当前位置:首页 » 网页前端 » 钛合金前端
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

钛合金前端

发布时间: 2022-11-27 23:43:19

① 钛合金焊接

钛及钛合金手工钨极氩弧焊操作要领
1、手工氩弧焊时,焊丝与焊件间应尽量保持最小的夹角(10~15°)。焊丝沿着熔池前端平稳、均匀的送入熔池,不得将焊丝端部移出氩气保护区。
2、焊接时,焊枪基本不作横向摆动,当需要摆动时,频率要低,摆动幅度也不宜太大,以防止影响氩气的保护。
3、断弧及焊缝收尾时,要继续通氩气保护,直到焊缝及热影响区金属冷却到350℃以下时方可移开焊枪。
六、注意事项

1、施工人员和焊工应佩戴洁净的白细纱布手套(严禁佩戴棉线手套)。
2、经处理的焊区严禁用手触摸和接触铁制物品。
3、焊接工作尽可能在室内进行,环境风速应≤0.5m/s,避免受穿堂风影响。
4、焊接时应尽可能采用短弧焊接,采用小的焊接热输入,喷嘴与焊件保持70~80度的夹角。 对接管定位焊时,其对接间隙一般为0.5mm左右。
5、每道焊缝应尽可能一次焊完,必须接焊的焊缝,在焊前应将接口处清理干净,焊肉搭接长度为10~15mm。
6、焊接时,焊炬不应左右摆动,焊丝熔化端不得移出气体保护区。
7、施焊引弧时应提前送气,熄弧时不能马上抬起焊炬,应延后供气,直到温度降至250℃以下。
8、气体保护拖罩与焊炬的距离应以最短为佳,与管壁接触的间隙力求最小。
9、进行管对接焊时,为了达到单面焊双面成形要求,焊接分两次进行:一次为封底焊接(封底焊时可以不用填充材料),另一次为成形焊接。
10、多层焊时,必须等前一焊道完全冷却后,再焊下一焊道。

② 要做前端开发,需要什么样的电脑配置

mac pro中配即可,当然高配就更好了。
mac大法好,直接命令行操作,待机时间长,好几天都不关机,关键是不卡,用window开个ps分分钟卡死,特别是升级到win10,明明是8g的内存 。

③ 兰博基尼跑车前端为什么设计得这么尖这么设计有什么用处

兰博基尼毒药的整个前端都建立了完美的空气动力学原理,极致的比例,以及强大的箭形前端与锐利的线条和精准的曲面之间的相互作用。前部和车身的超夸张进气口使复杂的空气动力学性能得到完美展现,从而确保完美的气流来散热发动机。y型大灯在当时也是独一无二的设计。巨大的尾巴从车身中心连接到尾部,真的很像科幻电影里的太空飞行器的尾巴。车尾的扩散器大小几乎是整体的一半,四个方形排气管集中在中间。整体完美的设计提供了超强的向下压力。独特的合金轮毂设计也基于空气动力学原理涡轮,它为碳陶瓷制动盘和碳纤维轮辋周围的环提供额外的冷却空气。造型独特,真的是前所未有。

汽车前部的扰流板和前唇也采用了新的设计,旨在进一步增加汽车前部的向下力,使汽车在高速行驶时更加稳定。车辆后部分为上下两层,也是为了更好的引导空气,从而进一步增加下压力。发动机最大马力提高到640马力,采用钛合金气门。更多新的解决方案不仅提高了功率,而且使扭矩分配更加合理,优化了发动机在整个转速范围内的响应性能。兰博基尼是少数几个仍然坚持自然吸气发动机的品牌之一。这款超跑依然坚持自然吸气发动机,能带来无与伦比的激情。自然吸气发动机的声音也是其独有的魅力。这款车型的排气系统也进行了重新设计,从发动机出来的排气过程变得更加直接,给人更深沉更有激情的声音。

④ 钛合金涡轮增压器比普通增压器有什么好处

轻质钛合金涡轮增压器包括涡轮机、中间体、压气机;涡壳采用轻质钛合金制作,涡轮焊接在轮轴的前端上,因涡轮重量的变化,且轮轴与涡轮仍能正常匹配运作,需重新设计轴径、轴距,减少摩擦和提高轮轴的柔性;在轮轴中部设置一柔性摩擦阻力点;中间体与涡壳通过螺栓固定连接,轮轴中间部位设置有两个浮动轴承,两个浮动轴承位于中间体的两端,并镶嵌在中间体的轴承座孔内,压气机壳和中间体通过螺栓紧固连接。本实用新型设计科学,轮轴恰到好处地设有柔性摩擦阻力点,具有低速性能响应快,惯量小,寿命长等优点。整机效率高,实用性较强,取代了进口增压器。整体结构紧凑、耗材少,成本低廉,性能稳定,维修方便,本实用新型适宜与发动机配套使用。
钛合金涡轮增压器,是用钛合金制造,绝对的耐用且故障少。。。
auto1998增压器网有销售,你可以搜索下。

⑤ 钛金属可以烧黑么我想用钛镁合金进行烧黑处理,让管体变黑,不知道有没有专业人士帮帮忙

钛合金发黑一般都是阳极氧化处理吧 不过应该也能化学腐蚀的,烧的话当然可以,但是你的太大了,还是化学腐蚀吧

⑥ 山地车骑行基础知识

山地车骑行基础知识

一. 山地车

特点:为征服各种地形设计,车架结实;车圈一般为26英寸;轮胎较粗;一般会配置平把或燕把。

二. 公路车

特点:为追求速度而设计,车圈为700C规格;轮胎细,配置羊角车把。

三. BMX攀爬车

特点:为表现技巧而设计,车架稳、轮胎宽而无牙,车把可360度旋转,轮径小、操作性极强。适合年轻人玩不作详述。

第二节 轮胎

一. 山地胎

特点:轮胎粗大,稳定性好,胎压较低,一般有1.5、1.95和2.1几种规格,因不同用途分为烂泥、沙土路胎,特点是胎宽大有深齿;两用车胎,特点是在公路骑行时仅小部分轮胎接触地面因而阻力小,而在土路上骑行时,胎两侧的牙齿可以稳定车辆;光头胎,特点是阻力小,适合公路骑行。

