當前位置:首頁 » 編程語言 » 當塞恩學會c語言
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

當塞恩學會c語言

發布時間: 2022-12-09 06:45:41

① 《金鏟鏟之戰》8挑戰者陣容是什麼

《金鏟鏟之戰》8挑戰者陣容是:莎彌拉,男刀,斯維因,卡密爾,奎因,劍姬,永恩,狼人,塞恩。

金鏟鏟之戰八挑戰者塞恩陣容羈絆:八挑戰者【挑戰者增加145%攻速,殺敵後沖刺到第二個敵人處加成290%攻速持續2.5秒】,五帝國【暴君125%增傷,帝國英雄50%增傷】,一巨像【塞恩免控】。

金鏟鏟之戰八挑戰者塞恩陣容出裝:塞恩【挑戰者轉職,羊刀,法爆】,永恩【帝國轉職,基克的先驅,基克的先驅】,狼人【巨殺,飲血劍,羊刀】,男刀【挑戰者轉職】。

金鏟鏟之戰八挑戰者塞恩陣容組成:

八挑戰者塞恩這個陣容只有一個主C跟一個副C,主C是塞恩,副C是狼人這兩個必須遞三星。

除了塞恩跟狼人之外,剩餘的成員還有莎彌拉,男刀,斯維因,卡密爾,奎因,劍姬,永恩等七個英雄棋子,是一個九人口陣容。

② 質量效應2支線 發現偽造ID怎麼完成

與聯系人見面,消滅保鏢後,得知這個人不是Fade,只是Fade的手下Fade在工廠區域。Fade原來是前C-Sec成員Harkin。用Rapid Transit前往工廠區域。

這里會找到一個Forged ID(偽造的ID)開啟支線任務,尋找一個需要這個ID的人。感謝xtr3mz提供的信息和鏈接。據有人完成這個支線的人說,要找的人就在從降落點出去後,到達大廳向左轉,在通往樂ver27的樓梯前有2個Asari坐在沙發上,就是那兩個人。

背景設定

2148年,人類於太陽系的火星上發現了一些古代科技,並藉此建造出能做超光速飛行的太空飛船,自此開啟了人類夢寐以求的太空探索之旅。

2149年,人類又發現冥王星的小衛星冥衛一是古代科技製造的質量中繼器(Mass Relay)。利用這種質量中繼器,飛船可實現更為高效的星際旅行。

經考查後了解,建造質量中繼器的似乎是一個叫普洛仙(Prothean)的外星文明(實際上可能不是),這個種族已經滅絕,普洛仙人曾經是銀河系的統治者。

③ 繞地球一圈多長

4萬公里。
地球赤道半徑6378.137千米,極半徑6356.752千米,平均半徑約6371千米,赤道周長大約為40076千米,呈兩極稍扁赤道略鼓的不規則的橢圓球體。
赤道穿過了加彭、剛果、扎伊爾、烏干達、肯亞、索馬里、馬爾地夫、印度尼西亞、厄瓜多、哥倫比亞和巴西等許多國家。

④ 《雲頂之翼》巨像陣容是什麼

陣容組成:泰隆、斯維因、塔里克、薩勒芬妮、塞恩、加里奧。

陣容羈絆:3帝國、2巨像、3社會名流。

海克斯強化選擇:護甲鍍層(最佳)、+1/2帝國羈絆,逆風鬥志、飛升、+1/2名流、分享聚光燈、雙人統治、人人為我。

裝備分配

前期的肉裝主要給科加斯或者塔里克,如果科加斯3星了可以考慮不用加里奧,3星科加斯的坦度還是非常強的。後期等加里奧2星直接替換成加里奧來C。裝備還是傳統的反甲+龍牙,最後一件裝備可以做出狂徒鎧甲或者石像鬼板甲這些裝備,當然也可以做出鬼書給加里奧,鬼書跳後排能夠有群體控制+減傷。

塞恩的裝備必備是法爆無盡,這兩個裝備是保證塞恩的傷害達到最大,最後一件裝備正義之拳能夠讓塞恩快一步啟動,其次泰坦能夠給塞恩增加雙抗,配合巨像的減傷收益不會低於正義之拳的傷害。

