject TO SSE WITH GRANT OPTION這里,UPDATE後面跟su_subject是指出其所能修改的列。(2)權力回收:權力回收是指回收指定用戶原已授予的某些權力。與權力授予命令相匹配,權力回收也有資料庫管理員專用和用戶可用的兩種形式。DBA專用的權力回收命令格式為:|CONNECT |REVOKE|RESOURCE|FROM用戶名|DBA |用戶可用的權力回收命令格式為:|SELECT ||INSERT ||DELETE |REVOKE|UPDATE(列名1〔,列名2〕…) |ON|表名 |FROM |用戶名||ALTER | |視圖名| |PUBLIC||INDEX ||ALL |例:回收用戶SSE的DBA權力:REVOKE DBA FROM SSE2.完整性控制資料庫的完整性是指數據的正確性和相容性,這是資料庫理論中的重要概念。完整性控制的主要目的是防止語義上不正確的數據進入資料庫。關系系統中的完整性約束條件包括實體完整性、參照完整性和用戶定義完整性。而完整性約束條件的定義主要是通過CREATE TABLE語句中的〔CHECK〕子句來完成。另外,還有一些輔助命令可以進行數據完整性保護。如UNIQUE和NOT NULL,前者用於防止重復值進入資料庫,後者用於防止空值。3.事務控制事務是並發控制的基本單位,也是恢復的基本單位。在SQL中支持事務的概念。所謂事務,是用戶定義的一個操作序列(集合),這些操作要麼都做,要麼一個都不做,是一個不可分割的整體。一個事務通常以BEGIN TRANSACTION開始,以COMMIT或ROLLBACK結束。SQL提供了事務提交和事務撤消兩種命令:(1)事務提交:事務提交的命令為:COMMIT 〔WORK〕事務提交標志著對資料庫的某種應用操作成功地完成,所有對資料庫的操作都必須作為事務提交給系統時才有效。事務一經提交就不能撤消。(2)事務撤消:事務撤消的命令是:ROLLBACK 〔WORK〕事務撤消標志著相應事務對資料庫操作失敗,因而要撤消對資料庫的改變,即要「回滾」到相應事務開始時的狀態。當系統非正常結束時(如掉電、系統死機),將自動執行ROLLBACK命令

6. 技術解析Transwarp Inceptor是怎樣煉成的

技術解析Transwarp Inceptor是怎樣煉成的
當前Hadoop技術蓬勃發展,用於解決大數據的分析難題的技術平台開始涌現。Spark憑借性能強勁、高度容錯、調度靈活等技術優勢已漸漸成為主流技術,業界大部分廠商都提供了基於Spark的技術方案和產品。根據Databricks的統計,目前有11個商業的Spark版本。
在使用Spark作出計算平台的解決方案中,有兩種主流編程模型,一類是基於SparkAPI或者衍生出來的語言,另一種是基於SQL語言。SQL作為資料庫領域的事實標准語言,相比較用API(如MapReceAPI,SparkAPI等)來構建大數據分析的解決方案有著先天的優勢:一是產業鏈完善,各種報表工具、ETL工具等可以很好的對接;二是用SQL開發有更低的技術門檻;三是能夠降低原有系統的遷移成本等。因此,SQL語言也漸漸成為大數據分析的主流技術標准。本文將深入解析Inceptor的架構、編程模型和編譯優化技術,並提供基準測試在多平台上的性能對比數據。
1.Inceptor架構
TranswarpInceptor是基於Spark的分析引擎,如圖1所示,從下往上有三層架構:最下面是存儲層,包含分布式內存列式存儲(TranswarpHolodesk),可建在內存或者SSD上;中間層是Spark計算引擎層,星環做了大量的改進保證引擎有超強的性能和高度的健壯性;最上層包括一個完整的SQL99和PL/SQL編譯器、統計演算法庫和機器學習演算法庫,提供完整的R語言訪問介面。
TranswarpInceptor可以分析存儲在HDFS、HBase或者TranswarpHolodesk分布式緩存中的數據,可以處理的數據量從GB到數十TB,即使數據源或者中間結果的大小遠大於內存容量也可高效處理。另外TranswarpInceptor通過改進Spark和YARN的組合,提高了Spark的可管理性。同時星環不僅僅是將Spark作為一個預設計算引擎,也重寫了SQL編譯器,提供更加完整的SQL支持。