二. 公路胎

轮胎细,胎压高;一般有25C、23C、20C、18C等规格,其中25C和23C适合训练,不容易爆胎,20C和18C阻力小适合比赛。

第三节 车把

一. 山地车

山地车一般配平把或燕把,优点是双手握把时张得较宽,有利于操控;其中燕把可以抬高上身,使重心后移,更适合下山车。缺点是兜风,阻力大。

二. 公路车

公路车一般配羊角把,有44CM和42CM等宽度规格,适合自己的宽度是与肩同宽,其特点是可以减小风阻,同时适合长时间骑行。

第四节 减震系统

分为前避震与后避震,可以使

更舒适,尤其是下山车为必不可少的组件;但对于上山与平路的骑行就有“泻力”的不良影响,如果避震系统带锁死功能的话将使车的适应性更强。

第五节 变速系统

变速系统的作用是利用牙盘和飞轮之间不同的齿轮比,产生不同的驱动扭矩,以适应不同的路况和骑行者的身体状况。

一. 山地车

一般牙盘为三片齿轮,分别有44(42)、32(32)、22(22)个牙齿;后飞为7-10片齿轮,分别有11——28(34)个牙齿。

二. 公路车

一般牙盘为两片齿轮,分别有52(54)、42(39)个牙齿;后飞为8-10片齿轮,分别有11-25个牙齿。

第六节 刹车系统

公路车一般都为钳制,山地车分为吊制、V制和碟制三种,目前最常用的是V制和碟制。

V制的优点是价格便宜、重量轻、刹车效果好、结构简单、维修容易;缺点是在下雨天和烂泥路上效果差;

碟制的优点是刹车效果好,适合下山车和骑行烂泥路,缺点是重量大,价格贵,结构复杂、维修困难。

第七节 车架材料

一. 高拉力钢:重、强度高;

二. 铬钼钢:重、强度高、寿命不长;

三. 铝合金:轻、不生锈、强度低、寿命不长(5-6年);

四. 钛合金:轻、寿命长、软;

五. 碳纤维:分全碳、半碳(和其它零件接触部位是金属)两种,对纵向力耐受性好,怕横向受力。

第八节 如何配置适合自己的车

从几个高度和长度的参数来选购和调整自己的车子,车的价钱不是最重要的,适合自己的身材才是最重要的。

一. 安全高度

跨车上管站立在地面时,上管距裆部要有4-5CM的安全距离,以防下车时伤害裆部。

二. 公路车坐包和车把、上管的相对高度

公路车坐包距上管至少要10CM以上,15-20CM为好,同时坐包比把立高10CM左右。

三. 车架的高度

根据不同的身高选择车架的高度。

四. 车架的长度

在正常握把时,眼睛、把立前端和前轮花鼓三点一线则说明车架长度正好,否则可通过更换不同长度的把立来调整长度。

五. 坐包的高度

当正坐于坐包之上,用脚跟把脚蹬踩到最低时,膝关节刚好伸直为高度正好,这样用前脚掌发力时刚好有几CM的余量。

六. 坐包的前后调整

把脚蹬放平,正坐于坐包之上,如前脚发力点和膝盖的连线垂直于地面为位置正好。如经常上山可把坐包稍向前调一点。

七. 坐包的水平面

建议将坐包调成水平或略微上翘以提高对车的控制,不主张向下倾斜,但还是以个人的`感觉为准。

第九节 骑行技术

一. 善用变速

变速器要多用,找到适合的档位骑行可以节省体力,一般骑行中,前半小时用低档高频率热身,中间用高档发力高速踩,后半小时低档恢复疲劳。

二. 过弯技巧

过弯时,向哪个方向拐弯就把哪个方向的脚蹬收到上方,一方面可以避免脚蹬刮碰地面,一方面可以把重心调整到过弯的状态。

三. 下坡技巧

下坡时要重心靠后,身体放松。

四. 团队骑行

团队跟车骑行可以节省后面队员30%的体力,一般配合默契的团队均采用这种骑行方式。一般一人领骑几百米到一公里,然后让出头位跟到队尾,如此往复。此外根据不同的风向,采用偏左或偏右的跟车位置,可以最大限度的利用头车的破风作用。但头车一定要用手势提示跟车的队员前方路面情况,以免出现危险。

五. 体力分配

要多研究骑行路线和队员体力状况,合理分配体力,争取最佳的锻炼效果。

第十节 安全

要购买头盔、手套、骑行裤、车灯等安全装备,尽量减少来自于自身和外界的危险。购买意外险、做好防晒措施。加强安全意识,遵守交通法规,城市道路走非机动车道,无非机动车道的公路,路边沿起1.5米为单车合法车道。能用钱减轻的痛苦尽量用钱解决。

⑦ 钛合金的焊接方法

钛及钛合金由于易被氧、氢、氮等杂质污染,从焊接方法看,不适合采用焊条电弧焊、气焊、及CO2气体保护焊,目前生产上主要采用氩弧焊、埋弧焊及电子束焊等焊接方法进行焊接。