⑤ 早餐吃什麼有營養

早餐要吃熱的食物。早晨室外的溫度尚未回升,人的肌肉、神經及血管都還沒有舒張,如此時攝入冰冷的飲食,必定會影響微循環,導致血流不暢。長期進食會出現食慾差,皮膚漸失光澤,喉嚨老是有痰堵的感覺,時常感冒。這都表明胃氣受損,並且傷及了機體的免疫能力。

早餐搭配要合理。牛奶、豆漿都是生活中常見的食物,營養豐富,可以任選其一。早點除了吃「稀的」以外,還應搭配一定量的「干點」。谷類食品吸收後能很快分解成為葡萄糖,糾正一夜睡眠後出現的低血糖現象。

但谷類食品的缺點是消化比較快,2~3小時之後就會感到飢餓。因此還要適量攝入一些富含蛋白質和脂肪的食品,如雞蛋、豆製品、瘦肉等。另外,要適當吃點水果和蔬菜,不僅可以補充水溶性維生素和膳食纖維,還可以獲得機體所需的礦物質與微量元素。

(5)當塞恩學會c語言擴展閱讀

醫學專家指出,由於晚餐吃得過晚,人在睡眠時,絕大部分器官都得到了充分休息,而消化器官卻仍在消化吸收晚餐存留在胃腸道中的食物,到凌晨才漸漸進入休息狀態。

一旦吃早餐太早,勢必會干擾胃腸休息,使消化系統長期處於疲勞應戰的狀態,擾亂腸胃的蠕動節奏。在7點左右起床後20至30分鍾吃早餐最合適。另外,早餐與中餐以間隔4至5小時左右為好,也說明早餐在7至8點之間進食為好。

⑥ 地球的周長是多長呢

地球的周長是:約為40075公里。

地球(Earth)是太陽系八大行星之一(2006年冥王星被劃為矮行星,因為其運動軌跡與其它八大行星不同),按離太陽由近及遠的次序排為第三顆。它有一個天然衛星——月球,二者組成一個天體系統——地月系統。地球作為一個行星,遠在46億年以前起源於原始太陽星雲。地球會與外層空間的其他天體相互作用,包括太陽和月球。地球是上百萬生物的家園,包括人類,地球是宇宙中已知存在生命的唯一天體。地球赤道半徑6378.137千米,極半徑6356.752千米,平均半徑約為6371千米,赤道周長大約為40075千米,地球上71%為海洋;29%為陸地。太空之所以上看地球呈藍色,是因為天空是地球的另一級,被海水所覆蓋了。地球是一個大磁鐵,通過南北兩極,磁場可以一直延伸到地球及地球以外十萬千米以上的高空。地球由地殼地幔以及地核組成,地核的溫度隨深度的變化而變化,在6371千米深處的地球中心,溫度高達4500~5000攝氏度。地球並不是一個完整的球體,其實它是一個橢圓體。地球赤道周長要比本初子午線周長要長。

⑦ 英雄聯盟誰開發的

《英雄聯盟》是由美國拳頭游戲(Riot Games)開發的。

拳頭是一家美國網游開發商,成立於2006年,代表作品《英雄聯盟》。拳頭是一家網游開發商和發行商。迄今為止,其首款游戲《英雄聯盟》每天都有超過2700萬的玩家連線體驗。

2008年融資800萬美元,引入騰訊、Benchmark Capital 及Firstmark capital作為投資者,騰訊隨後獲得《英雄聯盟》中國大陸代理權。

騰訊2011年第三季度財報中披露,其收購美國游戲開發商Riot Games共花費現金2.31億美元,交易前持股22.34%,完成此次交易後持股92.78%。

2015年12月17日凌晨消息 《英雄聯盟》開發商Riot Games在公司官網宣布,其大股東騰訊收購了公司剩餘股份,這就意味著騰訊對這家公司實現了100%控股。


(7)當塞恩學會c語言擴展閱讀

拳頭游戲故事:拳頭游戲是由布蘭登·貝克和馬克·梅里爾在2006年創建的公司。其宗旨是用新的方式來製作電子游戲,讓玩家用與以往不同的手段來支持他們所喜愛的游戲。2009年,拳頭游戲推出了自己的第一款游戲《英雄聯盟》,贏得了全世界的廣泛贊譽。

此後,這款游戲就成為了全球最受歡迎的電腦游戲,同時也是電子競技爆炸性增長的關鍵推動力。玩家是我們社區的基石。

正是為了他們,我們才要繼續進步,改進英雄聯盟的游戲體驗。拳頭游戲的總部設在加利福尼亞州的洛杉磯,並且在全球擁有23家辦公室。

⑧ 已知角阿爾法終邊上一點p的坐標為負三負四咋塞恩阿爾法等於口塞恩恩法等於等

由題意可得 x=-3,y=4,r=5,∴tanα= y x = 4 -3 =- 4 3 , 故選 C.