同時,TranswarpInceptor還通過改進Spark使之更好地與HBase融合,可以為HBase提供完整的SQL支持,包括批量SQL統計、OLAP分析以及高並發低延時的SQL查詢能力,使得HBase的應用可以從簡單的在線查詢應用擴展到復雜分析和在線應用結合的混合應用中,大大拓展了HBase的應用范圍。
2.編程模型
TranswarpInceptor提供兩種編程模型:一是基於SQL的編程模型,用於常規的數據分析、數據倉庫類應用市場;二是基於數據挖掘編程模型,可以利用R語言或者SparkMLlib來做一些深度學習、數據挖掘等業務模型。
2.1SQL模型
TranswarpInceptor實現了自己的SQL解析執行引擎,可以兼容SQL99和HiveQL,自動識別語法,因此可以兼容現有的基於Hive開發的應用。由於TranswarpInceptor完整支持標準的SQL 99標准,傳統資料庫上運行的業務可以非常方便的遷移到Transwarp Inceptor系統上。此外Transwarp Inceptor支持PL/SQL擴展,傳統數據倉庫的基於PL/SQL存儲過程的應用(如ETL工具)可以非常方便的在Inceptor上並發執行。另外Transwarp Inceptor支持部分SQL 2003標准,如窗口統計功能、安全審計功能等,並對多個行業開發了專門的函數庫,因此可以滿足多個行業的特性需求。
2.2數據挖掘計算模型
TranswarpInceptor實現了機器學習演算法庫與統計演算法庫,支持常用機器學習演算法並行化與統計演算法並行化,並利用Spark在迭代計算和內存計算上的優勢,將並行的機器學習演算法與統計演算法運行在Spark上。例如:機器學習演算法庫有包括邏輯回歸、樸素貝葉斯、支持向量機、聚類、線性回歸、關聯挖掘、推薦演算法等,統計演算法庫包括均值、方差、中位數、直方圖、箱線圖等。TranswarpInceptor可以支持用R語言或者SparkAPI在平台上搭建多種分析型應用,例如用戶行為分析、精準營銷、對用戶貼標簽、進行分類。
3.SQL編譯與優化
TranswarpInceptor研發了一套完整的SQL編譯器,包括HiveQL解析器、SQL標准解析器和PL/SQL解析器,將不同的SQL語言解析成中間級表示語言,然後經過優化器轉換成物理執行計劃。SQL語言解析後經過邏輯優化器生成中間級表示語言,而中間表示語言再經過物理優化器生成最終的物理執行計劃。從架構上分,邏輯優化器和物理優化器都包含基於規則的優化模塊和基於成本的優化模塊。
為了和Hadoop生態更好的兼容,Inceptor為一個SQL查詢生成MapRece上的執行計劃和Spark上的執行計劃,並且可以通過一個SET命令在兩種執行引擎之間切換。
3.1SQL編譯與解析
TranswarpInceptor的SQL編譯器會根據輸入的SQL查詢的類型來自動選擇不同的解析器,如PL/SQL存儲過程會自動進入PL/SQL解析器並生成一個SparkRDD的DAG從而在Spark平台上並行計算,標准SQL查詢會進入SQL標准解析器生成Spark或MapRece執行計劃。由於HiveQL和標準的SQL有所出入,為了兼容HiveQL,Transwarp Inceptor保留了HiveQL解析器,並可以對非標准SQL的Hive查詢生成Spark或者Map Rece執行計劃。
3.1.1SQL標准解析器
TranswarpInceptor構建了自主研發的SQL標准解析器,用於解析SQL99& SQL 2003查詢並生成Spark和Map Rece的執行計劃。詞法和語法分析層基於Antlr語法來構建詞法範式,通過Antlr來生成抽象語義樹,並會通過一些上下文的語義來消除沖突並生成正確的抽象語義樹。語義分析層解析上層生成的抽象語義樹,根據上下文來生成邏輯執行計劃並傳遞給優化器。首先Transwarp Inceptor會將SQL解析成TABLE SCAN、SELECT、FILTER、JOIN、UNION、ORDER BY、GROUP BY等主要的邏輯塊,接著會根據一些Meta信息進一步細化各個邏輯塊的執行計劃。如TABLE SCAN會分成塊讀取、塊過濾、行級別過濾、序列化等多個執行計劃。