⑧ 钛金牌图片大全边上怎么能没焊点

您好,具体焊接步骤如下:
焊前准备:
焊件和钛焊丝表面质量,对焊接接头的力学性能有很大影响,因此必须严格清理。
1)机械清理对焊接质量要求不高或酸洗有困难的焊件,可用细砂纸或不锈钢丝刷擦拭,但最好是用硬质合金黄色刮削钛板,去除氧化膜。
2)化学清理:焊前可先对试件及焊丝进行酸洗,酸洗液可用HF(5%)+HNO3(35%)的水熔液。酸洗后用净水冲洗,烘干后立即施焊。或者用丙酮、乙醇、四氯化碳、甲醇等擦拭钛板坡口及其两侧(各50mm内)、焊丝表面、工夹具与钛板接触的部分。
3)焊接设备的选择:钛及钛合金钨板氩弧焊应选用具有外特性、高频引弧的直流氩弧焊电源,且延迟递气时间不少于15秒,避免焊件遭受到氧化、污染。
4)焊接材料的选择:氩气纯度应不低于99.99%,露点在-40℃以下,杂质总的质量分数为0.001%。当氩气瓶中的压力降至0.981MPa时,应停止使用,以防止影响焊接接头质量。
5)气体保护及焊接温度:钛管接头在焊接时低,为了防止焊接接头在高温下被有害气体及元素污染,必须对焊区及焊缝进行必要的焊接保护与温度控制,其温度应在250℃以下。
操作要领:
1、手工氩弧焊时,焊丝与焊件间应尽量保持最小的夹角(10~15°)。焊丝沿着熔池前端平稳、均匀的送入熔池,不得将焊丝端部移出氩气保护区。
2、焊接时,焊枪基本不做横向摆动,当需要摆动时,频率要低,摆动幅度也不宜太大,以防止影响氩气的保护。
3、断弧及焊缝收尾时,要继续通氩气保护,直到焊缝及热影响区金属冷却到350℃以下时方可移开焊枪。
焊缝和热影响区表面颜色:
1、焊缝区
银白、淡黄色(一、二、三级焊缝允许);深黄色(二、三级焊缝允许);金紫色(三级焊缝允许);深兰色(一、二、三级焊缝均不允许)。
2、热影响区
银白、淡黄色(一、二、三级焊缝允许);深黄、金紫色(二、三级焊缝允许);深兰色(三级焊缝允许)。
拓展:
钛合金指的是多种用钛与其他金属制成的合金金属。钛是20世纪50年代发展起来的一种重要的结构金属,钛合金强度高、耐蚀性好、耐热性高。20世纪50~60年代,主要是发展航空发动机用的高温钛合金和机体用的结构钛合金。70年代开发出一批耐蚀钛合金,80年代以来,耐蚀钛合金和高强钛合金得到进一步发展。钛合金主要用于制作飞机发动机压气机部件,其次为火箭、导弹和高速飞机的结构件。

⑨ F-22“猛擒”介绍

研制国家:美国名称型号:F/A-22(LOCKHEED F-22)“猛禽”战斗机研制单位:美国洛克希德公司造 价:F/A-22单价1.2亿美元(不含研制成本)。现 状:在研。2005年12月具备初始作战能力。将拥有72架飞机和6架备用机。

一、概述

F/A-22是美国空军研制的新一代战斗机,也是除美国的F-35以外目前唯一面世的“第四代战斗机”,它将成为21世纪初的主战机种。它的任务包括:夺取制空权,向美军作战提供空中优势,在战区空域有效实施精确打击;防空火力压制和封锁、纵深遮断,近距空中支援。与第三代战斗机相比,F/A-22飞机最具里程碑意义的技术特性是:采用全隐身与气动综合布局、持续的超音速巡航能力、过失速机动、短距起降、先进的机载设备和火控系统与综合航空电子系统。

1、研发背景

1981年11月,美国空军正式提出了研制作为F-15后继机的新型制空战斗机的要求。1983年年9月美国空军与7家公司签订了概念研究合同,同时与普•惠公司和通用电气公司签订发动机的验证和鉴定合同。1985年9月,空军公布了正式的先进战术飞机的战、技术要求,同年11月空军要求在先进战术飞机的设计中要把隐身作为一项指标,也是专家们所指的目前唯一面世的“第四代战斗机”,它将成为下世纪初叶的主战机种。主要用途是压取战区制空权,因而也是F-15的后继型号。1990年9月原型机首飞,最初计划采购750架,经过两肖减最后确定的采购数量是438架。1997年9月EMD型飞机首飞,预计2002年开始交付生产型飞机,2004年形成初步作战能力,2013年交付第438架飞机。该计划原称ATF,始于1982年,ATF要求,也是首次要求将以下五个特点集在一架飞机上,即低可探测性(隐身性)、高度机动性和敏捷性、使用军用推力即可作超音速巡航(而不是只满足于以往老型号的短时间超音速冲刺)、有效载重不低于F—15和具有飞越包括第三世界战区在内的所有战区的足够远的航程。面对如此先进的设计要求,F—22采用一切已有的世界级航空顶尖技术是毫无疑问的。

2、研发历程

1986年10月31日洛克希德、波音和通用动力3家公司联合研制小组的YF-22中标,并按要求制造两架原型机。1990年9月29日,第1架YF-22首飞,10月26日进行了第1次空中加油。10月30日第2架原型机进行首次飞行。11月3日YF-22原型机进行了不使用加力的超音速飞行。随后于11月28日在加州的中国湖海军武器试验中心首次发射了未装弹药的“响尾蛇”导弹,12月20日在加州的太平洋导弹试验场发射未装弹药的AIM-120“阿姆拉姆”导弹。