⑨ 塞恩60度等於多少

sin60°=(√3)/2。
對於任意直角三角形,假設斜邊為c,60°角的對邊為b。
則sin60°=b/c=(√3)/2。

正弦(sine),數學術語,在直角三角形中,任意一銳角∠A的對邊與斜邊的比叫作∠A的正弦,記作sinA(由英語sine一詞簡寫得來),即sinA=∠A的對邊/斜邊。
正弦定理(The Law of Sines)是三角學中的一個基本定理,它指出「在任意一個平面三角形中,各邊和它所對角的正弦值得比相等且等於外接圓的直徑」,即a/sinA = b/sinB =c/sinC = 2r=D(r為外接圓半徑,D為直徑)。

⑩ 中學物理十大經典實驗與初中力學實驗

「初中物理是一門很強調理論結合實驗的學科,雖然課本上的定律、概念很多,但是只有與實驗相結合,理解和運用這些書面知識才能得心應手。如何才能學好物理呢?我在這里整理了相關資料,快來學習學習吧!

中學物理十大經典實驗

1、托馬斯·楊的雙縫演示應用於電子干涉實驗

在20世紀初的一段時間中,人們逐漸發現了微觀客體(光子、電子、質子、中子等)既有波動性,又有粒子性,即所謂的「波粒二象性」。「波動」和「粒子」都是經典物理學中從宏觀世界裡獲得的概念,與我們的直觀經驗較為相符。然而,微觀客體的行為與人們的日常經驗畢竟相差很遠。如何按照現代量子物理學的觀點去准確認識、理解微觀世界本身的規律,電子雙縫干涉實驗為一典型實例。

楊氏的雙縫干涉實驗是經典的波動光學實驗,玻爾和愛因斯坦試圖以電子束代替光束來做雙縫干涉實驗,以此來討論量子物理學中的基本原理。可是,由於技術的原因,當時它只是一個思想實驗。直到1961年,約恩·孫製作出長為50mm、寬為0.3mm、縫間距為1mm的雙縫,並把一束電子加速到50keV,然後讓它們通過雙縫。當電子撞擊熒光屏時顯示了可見的圖樣,並可用照相機記錄圖樣結果。電子雙縫干涉實驗的圖樣與光的雙縫干涉實驗結果的類似性給人們留下了深刻的印象,這是電子具有波動性的一個實證。更有甚者,實驗中即使電子是一個個地發射,仍有相同的干涉圖樣。但是,當我們試圖決定電子究竟是通過哪個縫的,不論用何手段,圖樣都立即消失,這實際告訴我們,在觀察粒子波動性的過程中,任何試圖研究粒子的努力都將破壞波動的特性,我們無法同時觀察兩個方面。要設計出一種儀器,它既能判斷電子通過哪個縫,又不幹擾圖樣的出現是絕對做不到的。這是微觀世界的規律,並非實驗手段的不足。

2、伽利略的自由落體實驗

伽利略(1564—1642)是近代自然科學的奠基者,是科學史上第一位現代意義上的科學家。他首先為自然科學創立了兩個研究法則:觀察實驗和量化方法,創立了實驗和數學相結合、真實實驗和理想實驗相結合的方法,從而創造了和以往不同的近代科學研究方法,使近代物理學從此走上了以實驗精確觀測為基礎的道路。愛因斯坦高度評價道:「伽利略的發現以及他所應用的科學推理方法是人類思想史上最偉大的成就之一」。

16世紀以前,希臘最著名的思想家和哲學家亞里斯多德是第一個研究物理現象的科學巨人,他的《物理學》一書是世界上最早的物理學專著。但是亞里斯多德在研究物理學時並不依靠實驗,而是從原始的直接經驗出發,用哲學思辨代替科學實驗。亞里斯多德認為每一個物體都有回到自然位置的特性,物體回到自然位置的運動就是自然運動。這種運動取決於物體的本性,不需要外部的作用。自由落體是典型的自然運動,物體越重,回到自然位置的傾向越大,因而在自由落體運動中,物體越重,下落越快;物體越輕,下落越慢。