3.1.2PL/SQL解析器
PL/SQL是Oracle對SQL語言的模塊化擴展,已經在很多行業中有大規模的應用,是數據倉庫領域的重要編程語言。
為了讓存儲過程在Spark上有較好的性能,PL/SQL解析器會根據存儲過程中的上下文關系來生成SQLDAG,然後對各SQL的執行計劃生成的RDD進行二次編譯,通過物理優化器將一些沒有依賴關系的RDD進行合並從而生成一個最終的RDDDAG。因此,一個存儲過程被解析成一個大的DAG,從而stage之間可以大量並發執行,避免了多次執行SQL的啟動開銷並保證了系統的並發性能。
解析並生成SQL級別的執行計劃
3.2SQL優化器
TranswarpInceptor使用Spark作為默認計算引擎,並且開發了完善的SQL優化器,因此在大量的客戶案例性能測試中,TranswarpInceptor的性能領先MapRece 10-100倍,並超越部分開源MPP資料庫。SQL優化器對平台性能的提升居功至偉。
3.2.1基於規則的優化器(RuleBasedOptimizer)
目前為止,TranswarpInceptor共實現了一百多個優化規則,並且在持續的添加新的規則。按照功能劃分,這些規則主要分布在如下幾個模塊:
文件讀取時過濾
在文件讀取時過濾數據能夠最大化的減少參與計算的數據量從而最為有效的提高性能,因此TranswarpInceptor提供了多個規則用於生成表的過濾條件。對於一些SQL中的顯示條件,TranswarpInceptor會盡量將過濾前推到讀取表中;而對於一些隱式的過濾條件,如可以根據joinkey生成的過濾規則,Inceptor會根據語義保證正確性的前提下進行規則生成。
過濾條件前置
TranswarpInceptor能夠從復雜的組合過濾條件中篩選出針對特定表的過濾規則,然後通過SQL語義來確定是否能將過濾條件前推到盡量早的時候執行。如果有子查詢,過濾條件可以遞歸前推入最低層的子查詢中,從而保證所有的冗餘數據被刪除。
超寬表的讀取過濾
對一些列超多的表進行處理的時候,TranswarpInceptor首先會根據SQL語義來確定要讀取的列,並在讀取表的時候進行跨列讀取減少IO和內存消耗。而如果表有過濾條件,Inceptor會做進一步優化,首先只讀取過濾條件相關的列來確定該行記錄是否需要被選擇,如果不是就跳過當前行的所有列,因此能夠最大程度上的減少數據讀取。在一些商業實施中,這些優化規則能夠帶來5x-10x的性能提升。
Shuffle Stage的優化與消除
Spark的shuffle實現的效率非常低,需要把結果寫磁碟,然後通過HTTP傳輸。TranswarpInceptor添加了一些shuffle消除的優化規則,對SQL的DAG中不必要或者是可以合並的shufflestage進行消除或者合並。對於必須要做Shuffle的計算任務,Inceptor通過DAGScheler來提高shuffle的效率:MapTask會直接將結果返回給DAGScheler,然後DAGScheler將結果直接交給Rece Task而不是等待所有Map Task結束,這樣能夠非常明顯的提升shuffle階段的性能。
Partition消除
TranswarpInceptor提供單一值Partition和RangePartition,並且支持對Partition建Bucket來做多次分區。當Partition過多的時候,系統的性能會因為內存消耗和調度開銷而損失。因此,Inceptor提供了多個規則用於消除不必要的Partition,如果上下文中有隱式的對Partition的過濾條件,Inceptor也會生成對partition的過濾規則。
3.2.2基於成本的優化器(CostBasedOptimizer)
基於規則的優化器都是根據一些靜態的信息來產生的,因此很多和動態數據相關的特性是不能通過基於規則的優化來解決,因此TranswarpInceptor提供了基於成本的優化器來做二次優化。相關的原始數據主要來自Meta-store中的表統計信息、RDD的信息、SQL上下文中的統計信息等。依賴於這些動態的數據,CBO會計算執行計劃的物理成本並選擇最有效的執行計劃。一些非常有效的優化規則包括如下幾點:
JOIN順序調優
在實際的案例中,join是消耗計算量最多的業務,因此對join的優化至關重要。在多表JOIN模型中,TranswarpInceptor會根據統計信息來預估join的中間結果大小,並選擇產生中間數據量最小的join順序作為執行計劃。
JOIN類型的選擇
TranswarpInceptor支持Left-mostJoinTree 和 Bush Join Tree,並且會根據統計信息來選擇生成哪種Join模型有最佳性能。此外,Transwarp Inceptor會根據原始表或者中間數據的大小來選擇是否開啟針對數據傾斜模型下的特殊優化等。此外,針對HBase表是否有索引的情況,Transwarp Inceptor會在普通Join和Look-up Join間做個均衡的選擇。
並發度的控制
Spark通過線程級並發來提高性能,但是大量的並發可能會帶來不必要的調度開銷,因此不同的案例在不同並發度下會有最佳性能。TranswarpInceptor通過對RDD的一些屬性進行推算來選擇最佳並發控制,對很多的案例有著2x-3x的性能提升。
4.TranswarpHolodesk內存計算引擎
為了有效的降低SQL分析的延時,減少磁碟IO對系統性能的影響,星環科技研發了基於內存或者SSD的存儲計算引擎TranswarpHolodesk,通過將表數據直接建在內存或者SSD上以實現SQL查詢全內存計算。另外TranswarpHolodesk增加了數據索引功能,支持對多個數據列建索引,從而更大程度的降低了SQL查詢延時。
4.1存儲格式
TranswarpHolodesk基於列式存儲做了大量的原創性改進帶來更高的性能和更低的數據膨脹率。首先數據被序列化後存儲到內存或SSD上以節省者資源佔用。如圖3所示,每個表的數據被存儲成若干個Segment,每個Segment被劃分成若干個Block,每個Block按照列方式存儲於SSD或內存中。另外每個Block的頭部都加上Min-MaxFilter和BloomFilter用於過濾無用的數據塊,減少不必要的數據進入計算階段。
TranswarpHolodesk根據查詢條件的謂詞屬性對每個數據塊的對應列構建數據索引,索引列採用自己研發的Trie結構進行組織存儲,非索引列採用字典編碼的方式進行組織存儲。Trie不僅能對具有公共前綴的字元串進行壓縮,而且可以對輸入的字元串排序,從而可以利用二分查找快速查詢所需數據的位置,從而快速響應查詢需求。
HDFS2.6支持StorageTier讓應用程序可以選擇存儲層為磁碟或者SSD,但是沒有專用的存儲格式設計是無法有效利用SSD的讀寫吞吐量和低延,因此現有的Text以及行列混合(ORC/Parquet)都不能有效的利用SSD的高性能。為此驗證存儲結構對性能的影響,我們將HDFS構建在SSD上並選用某基準測試來做了進一步的性能對比,結果如圖4所示:採用文本格式,PCI-ESSD帶來的性能提升僅1.5倍;採用專為內存和SSD設計的Holodesk列式存儲,其性能相比較SSD上的HDFS提升高達6倍。
4.2性能優勢
某運營商客戶在12台x86伺服器上搭建了TranswarpInceptor,將TranswarpHolodesk配置在PCIE-SSD上,並與普通磁碟表以及DB2來做性能對比測試。最終測試數據如圖5所示:
在純粹的count測試一項,Holodesk性能相對於磁碟表最高領先32倍;對於join測試一項,TranswarpHolodesk最高領先磁碟表多達12倍;在單表聚合測試中,Holodesk提升倍數達10~30倍。另外TranswarpHolodesk在和DB2的對比中也表現優秀,兩個復雜SQL查詢在DB2資料庫中需要運行1小時以上,但是在使用TranswarpHolodesk均是分鍾級和秒級就返回結果。
內存的價格大約是同樣容量SSD的十倍左右,為了給企業提供更高性價比的計算方案,TranswarpHolodesk針對SSD進行了大量的優化,使得應用在SSD上運行具有與在內存上比較接近的性能,從而為客戶提供了性價比更高的計算平台。