1991年8月2日空军正式授予研究洛克希德公司一份95.5亿美元的工程发展合同,制造13架试验型飞机。1991年12月16日,空军确定了F-22战斗机的外形,并制造了风洞试验和测定雷达反射截面使用的模型;开始准备内部设计和飞机制造用的工具。

1992年6月4日,洛克希德公司完成了F-22的设计修改。同月,进行了F119型试验型发动机部件的关键性设计评审,完成了发动机详细设计阶段的工作,决定进行F119发动机的生产和组装。12月27日F119的第1台工程发展阶段的发动机开始进行试验。

1994年10月6日,洛克希德航空系统公司开始制造第1架F/A-22的部件。1995年6月,F-22的关键设计评审工作全面完成,至此F/A-22飞机机身的详细设计阶段的工作完成。

1997年3月6日,第1架F-22基本组装完毕,开始进行加注燃料和发动机试车。4月9日洛克希德•马丁航空系统公司首次公开了F-22战斗机,并正式公布了“猛禽”的绰号。1997年9月7日,该机在罗宾斯空军基地进行了58分钟的首次试飞。随后,该机于1998年春返回爱德华空军基地,交由空军试验。

2001年8月,F-22研制成功10年后,美国终于下定决心投入巨资批量生产F-22战斗机。洛克希德•马丁公司承接生产295架F-22的生产订单,如果价格成本令军方满意,五角大楼将会增加订数。

2002年1月,美国空军官员宣布F-22"猛禽"战斗机的首支作战联队将驻扎在弗吉尼亚州的兰利空军基地。首批F-22战斗机计划于2004年9月抵达兰利空军基地,2005年12月将具备初始作战能力。兰利基地成立三个F-22战斗机中队,共拥有72架飞机和6架备用机。

2002年5月31日,洛克希德•马丁公司在完成F-22静力试验之后,又成功地进行了F-22的疲劳试验。F-22机体要求使用寿命为20年或8000飞行小时。

2002年8月,美国空军宣布,将F-22更名为F/A-22,以更准确地体现F/A-22的使命,包括对地攻击能力,同时也是为了配合空军提出的FB-22轰炸机型的任务。

2002年11月,F/A-22已完成初始飞行试验,在试验中,F/A-22实现了以2倍音速飞行;飞行高度15240米以上,并完成了高过载机动飞行,如9g转弯。在3048米以上高度进行了亚音速飞行。

2003年7月,洛克希德•马丁公司将困扰多时的F/A-22软件问题予以解决。这标志着F/A-22项目又取得一次显着的进展。改进版本的软件安装在F/A-22上后,显着改善了座舱系统的可靠性。而在此之前,由于软件的问题,座舱系统每运行两小时就要关闭一次,现在则可以连续运行21小时以上。

2003年9月19日,一架F/A-22试验飞机在例行试飞时差点坠毁,据空军初步调查称,事故是因驾驶员没按原定程序进行飞行机动而致,并非飞机本身出现问题。

2004年3月,空军决定略微增加订购F/A-22的数量,主要的原因是该项目在削减成本方面取得了显着成效,并认为当前的项目估算支持采购277架F/A-22,而此前美空军确定的采购目标是276架。2004年4月29日,美国空军宣称F/A-22进入初始作战试验与鉴定阶段,这为扩大“猛禽”战斗机的采购扫清了障碍。

2004年6月,美国空军宣布授予洛克希德•马丁公司一项价值4.92亿美元的固定价格确认合同,用于购买制造24架F/A-22所需的先进器材和相关设备,这标志着第五批“猛禽”战斗机即将投入低速初始生产。

2004年9月,洛克希德•马丁公司对F/A-22的生产速度作了进一步的调整,加快了战斗机的生产步伐。该公司的目标是2004年生产19架战斗机,并计划在大批量生产阶段每年生产24架F/A-22战斗机。2004年12月21日,一架美军F/A-22“猛禽”战斗机坠在美国内华达州南部的内利斯空军基地坠毁。

虽然美国防部还未正式宣布,但据消息灵通人士透露,国防部已经批准洛克希德·马丁公司研制的F/A-22战斗机进入全速生产。F/A-22单价1.2亿美元(不含研制成本)。5月12日,首架作战型F/A-22已交付给位于弗吉尼亚州兰利空军基地的第1战斗机联队第27战斗机中队。

二、性能指标:

F—22尺寸:翼展13.56米;机身18.92米;机高5.00米;机翼面积78.80米。重量:额定起飞重量27.216公斤。动力装置:两台普惠公司的F119-PW-100带加力的涡轮风扇发动机(2×13,900公斤力)。飞行特性:最高飞行速度1950公里/小时;近地最高飞行速度1480公里/小时;实际最大飞机高度18,000米;作战半径1,300~1,500公里;最大使用过载9.0。
F/A-22的起落架 由于该机配备了两台高推重比的F-119涡扇发动机,在不使用加力的状态下,就能以M数1.5-1.6的速度巡航飞行,最大飞行速度M数为2.0,最大飞行迎角 75 度,最大起飞重量28000公斤,实用升限15240米,作战半径达1450公里,航程为F-15飞机一倍。

F/A-22舱盖

三、结构特点

在平面内为带高位梯形机翼的带尾翼的综合气动力系统,包括彼此隔开很宽和带方向舵并朝外倾斜的垂直尾翼,并且水平安定面直接靠近机翼布置。按照技术标准(小反射外形、用吸收无线电波的材料、用无线电电子对抗器材和小辐射的机载无线电电子设备装备战斗机,其设计最小有交错射面为0.1平方米左右。F/A-22是美国战斗机中使用钛合金与复合材料最多的机型。其中钛-64合金约36%、热定型复合材料约24%、铝合金约16%、钢约6%、钛-52222合金约3%、热塑复合材料约1%、其它约15%。F-22机身蒙皮全都是高强度、耐高温的BMI复合材料。新研究开发的高强度钴-62222合金,初问世就用在F—22上。主起落架使用钢材。武器舱门与起落架舱门使用热塑复合材料。两侧翼下菱形截面发动机进气道为不可调节的进气道,为敷设发动机压气机冷壁进气道呈S形通道。发动机二维喷管,有固定的侧壁和调节喷管横截面积及按俯仰±20°角偏转推力矢量而设计的可动上调节板和下调节板.

