当前位置:首页 » 网页前端 » 研究院信息管理系统web
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

研究院信息管理系统web

发布时间: 2022-11-25 00:15:19

Ⅰ Web 时代下构建石油知识共享平台

郭攀红 唐先明 计秉玉

(中国石化石油勘探开发研究院,北京 100083)

摘 要 目前石油领域没有一个汇聚知识、交流知识、传播知识、连接企业员工知识的社会化的网络平台。基于Web 2.0架构的软件,构建了知识沉淀、知识共享、知识学习及知识应用的应用环境,可应用于石油知识管理领域中,促进企业的知识能力创新。本文结合实践经验,提出并构建了石油知识共享平台,详细介绍了石油知识共享平台如何实现Web 2.0的架构和理念。

关键词 Web 2.0 知识管理 Wiki

Construction of Petroleum Knowledge Share PlatformIn Web 2.0 Architecture

GUO Panhong,TANG Xianming,JI Bingyu

(SINOPEC Exploration & Proction Research Institute,Beijing 100083,China)

Abstract Nowadays,the oil fields haven’t a knowledge network platform used for gathering knowledge, exchanging knowledge,propagating knowledge and connecting enterprise staff.This thesis is designed and implemented some social software based on Web 2.0 architecture,and applied it in oil knowledge management, which constructed a precipitating,sharing,learning and using knowledge environment.In the meantime,this thesis introces that how the oil knowledge Wiki system implement Web 2.0 architecture and some outstanding character.

Key words Web 2.0;knowledge management;Wiki

科研院所承担着科技创新和科技进步的重任,支撑着中国科技研究核心竞争力的提升,同时,也为国家石油经济战略决策提供重要依据。中石化石油勘探开发研究院是知识高度密集型单位,是知识、研发成果的加工厂,是高水平人才从事创新研究的基地。因此,在中石化石油勘探开发研究院建立知识管理体系、开展知识管理技术的应用尤为重要,可以说知识管理是研究院信息化建设的重点。

随着Web 2.0架构的广泛应用,网络上出现了众多的Web 2.0类型的学习交流网站和工具,但是这些通用型的社会网络工具并不能满足石油专业技术人员的需求,首先它们的网站定位多以娱乐休闲为主,整个平台内容大而全,无专业性的知识,并且处于一种信息孤岛的状态,没有进行知识和应用的整合,用户每天需要登录不同的网站来获取信息。同样,现在也有许多的石油专业信息网站,但是它们大多是传统的Web 1.0方式,用户不能有效地分享自己的石油专业知识,只能是少数的管理员添加内容,并且无有效地激励和管理机制,导致网站中内容不丰富,而且这些网站多是以石油商务性的知识居多,勘探开发专业知识很少。

中石化石油勘探开发研究院作为知识的密集区域,每个人手中都有许多的石油专业资料,头脑中有许多的石油专业知识,但是每个人又都觉得自己的资料不够用,遇到问题时,没有地方去请教,没有地方去查找。其实这个问题的关键是:知识是离散的,没有实现知识的汇聚和关联;思维是离散的,没有实现思维的汇聚和关联。也就是说没有一个汇聚知识、交流知识、传播知识、知识连接你和我的社会化网络平台,因此,建立一个统一的、开放的、集成的石油知识共享平台,能有效地实现石油勘探开发显性知识及隐性知识的汇聚及分享,成为迫切所需。其作为知识管理系统的重要组成部分,对于石油企业的知识管理战略的实现具有重大的现实意义。

同时,对于企业的内部员工,利用石油知识共享平台可以公平地获取资源和传播信息、知识、思想、智慧;可以认识朋友,扩充人脉;可以交流、学习、协作;可以发展、提升;可以积累社会资本,塑造个人品牌,以更好地进行社会生存。

本文将介绍如何运用Web 2.0相关概念及技术工具构建石油知识共享平台,帮助石油企业实现高效的知识系统管理。

1 知识管理及Web 2.0概述

所谓知识管理[1],就是通过管理与技术手段,使人与知识紧密结合,让知识的沉淀、知识的共享、知识的学习和知识的应用及创新这个 “知识之轮” 循环转动(图1),并通过知识共享的文化,提高企业的效益和效率,为企业创造价值,赢得竞争优势。

如上定义可用一个公式表达如下:

图1 驱动“知识之轮”