在對TPC-DS的IO密集型查詢的測試中,無論上構建在PCI-ESSD還是內存上,Holodesk對比磁碟表有一個數量級上的性能提升;而SSD上的Holodesk性能只比內存差10%左右。
5.穩定的Spark執行引擎
企業目前應用開源Spark的主要困難在穩定性、可管理性和功能不夠豐富上。開源Spark在穩定性上還有比較多的問題,在處理大數據量時可能無法運行結束或出現Outofmemory,性能時快時慢,有時比Map/Rece更慢,無法應用到復雜數據分析業務中。
TranswarpInceptor針對各種出錯場景設計了多種解決方法,如通過基於成本的優化器選擇最合適的執行計劃、加強對數據結構內存使用效率的有效管理、對常見的內存出錯問題通過磁碟進行數據備份等方式,極大提高了Spark功能和性能的穩定性,上述問題都已經解決並經過商業案例的考驗。TranswarpInceptor能穩定的運行7*24小時,並能在TB級規模數據上高效進行各種穩定的統計分析。
6.SQL引擎效能驗證
TPC-DS是TPC組織為DecisionSupportSystem設計的一個測試集,包含對大數據集的統計/報表生成/聯機查詢/數據挖掘等復雜應用,測試用的數據有各種不同的分布與傾斜,與真實場景非常接近。隨著國內外各代表性的Hadoop發行版廠商以TPC-DS為標准測評產品,TPC-DS也就逐漸成為了業界公認的Hadoop系統測試准則。
6.1驗證對比的平台和配置
我們搭建了兩個集群分別用於TranswarpInceptor與ClouderaDataHub/Impala的測試。
6.2TranswarpInceptorVS Cloudera Impala
TranswarpInceptor由於有完善的SQL支持,能夠運行全部所有的99個SQL查詢。而由於Cloudera官方發布的TPC-DS測試集只包含19個SQL案例,因此我們只能運行這19個SQL,實驗證明這部分查詢在Impala上全部正常運行完成。
6.3TranswarpInceptorVS Map Rece
我們使用了同樣的硬體和軟體配置完成和開源的Hive執行效率相比,TranswarpInceptor能夠帶來10x-100x的性能提升。圖8是TPC-DS的部分SQL查詢在Inceptor和CDH5.1Hive的性能提升倍數,其中最大的提升倍數竟可達到123倍。
7.結語
隨著在大數據領域國內外開始處於同一起跑線,我們相信像星環科技這樣國內具有代表性的Hadoop發行版廠商將在中國的廣闊市場空間中獲得長足發展,並且由於中國市場激烈的競爭與磨練,逐步打磨出超越國外先進廠商的技術與實力。
劉汪根。2013年加入星環,作為早期員工參與了星環大數據平台的構建,現擔任數據平台部研發經理,主要負責與管理星環大數據平台數據平台的研發工作,如SQL編譯器,Spark執行引擎等工作,產品涵括TranswarpInceptor/TranswarpStream等軟體。
【編者按】星環科技從2013年6月開始研發基於Spark的SQL執行引擎,在2013年底推出TranswarpInceptor1.0,並落地了國內首個7x24小時的商用項目。經過1年多的持續創新與改進,星環已經在國內落地了數十個Inceptor的商用項目。這是一篇星環Spark解決方案的技術解析,也是Spark用戶可以效仿的優化之道。

7. sql的執行過程中語法語義檢查是在sga還是pga中進行

是一組包含一個Oracle實例的數據和控制信息的共享內存結構。主要是用於存儲資料庫信息的內存區,該信息為資料庫進程所共享(PGA不能共享的)。它包含Oracle伺服器的數據和控制信息,它是在Oracle伺服器所駐留的計算機的實際內存中得以分配,如果實際內存不夠再往虛擬內存中寫。
SGA幾個很重要的特性:
1、SGA的構成--數據和控制信息,我們下面會詳細介紹;
2、SGA是共享的,即當有多個用戶同時登錄了這個實例,SGA中的信息可以被它們同時訪問(當涉及到互斥的問題時,由latch和enquence控制);