F/A-22的F119-PW-100 发动机

F119-PW-100 发动机在场内例试

四、电子系统和武器装备

1、电子系统

航空电子:F/A-22配备综合航空电子系统。综合航空电子系统是第四代战斗机的主要特点之一,它通过数据总线进行信息传送,采用模块化结构实现结构的简化和资源共享,通过传感器数据融合获取更丰富、准确、质量更高的目标信息,所有作战信息通过平面显示器和多功能显示器显示,为飞行员提供关键的飞行及作战信息,明显降低飞行员的工作负担,通过机内自检和系统重构,使系统具有容错能力,提高了系统的可靠性和可维修性。高性能的综合航空电子系统使F/A-22具有良好的识别、选择、瞄准、快攻和帮助飞行员决策的能力。航空电子共分以下几部分:通用合成处理器、ADA软件、高级数据合成座舱显示器;合成电子战系统、合成通信、导航和识别系统、光纤数据传输系统;AN/APG-77主动相控阵多功能火力控制雷达。

通用合成处理器:通用合成处理器由休斯公司制造,负责将雷达、电子战和识别传感器数据、通信、导航、武器和系统状况等数据合成到一起,并通过多功能显示器向飞行员显示。每架F/A-22有两台通用合成处理器,每台处理器中有66个模块化插槽。F-22的所有信号和数据处理需求可仅由7类处理器完成,这些处理器都是通过一个容错网络连接在一起。目前,第1通用合成处理器中66个插槽中有19个、第2通用合成处理器中有22个未被使用,以供未来升级使用。F/A-22通用合成处理器的主任务电脑每秒能发出105亿条指令、其内存为300兆。

Ada软件:Ada软件有4种版本:版本0是首次试飞阶段使用的版本。只有基本功能,有27.2万行源语言代码;版本1是工程发展型4号机试飞时使用的版本,有86.6万行源语言代码;版本2将是1999年底扩充雷达功能后的版本,有102.4万行源语言代码;版本3是首批批产型使用的版本,有155.6万行源语言代码。

这些软件负责通讯、导航、识别处理功能,雷达处理功能,电子战处理功能,任务处理功能,惯性基准处理功能,外挂物管理处理功能,控制和显示处理功能,核心处理功能,飞行器管理功能,通用分系统功能。

座舱显示器:平视显示器,显示战术信息和飞行仪表信息。战术信息显示武器和目标状态、射击标记、武器包线和探测器标记。总视场为20°×30°,由英国GEC-马可尼航空电子公司研制。

综合控制板,装在平视显示器的驾驶员显示装置的组合玻璃下方,其上的键盘和行显示器用于输入数据和系统控制。上前方显示器,是通讯、导航、识别系统的显示器。显示系统状态、综合提示、注意、告警信息。上前方显示器,是备用飞行仪表,显示关键的飞行信息:姿态、空速、高度、航向和燃油。两个上前方显示器的功用可以互换。 辅助多功能显示器,是防御电子系统显示器。显示空中和地面威胁的平面视图及其探测器的作用距离,使驾驶员能对威胁作出反应和回避。辅助多功能显示器,是攻击显示器。显示空中威胁的平面视图并标出其相应的高度、射击清单、目标航迹、导弹发射包线、武器控制标记和导弹射出标记。辅助多功能显示器,是外挂物管理系统显示器。显示有关发动机、武器和投放外挂物的信息。主多功能显示器,是战术信息显示器。显示战术态势的平面图,包括窜航迹、地面上的阵地和F-22探测器的搜索范围。目标符号的形状和颜色表示威胁的属性、目标航迹特性和射击的优先次序。

电子战系统:电子战系统是探测、电子和处理设备的集合,它能探测和确定来自其它飞机的信号,并且控制F/A-22的箔片和曳光弹等干扰设备。电子战系统还包括雷达预警接收机和洛克希德·马丁公司生产的“檀木”导弹发射探测器,为飞机提供全方位保护。

通信、导航和识别系统:F/A-22通信、导航和识别系统负责履行通信、导航和识别功能,它使用通用合成处理器进行信号和数据处理。

飞行中数据链:飞行中数据链可使所有F/A-22在飞行中自动共享目标和系统数据,而不需无线电呼叫。在飞行中数据链的帮助下,飞行员能更自主飞行。长机可以通过数据链告诉僚机其油料、武器状态,以及敌机状况。只要一按按钮,就能自动地按优先顺序排列打击目标,并且建立打击清单。长机和僚机的导弹飞行状态都能在座舱显示器上监控。根据这些能力,基于视觉识别和编队机动等传统的战术可能会完全得到改变。数据链同样允许另外的F/A-22加入网络进多机协调攻击。

AN/AGP-67雷达系统:AN/AGP-67主动电子扫描阵列雷达。由诺斯罗普•格鲁曼与雷声公司合作研制。天线与机身完全合成到一起,提高了频率的捷变、降低雷达的横截面积、增加了带宽,从而更好支持F/A-22的空中主宰任务。雷达对F/A-22的合成航空电子和传感器的能力至关重要,它在敌雷达发现飞机前就能向飞行员提供多个敌目标的详细信息。