油气成藏理论与勘探开发技术:中国石化石油勘探开发研究院2011年博士后学术论坛文集.4

其中 “P” 指人(People);“+” 为管理及技术手段;“K” 为知识(Knowledge);“S” 指共享的文化与氛围(Share)。这样看来知识管理简单地说即是通过技术手段(+)将人(P)与知识(K)充分结合,通过知识共享的管理机制和文化(S),使知识的价值成指数级提升,最终实现知识的社会化。知识的社会化对人类甚至高等动物的发展起着至关重要的作用。

自从2004年Web 2.0架构出现[2],互联网络步入了一个社会化的网络时代,其优秀的技术架构和开放的管理模式为企业知识管理系统注入了新的活力,充分体现了人与知识的紧密结合。

2004年,O'Reilly公司和MediaLive公司采用头脑风暴法,在总结Web 1.0的经验教训的基础提出了Web 2.0的理念[5]。Web 2.0目前没有一个统一的定义,互联网协会对Web 2.0的定义是:Web 2.0是互联网的一次理念和思想体系的升级换代,由原来的自上而下的由少数资源控制者集中控制主导的互联网体系转变为自下而上的由广大用户集体智慧和力量主导的互联网体系。互联网2.0内在的动力来源是将互联网的主导权交还个人从而充分发掘个人的积极性参与到体系中来,广大个人所贡献的影响和智慧及个人联系形成的社群的影响就替代了原来少数人所控制和制造的影响,从而极大地解放了个人的创作和贡献的潜能,使得互联网的创造力上升到了新的量级。

Web 2.0作为一种新技术架构,它的服务是由许许多多社会网络服务软件组成的。比如博客(Blog)/播客(Podcast)、顶客(digg)、维基网络(Wiki)、内容聚合(RSS)、图像分享(Flickr)、视频分享(YouTube、薯仔网)、网络办公(Google Docs)、社会书签(Delicio.us)、社交网络(开心网)、社会标注评论(Diigo)、幻灯片共享(Slideshare)等等。

其特点如下[5 ]

1)多人参与,利用集体力量和智慧。传统网站是自上而下的集中发布的旧体系,用户只能看到设计者让他们看到的内容。Web 2.0网站则是以用户为中心,大部分的内容是由用户贡献的,是自下而上的由广大用户集体智慧共同来创造内容,能够充分发挥个人的积极性和创造性。Web 2.0的灵魂是人。

2)可读可写互联网。在Web 1.0里,互联网是 “阅读式互联网”,用户只能读取网络内容,而Web 2.0是 “可写可读互联网”,普通用户对网络内容可读、可写,每个人都能写入内容。

3)海量的数据。Web 1.0网络内容是封闭而死板的,内容增长能力很弱,Web 2.0网站信奉的是 “数据为王”,将数据变为自我增生( “Intel Inside”)。它们通常都具有巨大的数据资源,并且内容是开放且活跃的,商业模式就是让用户消费这些数据。

4)社会化网络。传统网站的用户之间往往是孤立的,Web 2.0网站则加入了社交元素,让用户之间能够建立联系,把互不沟通的离散人际关系体系转变成沟通顺畅的社会关系网络体系。

Web 2.0对于构建学习型、知识型的组织结构也是一种有力的手段,众多的社会性软件服务为人们的学习提供了良好的支持,与学习的发生和知识的转化相辅相成。

2 石油知识共享平台架构

石油知识共享平台是为共享石油方面的知识而建立的Web 2.0类型的学习型共享网络,图2为石油知识共享平台的架构图,包括功能层和知识应用模型层,通过从知识沉淀、知识汇聚、知识审核、知识存储、知识关联、知识互助、知识获取、个人知识管理到知识应用及知识创新的一整套知识管理流程,来实现隐性及显性石油专业知识的汇聚及分享。

石油知识共享平台的构建目标主要集中在4个方面:实现汇聚,实现关联,实现知识的转化,以及实现个人知识的管理。

2.1 实现汇聚

包括网络资源的汇聚、社会资源的汇聚、知识的汇聚和思维的汇聚。实现汇聚,将能极大地促进知识的利用效率,促进人与知识更和谐地结合。

图2 石油知识共享平台架构图

2.2 实现关联

除了汇聚外,更重要的是要实现关联,包括网络资源间的关联(即构建互联网络)、社会资源间的关联(即构建人际关系网)、知识的关联(即构建知识网络)、思维的关联(即形成集体性智慧)。同时,不仅要实现同类资源内部的关联,更需要实现资源间的关联。例如,知识与社会资源的关联、知识与思维的关联等。这样用户可以找到与自己兴趣相符合的学习群体和相关链接,轻松方便地查看自己感兴趣的知识,不至于在茫茫的网海中搜索寻觅。