伽利略當時在比薩大學任職,他大膽地向亞里斯多德的觀點挑戰。伽利略設想了一個理想實驗:讓一重物體和一輕物體束縛在一起同時下落。按照亞里斯多德的觀點,這一理想實驗將會得到兩個結論。首先,由於這一聯結,重物受到輕物的牽連與阻礙,下落速度將會減慢,下落時間將會延長;其次,也由於這一聯結,聯結體的重量之和大於原重物體;因而下落時間會更短。顯然這是兩個截然相反的結論。

伽利略利用理想實驗和科學推理,巧妙地揭示了亞里斯多德運動理論的內在矛盾,打開了亞里斯多德運動理論的缺口,導致了物理學的真正誕生。

人們傳說伽利略從比薩斜塔上同時扔下一輕一重的物體,讓大家看到兩個物體同時落地,從而向世人展示了他尊重科學,不畏權威的可貴精神。

3、羅伯特·密立根的油滴試驗

很早以前,科學家就在研究電。人們知道這種無形的物質可以從天上的閃電中得到,也可以通過摩擦頭發得到。1897年,英國物理學家托馬斯已經得知如何獲取負電荷電流。1909年美國科學家羅伯特·密立根(1868—1953)開始測量電流的電荷。

他用一個香水瓶的噴頭向一個透明的小盒子里噴油滴。小盒子的頂部和底部分別放有一個通正電的電極和一個通負電的電極。當小油滴通過空氣時,就帶了一些靜電,它們下落的速度可以通過改變電極的電壓來控制。當去掉電場時,測量油滴在重力作用下的速度可以得出油滴半徑;加上電場後,可測出油滴在重力和電場力共同作用下的速度,並由此測出油滴得到或失去電荷後的速度變化。這樣,他可以一次連續幾個小時測量油滴的速度變化,即使工作因故被打斷,被電場平衡住的油滴經過一個多小時也不會跑多遠。

經過反復試驗,密立根得出結論:電荷的值是某個固定的常量,最小單位就是單個電子的帶電量。他認為電子本身既不是一個假想的也不是不確定的,而是一個「我們這一代人第一次看到的事實」。他在諾貝爾獎獲獎演講中強調了他的工作的兩條基本結論,即「電子電荷總是元電荷的確定的整數倍而不是分數倍」和「這一實驗的觀察者幾乎可以認為是看到了電子」。

「科學是用理論和實驗這兩只腳前進的」,密立根在他的獲獎演說中講道,「有時這只腳先邁出一步,有時是另一隻腳先邁出一步,但是前進要靠兩只腳:先建立理論然後做實驗,或者是先在實驗中得出了新的關系,然後再邁出理論這只腳並推動實驗前進,如此不斷交替進行」。他用非常形象的比喻說明了理論和實驗在科學發展中的作用。作為一名實驗物理學家,他不但重視實驗,也極為重視理論的指導作用。

4、牛頓的棱鏡分解太陽光

對光學問題的研究是牛頓(1642—1727)工作的重要部分之一,亦是他最後未完成的課題。牛頓1665年畢業於劍橋大學的三一學院,當時大家都認為白光是一種純的沒有其他顏色的光;而有色光是一種不知何故發生變化的光(亞里斯多德的理論)。1665—1667年間,年輕的牛頓獨自做了一系列實驗來研究各種光現象。他把一塊三棱鏡放在陽光下,透過三棱鏡,光在牆上被分解為不同顏色,後來我們將其稱作光譜。在他的手裡首次使三棱鏡變成了光譜儀,真正揭示了顏色起源的本質。1672年2月,牛頓懷著揭露大自然奧秘的興奮和喜悅,在第一篇正式的科學論文《白光的結構》中,闡述了他的顏色起源學說,「顏色不像一般所認為的那樣是從自然物體的折射或反射中所導出的光的性能,而是一種原始的、天生的性質」。「通常的白光確實是每一種不同顏色的光線的混合,光譜的伸長是由於玻璃對這些不同的光線折射本領不同」。