APG-77雷达

APG-77雷达扫描跟踪示意图

APG-77雷达系统:最大特点是合成了捷变光束控制,它允许一部雷达同时履行搜索、跟踪和目标瞄准任务。捷变光束控制同样使雷达搜索其它空域,而同进可能继续跟踪优先打击的目标。另外,雷达的低截获率能力使F/A-22在瞄准装备有雷达警报接收机和电子干扰设备的敌机时,而敌机还不知道其已被瞄准。

APG-77雷达的主要特性:工作频率:8至12GHz;扫描范围:电子扫描,±方位90°;真实波束地形测绘:148公里;多普勒波束锐化:18.5公里、37公里或74公里;活动目标指示:74公里;边测距边搜索:296公里(迎头);边速度搜索边测距 296公里(迎头)。平均故障间隔时间450小时(预测值)。

2、武器装备

F/A-22除执行空中优势任务外,也能使用联合直接攻击弹药等精确制导武器进行精确对地攻击。由于隐身和超音速巡航的需要,F/A-22的基本武器装备安置在机内。不过它也有用于挂副油箱和导弹的4个翼下挂点,用于在非隐身状态挂载副油箱和武器。

(一)机炮

F/A-22战斗机原计划装备1门新研制的先进技术机炮,但在该型机炮实用前,目前装备的是1门改进的M61A2机炮。机炮安装在飞机右进气口上方的炮舱内。射击时,炮舱的前部舱门必须向后打开,以便射击和排除废气。炮舱内除安装M61A2机炮外,还安装有洛克希德•马丁公司研制的无壳弹药线性供弹系统,并备有480发炮弹。

武器舱内的6枚空空导弹

(二)空对空导弹和空对地武器

F/A-22战斗机的空空武器有AIM-9“响尾蛇”短程和AIM-120“阿姆拉姆”中程导弹。每加装1枚AIM-120导弹,武器系统将增重205公斤,其中导弹重160公斤,发射装置重45公斤。由于武器挂在机身武器舱内,飞行阻力和雷达反射面积并不增大。空对地武器主要是454公斤的GBU-32联合直接攻击弹药。也可以挂载由MK84或BLU-109/B的改装的联合直接攻击弹药。为改善F/A-22的主武器舱中携带未来弹药的能力,美国空军进行了武器的优化研究。所考虑的方案包括:两枚精度在3米以内的改进型联合直接攻击弹药;两枚由洛克希德•马丁公司研制的风力修正弹药布撒器;8枚115公斤的小口径精确弹药;或者24枚激光/雷达复合制导自主式子弹药。

打开主武器舱的F/A-22战斗机

(三)武器舱和武器悬挂装置

机身武器舱。F/A-22战斗机前部机身下有1个主武器舱,在机身两侧各有1个副武器舱,因此,除了炮舱外,F/A-22机身内部共有3个武器舱,保证所有的武器都能安装在飞机内部。

武器挂架和导弹发射器。F/A-22安装了由EDO公司研制的LAU-142/A“阿姆拉姆”导弹垂直弹射发射器,主武器舱内共安装了6具这样的发射架。这种转向弹射器可以减小武器舱体积,从而节省重量,并能在所有飞行条件下发射导弹。弹射器使用气动液压装置在1秒内发射导弹。另外,洛克希德•马丁公司战术飞机系统部在F-16飞机的翼尖发射轨的基础上,为F/A-22飞机研制了LAU-141A挂架式发射器发射AIM-9导弹。这种发射器能迅速地伸缩,但不能弹射导弹,而是从侧武器舱的前端射出“响尾蛇”导弹。从而增大了导弹红外导引头的视场。这种发射器也适应F/A-22的较新的AIM-9X导弹要求。

外部挂架。F/A-22有4个翼下挂点,每个挂点能挂载2270公斤重量。翼下挂点在不挂武器时能挂载4个2270升副油箱,也可在挂2个副油箱时携带4枚导弹

武器悬挂装置示意图

五、作战使用

(一)作战任务

根据设计,F/A-22战斗机将要承担的三类任务:一是对付苏-30等空优战斗机;二是对付现代的地空导弹,打击时间敏感目标;三是参与巡航导弹防御。由于F/A-22具有超声速巡航能力,在对巡航导弹实施第一次攻击不中之后,可以发起第二次攻击。

(二)作战范围

可能随时从驻地快速转场至世界的各地区执行作战任务。并依靠隐形性能突击敌防护严密的纵深或核心目标。但是为了避免潜在对手可能动用精确制导武器对美国空军基地的打击,“猛禽”一般不会部署在一线机场,这决定了其将采取远程奔袭的战术,从后方基地到战区袭击后返回。

(三)兵力使用

在美国空军全球打击的战略行动中,将首先利用F/A-22的隐身优势,压制敌地面防空系统,然后用B-2A隐身轰炸机进行突防轰炸,打击敌防空和指挥系统,摧毁其防御体系,为隐身和非隐身作战飞机向战区部署,并实施大规模的空中突击行动创造条件,保持战区的空中优势,为后续联合打击部队开辟通道。按照美国空军的战略,执行全球打击特遣任务将由48架F/A-22战斗机(两个中队)和12架B-2轰炸机组成。另外,在美国本土防御中,美空军将出动E-10飞机和F/A-22协同行动,实施巡航导弹防御。