2.3 实现知识的转化

知识包括显性知识和隐性知识,隐性知识即人脑思维。知识的最大未知区在于人脑中,所以知识管理的关键在于怎样实现隐性知识的转化,包括隐性知识向显性知识的转化以及隐性知识向隐性知识直接的转化。

2.4 实现个人知识的管理

在信息化社会,网络知识无限扩充,并且处于杂乱而无序状态,所以需要借鉴纸质资料的知识管理过程来构建网络的个人知识管理,把有用的网页收藏起来,对它高亮标识并注释以及分类、聚合,形成自己的网络知识收藏;能方便地与其他人分享自己的个人收藏,并从其他用户的收藏中进行有针对性的信息采集,提升自己的知识水平。

石油知识共享平台具有典型的社会网络服务的特点,除了具有社会性、开放性、互动性等特征外,还具有以下独特的地方:

1)强调实现实名制。一般的Web 2.0应用中,用户可以任意注册,具有虚拟性、匿名性的特征,容易产生信任危机,而石油知识共享平台将采用企业电子邮件等注册方式,限制会员的注册权限,真正实现实名制,从而让人形成责任感并减少不信任感,沟通距离会更近。

2)强调通过知识的互帮互助来建立新型的关系。该平台将打破传统的组织机构的界限,通过知识分享、知识的交流、共同的成长来建立学习型的组织关系。员工与员工之间、员工与领导之间、专家学者与领导之间、领导与领导之间、专家学者及权威人士之间,都可以更加轻松地互相沟通交流,打破了外在条件约束和情感障碍。

3)强调知识权威性的审核和评定。普通的Web 2.0不强调权威性审核,但是石油知识共享平台将强调用户及知识的权威性的审核和评定,以保证石油专业知识的可靠性和权威性。

3 石油知识共享平台主要功能

石油知识共享平台PKSNS包括以下5个功能模块:石油知识资讯模块,石油知识共享模块,个人知识收藏模块,石油知识问答及论坛,石油知识网络全书。将来随着技术和管理理念的提升内容会不断扩充。

3.1 石油知识资讯模块

将分专业、分研究方向设置多个栏目,每个栏目由知识工程师设置知识采集的条件,分发爬虫,到石油专业网站中采集最合适的内容,返回给栏目。同样地,石油知识共享平台的每个栏目都会有爬虫去网站中自动的爬取知识,称为知识爬虫。这部分就体现了知识的汇聚目标。

采集后的知识并不以时间先后顺序放在首页,而是放在一种类似缓存的地方,用户可以判断每个知识的价值,有价值就顶,无价值就踩,越顶排名越靠前,越踩排名越靠后。用户可以做心情评价,做评论。这体现了知识与思维的关联。

3.2 石油知识共享模块

包括书籍共享、文档共享、图片贡献、幻灯片等等,通过这个成果知识共享平台,用户可以把手中的成果资料共享到平台中。贡献与获得成正比。贡献得越多,所获得的知识内容也越多;贡献越少获得越少,没有贡献将没有获得。从而发挥用户共享的积极性,这体现了知识汇聚目标。

在每本项目成果报告页面上,都关联项目的图片册、项目的汇报录音、幻灯片等,在同一平台上把各种显性的知识和隐性的知识关联起来,体现了系统的构建目标,即知识的关联。

3.3 个人知识收藏模块

信息社会,网络知识无限扩充,并且处于杂乱而无序的状态,在石油知识共享平台可以利用个人知识收藏平台,收藏自己喜欢的网页,并且点击编辑后,可以对网页在线进行标注,包括高亮标识及注释,成为自己的知识收藏;也可以搜索到感兴趣的人,点击进入他的知识收藏中进行学习。这体现了系统的构建目标,即个人的知识管理和学习的目标。

3.4 石油知识问答及论坛

通过提问、回答、投票、评分4个阶段来完成问答流程。这个子系统的功能实现了知识转化的目标,即隐性知识向显性知识的转化。

3.5 石油知识网络全书

采用wiki这种面向社群的协作式方式编纂石油知识网络全书,特点是普通用户自由创建词汇,协作编辑共同完成。实行权限、版本控制,以确保能回滚到最佳内容状态,这样有效地保护了知识内容的权威性。