牛頓《光學》著作於1704年問世,其中第一節專門描述了關於顏色起源的棱鏡分光實驗和討論,肯定了白光由七種顏色組成。他還給這七種顏色進行了命名,直到現在,全世界的人都在使用牛頓命名的顏色。牛頓指出,「光帶被染成這樣的彩條:紫色、藍色、青色、綠色、黃色、橙色、紅色,還有所有的中間顏色,連續變化,順序連接」。正是這些紅、橙、黃、綠、青、藍、紫基礎色不同的色譜才形成了表面上顏色單一的白色光,如果你深入地看看,會發現白光是非常美麗的。

這一實驗後人可以不斷地重復進行,並得到與牛頓相同的實驗結果。自此以後七種顏色的理論就被人們普遍接受了。通過這一實驗,牛頓為光的色散理論奠定了基礎,並使人們對顏色的解釋擺脫了主觀視覺印象,從而走上了與客觀量度相聯系的科學軌道。同時,這一實驗開創了光譜學研究,不久,光譜分析就成為光學和物質結構研究的主要手段。

5、托馬斯·楊的光干涉試驗

牛頓在其《光學》的論著中認為光是由微粒組成的,而不是一種波。因此在其後的近百年間,人們對光學的認識幾乎停滯不前,沒有取得什麼實質性的進展。1800年英國物理學家托馬斯·楊(1773—1829)向這個觀點提出了挑戰,光學研究也獲得了飛躍性的發展。

楊在「關於聲和光的實驗與研究提綱」的論文中指出,光的微粒說存在著兩個缺點:一是既然發射出光微粒的力量是多種多樣的,那麼,為什麼又認為所有發光體發出的光都具有同樣的速度?二是透明物體表面產生部分反射時,為什麼同一類光線有的被反射,有的卻透過去了呢?楊認為,如果把光看成類似於聲音那樣的波動,上述兩個缺點就會避免。

為了證明光是波動的,楊在論文中把「干涉」一詞引入光學領域,提出光的「干涉原理」,即「同一光源的部分光線當從不同的渠道,恰好由同一個方向或者大致相同的方向進人眼睛時,光程差是固定長度的整數倍時最亮,相干涉的兩個部分處於均衡狀態時最暗,這個長度因顏色而異」。楊氏對此進行了實驗,他在百葉窗上開了一個小洞,然後用厚紙片蓋住,再在紙片上戳一個很小的洞。讓光線透過,並用一面鏡子反射透過的光線。然後他用一個厚約1/30英寸的紙片把這束光從中間分成兩束,結果看到了相交的光線和陰影。這說明兩束光線可以像波一樣相互干涉。這就是著名的「楊氏干涉實驗」。

楊氏實驗是物理學史上一個非常著名的實驗,楊氏以一種非常巧妙的方法獲得了兩束相干光,觀察到了干涉條紋。他第一次以明確的形式提出了光波疊加的原理,並以光的波動性解釋了干涉現象。隨著光學的發展,人們至今仍能從中提取出很多重要概念和新的認識。無論是經典光學還是近代光學,楊氏實驗的意義都是十分重大的。愛因斯坦(1879—1955)指出:光的波動說的成功,在牛頓物理學體繫上打開了第一道缺口,揭開了現今所謂的場物理學的第一章。這個試驗也為一個世紀後量子學說的創立起到了至關重要的作用。

6、卡文迪許扭矩實驗

牛頓的萬有引力理論指出:兩個物體之間的吸引力與它們質量的乘積成正比,與它們距離的平方成反比。但是萬有引力到底多大?

18世紀末,英國科學家亨利·卡文迪什(1731—1810)決定要找到一個計算方法。他把兩頭帶有金屬球的6英尺長的木棒用金屬線懸吊起來。再用兩個350磅重的皮球分別放在兩個懸掛著的金屬球足夠近的地方,以吸引金屬球轉動,從而使金屬線扭動,然後用自製的儀器測量出微小的轉動。

測量結果驚人的准確,他測出了萬有引力的引力常數G。牛頓萬有引力常數G的精確測量不僅對物理學有重要意義,同時也對天體力學、天文觀測學,以及地球物理學具有重要的實際意義。人們在卡文迪什實驗的基礎上可以准確地計算地球的密度和質量。