3、一個SGA只服務於一個實例,也就是說,當一台機器上有多個實例運行時,每個實例都有一個自己的SGA盡管SGA來自於OS的共享內存區,但實例之間不能相互訪問對方的SGA區。
它主要包括:
1.資料庫高速緩存(the
database buffer cache),
2.重演日誌緩存(the redo log buffer)
3.共享池(the shared
pool)
4.數據字典緩存(the data dictionary cache)以及其它各方面的信息。
1.數據高速緩沖區(Data
Buffer
Cache)
在數據高速緩沖區中存放著Oracle系統最近使用過的數據塊(即用戶的高速緩沖區),當把數據寫入資料庫時,它以數據塊為單位進行讀寫,當數據高速緩沖區填滿時,則系統自動去掉一些不常被用訪問的數據。如果用戶要查的數據不在數據高速緩沖區時,Oracle自動從磁碟中去讀取。數據高速緩沖區包括三個類型的區:1)
臟的區(Dirty Buffers):包含有已經改變過並需要寫回數據文件的數據塊。
2) 自由區(Free
Buffers):沒有包含任何數據並可以再寫入的區,Oracle可以從數據文件讀數據塊該區。
3) 保留區(Pinned
Buffers):此區包含有正在處理的或者明確保留用作將來用的區。
2.Redo Log Buffer
Cache緩存對於數據塊的所有修改。
主要用於恢復其中的每一項修改記錄都被稱為redo 條目。利用Redo條目的信息可以重做修改。
3.
Shared Pool用於緩存最近被執行的SQL語句和最近被使用的數據定義。
它主要由兩個內存結構構成:Library cache和Data
dictionary cache
修改共享池的大小:ALTER SYSTEM SET SHARED_POOL_SIZE =
64M;
Libray
Cache緩存最近被執行的SQL和PL/SQL的相關信息。實現常用語句的共享,使用LRU演算法進行管理
,由以下兩個結構構成:Shared SQL
area、Shared PL/SQL area、Data Dictionary Cache、Data dictionary
cache緩存最近被使用的資料庫定義。它包括關於資料庫文件、表、索引、列、用戶、許可權以及其它資料庫對象的信息。在語法分析階段,Server
Process訪問數據字典中的信息以解析對象名和對存取操作進行驗證。數據字典信息緩存在內存中有助於縮短響應時間。
4.數據字典緩存(the data
dictionary cache)

8. sql語言怎麼才能學起來簡單易懂呢

SQL語句其實和語義結合得十分緊密,基本上字面意思就是所要表達的意思。另外練習時必不可少的過程,任何知識都是由量變到質變的過程。推薦你看看馬士兵,李興華的相關方面的教程,會對你有幫助的....祝你學習成功。

9. hive 兩欄位合並成 一個欄位 例如:欄位a和欄位b合並成a-b,請問如何實現、

使用函數concat
select concat(a,'-',b) from就可以實現了。

10. sql數據匯總一張表 用sql語句或存儲過程怎麼寫

各公司的表是不同的名稱,沒有規律是吧?
如果有規律比如table1、table2……方便多了。
在存儲過程中,直接利用循環,查詢各表中的數據,累加到一個臨時數值上,然後將該數值插入到匯總表。具體實現,不同的資料庫有細微差別。
如果是沒有規律的,則需要將各表名作為存儲過程參數,比如用傳入字元串table1|table2|……|tablexxx|
然後在存儲過程中,解析該字元串,之後循環查詢。
存儲過程其實和c語言編程等編程語言實現語義上沒有多大區別,邏輯清楚了,多看幾個示例,就會弄了。
如果不想存儲過程,也可以用觸發器,在每張表上建一個觸發器,將所有記錄更新到匯總表。或者直接用視圖,將各表的結果直接匯總select
isnull(a.期初數,0)
+
isnull(b.期初數,0)
+
……
總期初數
from
table1
a
left
join
table
2
b
on
a.年=b.年
left
join
……
where
a.年='2011'