(四)武器使用

F/A-22可以携带“阿姆拉姆”中距空对空导弹、“响尾蛇”近程空对空导弹、联合直接攻击弹药和小口径炸弹,根据不同的作战任务,F/A-22携带不同的弹药:F/A-22以内挂方式携带两枚450公斤联合直接攻击弹药,在主武器舱内侧与2枚AIM-120并排悬挂。在作战中典型的武器配备方案如下:

隐形作战状态:20毫米M61A2机炮(480发)+4枚AIM-120A“阿姆拉姆”导弹(挂主武器舱内)+2枚AIM-9M“响尾蛇”导弹(挂在侧武器舱内);空空作战:20毫米M61A2机炮(480发)+6枚AIM-120C“阿姆拉姆”导弹(挂在主武器舱内)+2枚AIM-9M“响尾蛇”空对空导弹(挂在侧武器舱内);对地攻击20毫米M61A2机炮(480发)+2枚AIM-120C“阿姆拉姆”导弹(挂在主武器舱内)+2枚GBU-32联合直接攻击弹药(与AIM-120并排挂在主武器舱内)+2枚AIM-9M“响尾蛇”空对空导弹(挂在侧武器舱内);

非隐形作战状态:转场时,最多可在机翼下挂4个副油箱和8枚AIM-120“阿姆拉姆”导弹;空对地攻击时,20毫米M61A2机炮(480发)+2颗GBU-32联合直接攻击弹药(挂在主武器舱内)+2枚AIM-9M“响尾蛇”空对空导弹(挂在侧武器舱内)+机翼下挂载空对地武器。
缺点:
F-22可带2枚+4枚=6枚

这么先进的战机只带这么少的导弹,就算是发射后不管的AIM-120也太少了。

F-22的致命弱点:全部电子化、一体化

F-22作战系统全部电子化、一体化。然而,众所周知,电子系统很脆弱。其中,俄罗斯等国研制的微波武器将是“猛禽”一大克星。“猛禽”的隐形主要针对红外探测系统和红外制导武器。微波导弹作战时,微波可以钻到“猛禽”内部毁伤其电子系统,形成“软杀伤”。一旦如此,F-22很难继续作战,甚至可能坠毁。

至于空空导弹技术,中美两国空军在技术层面相差不大,特别是近几年中国空空导弹已经发展到第四代,完全与世界先进技术水平同步,基本上你有的我也有,美国空空导弹在技术上的形不成绝对优势!

F-22战斗机是针对米格29和苏-27战斗机的出现而设计的新一代具有空中优势的先进战斗机。这种飞机集隐身、敏捷、速度、多用途、高可靠性和可维护性于一体,代表了今后战斗机发展方向。该机采用了翼身融合体、边条翼、自动增升前后缘襟翼和外倾双立尾等先进气动设计技术。广泛使用钛合金结构材料、复合材料、吸波性材料和涂层,二元推力矢量喷管等隐身技术。 矩形倾斜式进气道, 进气道向上向内伸呈S形,上方装有筛形排气口和可操纵辅助进气门。采用内部挂装武器方案,从而大大减少了雷达、红外线和可见光特征,雷达反射截面仅为 0.065-0.08 平方米,为F-15飞机的1%。良好的红外、声、光隐身措施使其具有全谱频隐身性能。

由于该机在设计中不仅考虑到以争夺制空为主, 还考虑了对地攻击型和海军型,因而又具有多用途特性。从该机型目前的进展情况看, 其工程样机将于 1997 年首飞,2001年全面投产,2004年开始装备部队,形成批量装备而取代F-15战斗机的地位,约在2008年以后。根据美国空军的采购计划,由于经费短缺和国际形势的变化,已由原计划采购648架而削减到442架,总投入约700亿美元。

⑩ 用于高速注射成型的热流道系统

用于高速注射成型的热流道系统

膨胀注射成型和物理发泡成型为塑料成型工艺实现节省成本、优化产品和成型过程提供了新的可能。然而,即使是传统的注射成型,也常常需要较高的注射速度,以实现对材料的可靠加工,而这两种注塑技术尤其需要设定较高的标准,在此,适合的热流道系统必不可少。

何种情况下速度是重要的

当需要生产具有薄壁结构的精美部件以及熔体流动路径较长的部件时,快速注射是实现可靠生产的基本条件。当然,即便是生产大型部件,快速注射成型常常也必不可少。在此,选用适当的热流道技术将有助于实现完美的加工以及获得优良的产品。

即使是传统的注射成型,也常常需要较高的注射速度,而在此介绍的两种注塑技术尤其需要设定较高的标准,即膨胀注射成型和物理发泡成型。在膨胀注射成型中,熔体被压缩在螺杆的储料段或热流道中,并充当着压力的存储介质。一般,在大约2000bar(2029kg/cm2)的压力下,塑料熔体大约能够被压缩10%,这种特性通常被用于膨胀注射成型工艺中。然而,为了实现生产的可再现性,必须使预压缩熔体的体积保持稳定。因此,在压缩后,螺杆必须保持在一个精确的位置上。当阀式浇口喷嘴打开、大量的熔体流入到模具中时,它会承受较高的压力。只有电机驱动的注塑机可以满足这一条件,它允许在系统界限范围内做出选择性的轴向定位,即使是在高压下也可保持该位置的稳定不变。如果在膨胀注射成型中使用了热流道系统,那么高达2500bar(2536kg/cm2)的压力就会积聚在热流道系统中,并在定义的时间内保持不变,从而确保了所有的型腔均可获得均衡的压力。

为了成功地实现膨胀注射成型,必须确保所有的针阀能够同时平稳地开启。一旦针阀打开,被预压在热流道中的熔体就会爆发式地膨胀,并均匀地填满型腔,从而允许非常薄的部件充满成型。