7、埃拉托色尼測量地球圓周

埃拉托色尼(約公元前276一約前194)公元前276年生於北非城市塞里尼(今利比亞的沙哈特)。他興趣廣泛,博學多才,是古代僅次於亞里斯多德的網路全書式的學者。只是因為他的著作全部失傳,今天才對他不太了解。

埃拉托色尼的科學工作極為廣泛,最為著名的成就是測定地球的大小,其方法完全是幾何學的。假定地球是一個球體,那麼同一個時間在地球上不同的地方,太陽線與地平面的夾角是不一樣的。只要測出這個夾角的差以及兩地之間的距離,地球周長就可以計算出來。他聽說在埃及的塞恩即今天的阿斯旺,夏至這天中午的陽光懸在頭頂,物體沒有影子,光線可以直射到井底,表明這時的太陽正好垂直塞恩的地面,埃拉托色尼意識到這可以幫助他測量地球的圓周。他測出了塞恩到亞歷山大城的距離,又測出夏至正中午時亞歷山大城垂直桿的桿長和影長,發現太陽光線有稍稍偏離,與垂直方向大約成7°角。剩下的就是幾何問題了。假設地球是球狀,那麼它的圓周應是360°。如果兩座城市成7°角(7/360的圓周),就是當時5000個希臘運動場的距離,因此地球圓周應該是25萬個希臘運動場,約合4萬千米。今天我們知道埃拉托色尼的測量誤差僅僅在5%以內,即與實際只差100多千米。

8、伽利略的加速度試驗

伽利略利用理想實驗和科學推理巧妙地否定了亞里斯多德的自由落體運動理論。那麼正確的自由落體運動規律應是怎樣的呢?由於當時測量條件的限制,伽利略無法用直接測量運動速度的方法來尋找自由落體的運動規律。因此他設想用斜面來「沖淡」重力,「放慢」運動,而且把速度的測量轉化為對路程和時間的測量,並把自由落體運動看成為傾角為90°的斜面運動的特例。在這一思想的指導下,他做了一個6米多長,3米多寬的光滑直木板槽,再把這個木板槽傾斜固定,讓銅球從木槽頂端沿斜面滾下,然後測量銅球每次滾下的時間和距離的關系,並研究它們之間的數學關系。亞里斯多德曾預言滾動球的速度是均勻不變的:銅球滾動兩倍的時間就走出兩倍的路程。伽利略卻證明銅球滾動的路程和時間的平方成比例:兩倍的時間里,銅球滾動4倍的距離。他把實驗過程和結果詳細記載在1638年發表的著名的科學著作《關於兩門新科學的對話》中。

伽利略在實驗的基礎上,經過數學的計算和推理,得出假設;然後再用實驗加以檢驗,由此得出正確的自由落體運動規律。這種研究方法後來成了近代自然科學研究的基本程序和方法。

伽利略的斜面加速度實驗還是把真實實驗和理想實驗相結合的典範。伽利略在斜面實驗中發現,只要把摩擦減小到可以忽略的程度,小球從一斜面滾下之後,可以滾上另一斜面,而與斜面的傾角無關。也就是說,無論第二個斜面伸展多遠,小球總能達到和出發點相同的高度。如果第二斜面水平放置,而且無限延長,則小球會一直運動下去。這實際上是我們現在所說的慣性運動。因此,力不再是亞里斯多德所說的維持運動的原因,而是改變運動狀態(加速或減速)的原因。

把真實實驗和理想實驗相結合,把經驗和理性(包括數學論證)相結合的方法,是伽利略對近代科學的重大貢獻。實驗不是也不可能是自然觀象的完全再現,而是在人類理性指導下的對自然現象的一種簡化和純化,因而實驗必須有理性的參與和指導。伽利略既重視實驗,又重視理性思維,強調科學是用理性思維把自然過程加以純化、簡化,從而找出其數學關系。因此,是伽利略開創了近代自然科學中經驗和理性相結合的傳統。這一結合不僅對物理學,而且對整個近代自然科學都產生了深遠的影響。正如愛因斯坦所說:「人的思維創造出一直在改變的宇宙圖景,伽利略對科學的貢獻就在於毀滅直覺的觀點而用新的觀點來代替它。這就是伽利略的發現的重要意義」。