4 应用效果分析——以石油知识网络为例

很多的网络,如网络平台、互动网络平台等,内容过大而过全,但有关石油的内容很少,分类粗糙,词条的解释并不专业,且功能较简单,不能完全满足应用需求,如没有英文解释,没有相关词汇,没有上位词、下位词、相关词等语义逻辑关系,因而这类通用的网络网站不能满足石油专业知识管理的需求,于是作者建立了针对石油专业应用的知识网络平台,按照勘探、开发、工程及综合四大类把石油专业主题词、石油网络全书、实用案例等,采用基于Wiki架构的知识协同建构方式共同来完成,充分发挥用户的创造力和参与性。

Wiki来源于夏威夷语 “Wee Kee Wee Kee”,即 “快点快点” 之意[5 ],中文译为 “维基” 或 “维客”。Wiki是一种多人参与的知识集成方式,其通过对信息多人协作、多人维护、自由发表的形式对共同的主题进行补充和丰富,有利于读者从不同作者的不同角度实现对一个专题的了解。例如,项目长编写前言,确定目录,每个子部分由项目组成员来共同完成,如图3所示。

石油知识网络平台具有严格的权限、版本控制以及审核流程。用户编辑完成,提交给知识管理员进行审核,审核完以后,编辑才算完成,如果审核不通过,能够确保回滚到最佳内容状态。所以采用这种流程的控制策略,可以有效地保护知识内容的权威性,但又不抹杀个人知识共享的积极性。

石油知识网络平台的成果是一个不断完善的石油专业知识库,享用这个知识库的人要比为这个知识库做贡献的人多得多。作为一种知识社会性的工具,它在提供知识共享的同时,亦不断地促进、激发知识的创新。

图3 Wiki以协作的方式对词条内容进行编辑

石油知识网络平台将原本杂乱无联系的词条以主题词链接的方式连接起来,以线性的网状组织方式,体现了词条间的类目关系,加强了对知识信息的导向性挖掘,并以部门、知识等为整体,将知识修改的不同版本列出,方便词条修改、创建者相互联系,加强相互之间的交流。

石油知识网络平台与石油网络平台中其他系统进行了有效集成,并且其他任何外部的应用系统都可在线查询石油词汇解释,图4所示是重大专项的管理信息系统,页面上鼠标滑过词汇后,会自动关联到石油网络中的解释,如果没有这个解释,会提示您去创建。同时,石油知识网络平台与地理信息系统进行了有效集成,编辑词条时可以点击修改和添加地图,填写经纬度坐标,然后在GIS中就会自动标注这个词条的地理位置,点击后能进入石油网络中详细查看这个词条的解释。

石油知识网络平台已经由知识管理员把《中国石油勘探开发网络全书》[7]4本全部录入,共有6000条条目,630万字,2200幅图片。广大的普通用户可以任意添加词条,进而扩充石油知识网络平台,因而,石油网络知识的内容会无限的扩充。

石油知识网络平台建立了词条间的逻辑关联,词条间具有语义的逻辑关系,包括同义词、上位词、下位词、英译名等等,如图5所示。知识管理员已经把1994年出版的《石油主题词表》[8]收录进该平台,收录主题词16939条,详细构建了石油词汇间的语义逻辑关系,并且普通用户也可自行添加词汇逻辑关系,这样,词条间的语义关系会更为庞大,更为合理。

石油知识网络是专为石油知识定制,由广大用户集体智慧共同创造知识,并且是开放而活跃的新体系。普通用户对石油知识网络的访问、词条的修改、词条的创建过程中,也是实现对知识的沉淀、知识的共享、知识的学习和知识的应用及创新这个 “知识之轮”的循环驱动。其实PKSNS平台中所有的子系统都具有这个知识流程的驱动过程,是开放而活跃的,是体现群体性智慧的知识管理平台。

图4 重大专项管理信息系统集成石油知识网络平台词条解释

图5 词条语义逻辑表

5 小结

石油知识共享平台利用Web 2.0架构下的各种技术手段将石油企业内部员工与石油专业知识充分结合,实现了隐性及显性石油专业知识的汇聚及分享,并构建了学习型共享组织,倡导了企业知识共享的管理机制和文化,使得石油专业知识的价值成指数级提升,最终将实现石油知识的应用及社会化。

参考文献

[1]吴庆海,周伟,夏敬华.驱动知识之轮.企业基业常青,http://www.kmcenter.org/ArticleShow.asp? ArticleID=1532.