就物理发泡成型如MuCell工艺而言,需要向系统中加入物理发泡剂,该发泡剂首先是在压力的作用下溶解于塑料熔体中。当熔体注入型腔时,压力降低,发泡剂膨胀,从而使熔体发泡。在此,使熔体以高速状态注射到型腔中也是必要的,它有助于熔体在型腔中有选择性地发泡成型。由此,便可生产出带有发泡芯层和封闭表皮层的轻型部件。利用该工艺,能够生产出壁厚小于1mm的发泡结构部件。

在发泡过程中产生的内部压力会作用在部件的所有点上,在某种程度上起到了保压的作用,从而能够平衡或至少能够减少凹痕、收缩和翘曲等缺陷。

注塑机必须能够适应上述两种工艺不同的要求。在膨胀注射成型中,有必要使用全电动注塑机以满足精密计量和注射的要求。MuCell微发泡工艺要求使用特殊的螺杆和特殊的装置,以便能够将处于超临界状态的发泡剂注射到熔体中。这两种工艺只有少许的差别,都能加工普通的聚合物。但是,液晶聚合物(LCP)不能采用MuCell工艺进行加工,但它非常适合于膨胀注射成型工艺。

阀式浇口热流道系统必不可少

在上述两种工艺中,必须使用阀式浇口热流道系统,以便于在热流道系统中积聚并保持必要的压力。在膨胀注射成型中使用的热流道系统不仅需要承受很高的压力,而且必须确保用于多型腔模具的所有针阀都能够同时而准确地开启。位于德国Frankenberg的君特公司(GüNTHER Heisskanaltechnik GmbH)生产的侧滑块式提升板可以满足上述要求。此产品由油缸轴向驱动,并通过侧滑块机构转换成提升板的提升运动。由于是单一提升板的机械运动,从而保证了针阀开启或关闭的同步动作。

在与注塑机制造商恩格尔(Engel)公司合作进行的一个X-Melt试验中,君特公司将一副2腔模具用于2800bar(2840.6kg/cm2)的工作压力下并保持0.5s的时间,然后检查热流道系统的泄漏情况。所做的注射成型试验是采用多种不同的材料成型一个壁厚为0.5mm的试样。在试验中,熔体注射到型腔中的时间随材料的不同而有所差异,例如,聚苯乙 烯 的注射时间是0.1s,而LCP的注射时间是0.04s。试验结果表明:处于2800bar(2840.6kg/cm2)工作压力下的热流道系统密封完好,没有熔体从阀式浇口喷嘴中流出。两个型腔同时被填满,从而实现了极高水平的`生产再现性。膨胀注射成型的一个应用实例是生产摩擦盘。

正如试验所显示的,膨胀注射成型工艺可实现可靠的生产加工。该生产是将一个塑料部件注塑成型到一个条状金属基底上。由LCP材料成型的摩擦盘厚度为0.15mm,重0.02g。该成型操作所面临的挑战是,需要注射非常少量的材料并要确保成型过程的可靠稳定性。因为注射量非常低,因此只能使用阀式浇口热流道系统。

该生产选用了一个专为加工LCP而设计的热流道喷嘴。为了降低LCP材料的粘度以避免出现较高的剪切力,喷嘴的进料管采用了较狭窄的设计。

降低重量和成本

物理发泡成型的一个重要因素是,熔体在热流道中不会膨胀,直到它进入型腔中。因此,在注射完熔体并随之闭合模具后,热流道喷嘴必须保持系统的压力直到发泡剂完全溶解于熔体中。这可通过试验得到证实。该工艺的一个应用案例是生产车门锁外壳。这一壁厚为1.1mm的部件是采用MuCell 工艺、由POM材料制成的。该客户的目标是通过减少材料的用量,以及缩短循环时间、减少翘曲和凹痕缺陷来达到降低成本的目的。由于熔体中的气体能够降低熔体的粘度,因而可实现快速注射成型。这些微孔泡沫允许获得同质的收缩行为,从而可避免在较厚部位产生凹痕。该生产中使用的热流道喷嘴是由君特公司提供的8NLT80喷嘴,针阀的运动是由液压驱动的单针阀进行驱动的。

当采用物理发泡工艺时,针阀是通过单针阀而运动的,这些单针阀的数量取决于型腔的数量。用MuCell技术生产出的车门锁外壳重量减少了10%。

同一的温度控制至关重要

基于君特热流道技术的阀式浇口热流道喷嘴(N_T喷嘴)带有的轴套机构,使其非常适用于膨胀注射成型和物理发泡成型。该喷嘴的优点是可实现精确的温度控制。特别是对于一些技术型聚合物,由于它们都属于加工窗口较窄的半透明材料,因此有必要对整个喷嘴长度进行均一的温度控制。为了达到这一目的,这些喷嘴拥有一个由双组分构成的轴套,以起隔热的作用,轴套的前端采用钛合金制成。

对于所有的阀式浇口热流道系统而言,最重要的是:当模具闭合、针阀进入到注射浇口中时,要确保其准确地居于中心位置,即在针阀与针阀导向件的接触处的密封区域。这有助于消除热流道系统的磨损。在君特热流道系统中使用的针阀导向件由粉末金属钢制成,它具有极高的硬度和强度。

如果一个元件磨损了,可以对其进行更换。当产品出现毛边时,只需要更换被磨损的针阀导向件,而不需要修补模具嵌件。

膨胀注射成型和物理发泡成型为塑料成型工艺实现节省成本、优化产品和成型过程提供了新的可能。然而,要实现对材料的可靠加工,适合的热流道系统必不可少。为此,君特为这些应用而专门设计了各种阀式浇口热流道系统,它们已在多个实际应用中证实了其有效性。

;