9、盧瑟福散射與原子的有核模型

盧瑟福(1871—1937)在1898年發現了a射線。1911年盧瑟福在曼徹斯特大學做放射能實驗時,原子在人們的印象中就好像是「葡萄乾布丁」,即大量正電荷聚集的糊狀物質,中間包含著電子微粒,但是他和他的助手發現向金箔發射帶正電的a射線微粒時有少量被彈回,這使他們非常吃驚。通過計算證明,只有假設正電球集中了原子的絕大部分質量,並且它的直徑比原子直徑小得多時,才能正確解釋這個不可想像的實驗結果。為此盧瑟福提出了原子的有核模型:原子並不是一團糊狀物質,大部分物質集中在一個中心的小核上,稱之為核子,電子在它周圍環繞。

這是一個開創新時代的實驗,是一個導致原子物理和原子核物理肇始的具有里程碑性質的重要實驗。同時他推演出一套可供實驗驗證的盧瑟福散射理論。以散射為手段研究物質結構的方法,對近代物理有相當重要的影響。一旦我們在散射實驗中觀察到盧瑟福散射的特徵,即所謂「盧瑟福影子」,則可預料到在研究的對象中可能存在著「點」狀的亞結構。此外,盧瑟福散射也為材料分析提供了一種有力的手段。根據被靶物質大角散射回來的粒子能譜,可以研究物質材料表面的性質(如有無雜質及雜質的種類和分布等),按此原理製成的「盧瑟福質譜儀」已得到廣泛應用。

10、米歇爾·傅科鍾擺試驗

1851年,法國著名物理學家傅科(1819—1868)為驗證地球自轉,當眾做了一個實驗,用一根長達67m的鋼絲吊著一個重28kg的擺錘《擺錘直徑0.30m),擺錘的頭上帶有鋼筆,可觀測記錄它的擺動軌跡。傅科的演示說明地球是在圍繞地軸旋轉。在巴黎的緯度上,鍾擺的軌跡是順時針方向,30小時一周期;在南半球,鍾擺應是逆時針轉動;而在赤道上將不會轉動;在南極,轉動周期是24小時。

這一實驗裝置被後人稱為傅科擺,也是人類第一次用來驗證地球自轉的實驗裝置。該裝置可以顯示由於地球自轉而產生科里奧利力的作用效應,也就是傅科擺振動平面繞鉛垂線發生偏轉的現象,即傅科效應。實際上這等同於觀察者觀察到地球在擺下的自轉。

初中力學經典實驗

力學部分

實驗一:天平測量

【實驗器材】天平(托盤天平)。

【實驗步驟】

1.把天平放在水平桌面上,取下兩端的橡皮墊圈。

2.游碼移到標尺最左端零刻度處(游碼歸零,游碼的最左端與零刻度線對齊)。

3.調節兩端的平衡螺母(若左盤較高,平衡螺母向左擰;右盤同理),直至指針指在刻度盤中央,天平水平平衡。

4.左物右碼,直至天平重新水平平衡。(加減砝碼或移動游碼)

5.讀數時,被測物體質量=砝碼質量+游碼示數(m 物=m 砝+m 游)

【實驗記錄】此物體質量如圖:62 g

實驗二:彈簧測力計測力

【實驗器材】細線、彈簧測力計、鉤碼、木塊

【實驗步驟】

測量前:

1.完成彈簧測力計的調零。(沿測量方向水平調零)

2.記錄該彈簧測力計的測量范圍是 0~5 N,最小分度值是 0.2 N。

測量時:拉力方向沿著彈簧伸長方向。

【實驗結論】如圖所示,彈簧測力計的示數 F=1.8 N。

實驗三:驗證阿基米德原理

【實驗器材】彈簧測力計、金屬塊、量筒、水

【實驗步驟】

1.把金屬塊掛在彈簧測力計下端,記下測力計的示數F1。

2.在量筒中倒入適量的水,記下液面示數 V1。

3.把金屬塊浸沒在水中,記下測力計的示數 F2 和此時液面的示數 V2。

4.根據測力計的兩次示數差計算出物體所受的浮力(F 浮=F1-F2)。

5.計算出物體排開液體的體積(V2-V1),再通過 G水=ρ(V2-V1)g 計算出物體排開液體的重力。

6.比較浸在液體中的物體受到浮力大小與物體排開液體重力之間的關系。(物體所受浮力等於物體排開液體所受重力)