[2]王伟军,熊瑞,张扬.Web 2.0与知识管理平台集成研究[J].情报资料工作,2007,(5):37240.

[3]武琳.Web 2.0时代信息交流模式分析[J].情报杂志,2006,(3).

[4]胡科,王荣良.基于Web 2.0的wiki技术应用研究[J].中国电化教育.2006,(9).

[5]赖晓云.Wiki在基于网络的研究性学习中的作用[J].现代远程教育研究,2005,(6).

[6]Murali Raman,Terry Ryan,Lorne Olfman.Designing knowledge management systems for teaching and learning with Wiki technology.

[7]刘宝和.中国石油勘探开发网络全书[M].北京:石油工业出版社,2008.

[8]杨义忠,王承勇,林淑凤.石油主题词表[M].北京:石油工业出版社,1994.

Ⅱ 求教从事软件开发,在专业团队做web项目的大侠,做一个web项目大概是几个人一起完成怎么进行分工的

Web项目,或大或小。即使是一个小网站的人可以两个或三个独立的复杂的大系统。
一般来说,应做到以下几点:

1 /需求设计
做互联网产品(如已知的差不多),将有一个特殊的角色,产品的设计,这个角色通常被称为一个产品经理。产品经理的产品,观众定位的基础上,用户需要设计网站所提供的功能和服务。
自定义的Web系统中,通常研究人员的需求将负责调查客户的需求,该系统实现的功能是确定的,根据客户的需求。
产品经理,负责研究人员的需求,必须根据产品或客户需求设计网站的功能,结构,有时还需要设计原型(哪些页面,页面布局如何等, )。

2 UI设计师
完成后的原型设计专业的UI设计师(这是可以理解的艺术)是负责页面设计,如使用Photoshop设计一个网站的首页,二级页面.....效果图的用户或产品经理审查。

系统设计,系统设计人员通常是根据用户的需求和产品设计系统中的项目结构和框架的实际情况,决定采用何种技术,以实现项目,该项目分成哪些模块,模块和模块之间如何衔接。

4。
设计,前端开发和批准,该页面被制作成HTML文件(切图,页面布局,解决浏览器兼容性问题,等等)的前端开发人员。
必要时,前端开发人员需要增加数量的客户端脚本(通常是JavaScript)再次页面,以实现交互的客户端和服务器的交互。

5。后台开发
大多数Web项目需要守护进程,守护进程可以使用PHP,JSP,ASP / Asp.Net等。按事先约定的规则和前台系统收敛。

6。测试人员
负责预先设计的测试用例测试已完成各种功能模块,包括单元测试和系统测试。

我们可能做的,如果错了,请大家指教。

Ⅲ 三维可视化技术在四川盆地油气勘探信息管理中的应用研究

唐先明1,2曲寿利1雷新华2

(1.中国石化石油勘探开发研究院,北京100083;2.中国地质大学(北京),北京100083)

摘要 在分析目前石油领域三维可视化技术应用局限性的基础上,给出了全球三维可视化系统构建流程和数据组织管理模式。以ArcSDE作为空间数据引擎,利用Oracle 10g建立四川盆地油气勘探海量空间数据库,基于三维可视化软件平台Skyline TerraSuite,利用功能强大的三维可视化开发平台TerraDeveloper,设计、开发基于全球三维模型的油气勘探信息集成管理平台。通过集成基础地理数据库、区域地质数据库、地面工程数据库、遥感影像库、地层数据库、断层数据和测井数据,该系统不仅提供了强大的油气勘探基础数据管理、三维地形建模以及模型的可视化功能,还为专业技术人员提供了一个可视化的分析、设计平台。

关键词 四川盆地 三维可视化 三维地理信息系统 油气勘探 全球导航

Application and Research of 3D Visualization Technique to Petroleum Exploration Information Management in Sichuan Basin

TANG Xian-ming1,2,QU Shou-li1,LEI Xin-hua2

(1.Exploration & Proction Research lnstitute,SlNOPEC,Beijing100083;2.China University of Geosciences,Beijing100083)

Abstract Based on the analysis of the current shortcomings of 3D visualization application in the fields of petroleum,the paper introces the construction process and data structure of global 3D visualization system.By using ArcSDE as engine of spatial data and Oracle 10g,“Petroleum exploration geodatabase of Sichuan Basin”is established.Based on Skyline Terra Developer,the software system“3D petroleum exploration data management and integration platform based on 3D global model”is designed and established.By integrating geographical database,areal geology database,surface engineering database,remote sensing image database,stratigraphical database,fault data,logging database with 3D terrain modeling,the system realize such functions as data management for petroleum exploration,3D terrain modeling and the visualization of 3D geological model.It is a visualization platform that assists the design and analysis for the geologists and the technologists.