【實驗結論】

液體受到的浮力大小等於物體排開液體所受重力的大小

實驗四:測定物質的密度

(1)測定固體的密度

【實驗器材】天平、量筒、水、燒杯、細線、石塊等。

【實驗步驟】

1.用天平測量出石塊的質量為 48.0 g。

2.在量筒中倒入適量的水,測得水的體積為 20 ml。

3.將石塊浸沒在量筒內的水中,測得石塊的體積為cm 3 。

【實驗結論】

根據公式計算出石塊的密度為 2400 kg/m 3 。

多次實驗目的:多次測量取平均值,減小誤差

(2)測定液體的密度

【實驗步驟】

1.測出容器與液體的總質量(m總)。

2.將一部分液體倒入量筒中,讀出體積 V。

3.測容器質量(m容)與剩餘液體質量(m剩=m總-m容) 。

4.算出密度:ρ

實驗五:物質質量&體積與那些因素有關

【實驗器材】量筒、天平、水、體積不等的若干銅塊和鐵塊。

【實驗步驟】

1.用天平測出不同銅塊和鐵塊的質量,用量筒測出不同銅塊和鐵塊的體積。

2.要記錄的物理量有質量,體積。

3.設計表格:

【實驗結論】

1.同種物質,質量與體積成正比。

2.同種物質,質量和體積的比值相同。

3.不同物質,質量和體積的比值不同。

4.體積相同的不同物質,質量不同。

實驗六:探究二力平衡的條件

【實驗器材】彈簧測力計、一張硬紙板、細繩、剪刀等。

【實驗步驟】

探究當物體處於靜止時,兩個力的關系;探究當物體處於勻速直線運動狀態時,兩個力的關系。

1.如圖 a 所示,作用在同一物體上的兩個力,在大小相等、方向相反的情況下,它們還必須在同一直線,這二力才能平衡。

2.如圖 b、c 所示,兩個力在大小相等、方向相反且在同一直線上的情況下,它們還必須在同一物體上,這二力才能平衡。

【實驗結論】

二力平衡的條件: 1.大小相等(等大)2.方向相反(反向)3.同一直線(共線)4.同一物體(同體)

實驗七:探究液體內部壓強與哪些因素有關

【實驗器材】U 形管壓強計、大量筒、水、鹽水等。

【實驗步驟】

1.將金屬盒放入水中一定深度,觀察 U 形管液面高度差變大,這說明同種液體,深度越深,液體內部壓強越大。

2.保持金屬盒在水中的深度,改變金屬盒的方向,觀察 U 形管液面的高度差相同,這現象說明:同種液體,深度相同,液體內部向各個方向的壓強都相等。

3.保持金屬盒的深度不變,把水換成鹽水,觀察 U 形管液面高度差變化,可以探究液體內部的壓強與液體密度(液體種類)的關系。

同一深度,液體密度越大,液體內部壓強越大。

【注意】

在調節金屬盒的朝向和深度時,眼睛要注意觀察 U 形管壓強計兩邊液面的高度差的變化情況。

在研究液體內部壓強與液體密度的關系時,要保持金屬盒在不同液體中的深度相同。

實驗八:探究杠桿平衡的條件

【實驗器材】帶刻度的均勻杠桿、鐵架台、彈簧測力計、鉤碼和細線等。

【實驗步驟】

1.把杠桿的中點支在鐵架台上,調節杠桿兩端的平衡螺母,使杠桿在水平位置平衡,這樣做的目的是方便直接在杠桿上讀出力臂值。(研究時必須讓杠桿在水平位置平衡後,才能記錄實驗數據)

2.將鉤碼分別掛在杠桿的兩側,改變鉤碼的位置或個數使杠桿在水平位置保持平衡。

3.所需記錄的數據是動力、動力臂、阻力、阻力臂。

4.把鉤碼掛在杠桿上,在支點的同側用測力計豎直向上拉杠桿,重復實驗記錄數據,需多次改變杠桿所受作用力大小,方向和作用點。(多次實驗,得出普遍物理規律)

【實驗結論】

杠桿的平衡條件是:當杠桿平衡時,動力×動力臂=阻力×阻力臂,若動力和阻力在支點的異側,則這兩個力的方向相同;若動力和阻力在支點的同側,則這兩個力的方向相反。