Key words Sichuan basin 3D visualization 3D geographic information system petroleum explorationglobal navigation

随着计算机图形图像软硬件技术的迅猛发展,三维地形可视化技术在越来越多的领域得到了广泛的应用,构建一个为多种专业人员提供共同工作、研究与交流的三维实时交互的虚拟全球地理环境逐渐由梦想成为现实。三维可视化技术在石油工业中已得到高度重视和普及应用,它充分利用了三维地震信息和地震属性,以人们易于感知的三维图形对各种复杂数据场和数据关系进行描述。

油气勘探是通过采用不同的技术手段采集各种野外原始地质资料,并经处理、解释形成成果资料,进而采用各种科学方法进行盆地评价、圈闭评价和油气储藏评价,开展勘探规划部署、井位设计和地质综合研究工作,完成勘探科研和生产任务。在油气勘探过程中,各油田企业积累了海量的、异构的、多源的地理数据、勘探基础数据和成果数据,这些信息的综合应用对指导油田生产具有很重要的意义。利用三维GIS技术,基于“数字地球”将地表地理信息与地下地质信息一体化管理,构建一个分析、决策、规划及实施油气勘探开发研究的三维实时交互共享工作平台,能够有效地评估潜在的石油资源,及时、准确、直观地定位油气资源的空间分布及其特征,正确有效地开展部署勘探开发工作。

1 三维可视化技术的应用现状

迄今为止,三维地形的可视化技术分为两种,一种是面绘制技术,另一种是体绘制技术。在地质研究工作中,主要是采用体绘制技术。三维地学模拟主要包括两大部分内容,即三维地质建模和可视化,其中前者是后者的基础,后者是前者的表现[1]。目前,在三维地震数据的可视化方面,已有多种成熟的商业软件系统推出,国外的有 EarthCube,Geoviz,gOcad,VoleGeo等,国内的有石油物探局的3DV和双狐公司的三维地震微机解释系统等。这些软件涉及地质建模、地震勘探、开采评估、矿床模拟、规划设计和生产管理等领域,在功能上各有千秋,很难说哪一个更先进[2,3]。但是,它们主要是面向地质领域的专用系统,基于局部区域而非全球区域,对海量基础地理数据与遥感影像数据等的支持也较弱。基于这种情况,本文采用面向对象的程序开发语言Visual C#,基于优秀的国外三维可视化软件平台Skyline,设计并开发基于全球三维模型的空间数据管理平台,集成管理四川盆地区域内海量的、异构的、多源、多尺度的基础地理数据、油气勘探基础数据和成果数据、遥感影像,实现流畅的油气勘探的三维地形展示和地质分析。

2 系统开发技术背景与基本流程

随着地学应用的深入,人们越来越多地要求基于全球角度和真三维空间来认知世界和处理问题。但三维空间是复杂的,包含的信息是海量的,需要集成三维可视化与三维空间对象管理功能,同时由于三维应用的巨大差异,必须采用开放体系结构,实现用户定制功能。基于这种认识,Skyline TerraSuite在提供一般三维空间数据模型及其管理功能的基础上,允许针对特定应用领域动态扩展建模及分析功能插件,以适应特定的三维应用。整个TerraSuite软件体系如图1所示。

系统的实现分为4部分:地球三维场景构建、中心数据库建立、定制三维可视化环境和场景驱动与应用定制。

图1 Skyline TerraSuite软件体系

2.1 地球三维场景构建

场景构建是将要模拟的场景和对象通过数学方法表达成存储在计算机内的三维图形对象的集合。场景构建分为以下步骤:

(1)DEM数据采集:收集工作区的各级比例尺等高线数据或各种分辨率的航空航天遥感影像立体像对,建立地域的数字高程模型(DEM)。

(2)DOM数据生成:利用地面控制点和DEM数据,对工作区的低、中、高分辨率遥感影像进行严密的精纠正后生成数字正射影像图(DOM)。

(3)DLG数据采集:收集工作区的各级比例尺地形图、野外数据采集,建立工作区的各级比例尺线划图(DLG)。

(4)GIS数据转换:将数据采集阶段获得的DLG数据通过GIS工具转换为TerraBuilder能够接受的数据格式。

(5)数据建模:对一些油田地面建筑物、地标、油井或其他油田设备在3D MAX或MultiGen或TerraBuilder中进行建模。

(6)地球三维场景构建:将以上各种数据,导入到TerraBuilder中,创建一个现实影像的、地理的、精确的地球三维模型(MPT文件)。

2.2 中心数据库建立

基于全球三维模型的油气勘探信息集成管理平台是一个高度集成的应用系统,系统建设过程中必须充分考虑系统涉及的多专业图形、属性、影像、文字资料数据的一体化集成、系统数据库与系统软件功能的集成以及系统与网络环境的集成等关键问题。为实现功能的集成与扩展,考虑石油勘探开发数据的区域性、多维性、时序性、海量和异构的特点,拟采用大型商用关系数据库Oracle10g和空间数据引擎ArcSDE集中管理这些海量数据,建立数据中心,易于解决数据共享、网络化集成、并发控制、跨平台运行及数据安全恢复机制等方面的难题。

2.3 定制三维可视化环境

在全球三维场景的基础上,可以叠加自己关心的专题信息,通过与数据库的接口,还能集成中心数据库存放的地表、地下多维、动态空间信息,从而创建一个令人激动的交互式三维可视化环境,来突出一个地区的特征,显示其功能、相互关系以及从一个独特的视点展示该地区。

2.4 场景驱动与应用定制

(1)三维可视化程序:通过API接口直接调用所建立的三维可视化环境,也可以根据三维场景的参数生成实时场景,动态加载图层,有助于对空间数据相互关系的直观理解。

(2)三维空间查询与交互:直接在三维可视化环境下,对存放在中心数据库的各种数据和场景实体提供交互式查询等操作,以提供一个动态的环境,为进一步空间决策服务。

(3)应用定制:利用TerraDeveloper软件开发包提供的各种ActiveX控件,可以构建自己的面向三维的应用程序,实现与其他系统的应用集成[4]

3 系统总体设计

3.1 系统体系结构

根据系统的功能需求,系统在技术上要求具有业务变化的适应性、高度的安全性和大容量数据存储处理等特点,因而在系统的技术框架中采用了3 层B(C)/AS/DS结构。与此同时,考虑到系统与其他专业系统之间的集成,拟采用基于SOA(面向服务架构)和Web Services(Web服务)技术的应用集成技术,构建基于“数字地球”的地表地理信息与地下地质信息一体化管理服务平台。整个系统的体系结构如图2所示。

3.2 系统数据的组织形式

系统数据的组织形式是可视化系统的关键,其优劣将直接影响到场景绘制的效率。在基于全球三维模型的空间数据管理平台中,主要包括3部分数据:①场景数据,即场景环境包含的地形信息,通过影像图片处理而成,包含在.mpt文件中;②对象图形数据,即油气勘探对象图形信息,是由3D MAX等三维图像处理软件处理而成的三维模型;③对象属性数据,即油气勘探属性信息。所有关于对象的信息包含在.fly文件中,采用基于层(Layer)的面向对象的场景数据组织形式。目前,系统集成的四川盆地区域的数据层主要有:

(1)DLG——数字线划图:全区不同比例尺土地覆盖状况、植被、道路、水系、居民地等图层。

图2 基于全球三维模型的油气勘探数据管理平台系统结构

(2)DEM——数字高程模型:全区不同比例尺数字高程模型数据。

(3)DOM——数字正射影像:全区不同比例尺、不同分辨率的彩色正射影像。

(4)DRG——数字栅格图:全区不同比例尺地形图栅格数据。

(5)全国地名数据。

(6)1:200000地质图。

(7)勘探基础数据:测网、矿井、三维探区。

(8)勘探成果数据:地震异常、一类进积、二类进积、礁体、生物礁、滩和相带等。

(9)构造数据:断层、等值线等(宣汉、通南巴)。

(10)井位数据。

(11)地面工程数据:天然气管道、道路。

3.3 系统功能模块

基于全球三维模型的油气勘探信息管理与集成系统分为石油勘探数据管理、三维基本操作、三维GIS导航查询、三维分析等模块。系统主界面如图3所示。

各个模块的具体功能如下:

(1)石油勘探数据管理:系统利用GIS技术、XML技术、空间数据库等技术对多尺度基础地理信息、勘探基础数据和成果数据、多分辨率遥感影像、各种图表和文字报告等地表地下信息进行一体化的存储和管理。实现了对地理底图、油气地质勘查所获取的资料和成果的录(导)入、转换、编辑及查询等功能。另外,系统还提供了目标实体超链接及关联服务,如与钻孔相关的试验表类属性数据与图形数据的关联存储管理功能,提供与钻孔相关的各种基本信息及试验结果等属性信息的查询等功能。

图3 基于全球三维模型的油气勘探数据管理平台系统界面

(2)三维基本操作功能:在全球三维场景中,实现以下功能:

放大、缩小、平移、旋转等三维基本功能;

选择对象、使物体居中、环绕浏览对象;

飞行或者跳转到指定对象;

获得场景中任何一点的经纬度坐标和高程值;

场景的点对象、线对象,可以实现不依赖试图比例缩放;

提供场景的快照和打印输出功能。

(3)三维GIS导航查询:在全球坐标系统上实现基础地理信息、地质数据及勘探数据的立体定位导航分析。

全球任意点定位和导航;

二维三维联动功能;

测距、求积、高程和剖面生成;

地表实体三维建模及多种属性管理;

可定制飞行路径和视角的三维浏览功能。可自己制定飞行的路线或选择预定义飞行路线进行三维飞行(图4)。

(4)三维分析功能:

图4 基于全球三维模型的油气勘探数据管理平台设置飞行路径

测量功能:测量距离(水平、垂直和随地形起伏3种方式)、面积;

区域对象选择:可以进行多边形框选进行对象选择,并可获得选中区域内的对象集,可统计区域内的实体数并形成分类列表;

剖面观察:对所选地区场景进行剖面观察,可分析出地表起伏状况;

等高线绘制:用矩形框选出指定范围,可以显示出该范围等高线示意图,并可随意设定等高线显示方式;

最佳路径分析:根据给定的参数,如放样间隔、上升的最大坡度、下降的最大坡度、允许的放样宽度等信息,依据地形的走势,自动解算出最佳的放样线路;

视线分析:根据地面拾取两点系统可以自动计算两点间的通视情况;

视域分析:在场景中任选一点和视角范围可以进行视域可见分析;

空间分析:突发事件的地点,选择一定半径,利用分析工具可以作出整个目标点的空间范围,以提供决策。

4 系统应用扩展

基于全球三维模型的油气勘探信息管理与集成系统由于采用了组件技术、基于SOA(面向服务架构)和Web Services(Web服务)等技术,不仅提供了强大的地表与地下油气勘探信息数据管理、三维建模与模型的可视化、全球定位导航等功能,还可以进行系统扩展和专业系统集成,实现油气勘探开发的深度应用,如野外地质踏勘路径优选和工作安排、地震资料采集观测系统设计和优化、探井地面井场位置优选及工程测算、开发井位部署规划及钻前工程分析、油气集输地面工程设计及方案优化、目标区块水电路讯规划设计及优化、全球定位系统集成和油田现场服务等。

5 结论

三维可视化技术在国内、外已经趋于成熟,但基于全球三维模型的三维地理信息系统(GIS)刚刚起步,尤其是缺少针对地表与地下油气勘探信息三维一体化管理的经典模式和成熟经验。本文基于Skyline TerraDeveloper所设计、开发的全球三维油气勘探信息管理与集成系统,就是一个成功的实践,重点研究了虚拟现实环境下交互式地表地下油气勘探信息管理系统,给出了一种交互式虚拟现实全球导航平台的系统构成方案和原型系统。整个系统可靠性好、易于移植、便于维护,并具有很强的空间分析功能。结合三维地质建模及可视化系统的研究现状、相关技术的发展走向以及实际工程实践的应用需求,笔者认为,需要进一步探索、研究并解决以下问题:

(1)研究并实现现有的基于全球三维模型的空间数据集成管理平台的地上和地下三维一体化无缝集成与可视化功能。

(2)不断丰富与其他地震三维分析软件的接口。

(3)研究并开发基于VRML/X3D技术的网络三维可视化系统,能够为社会大众、专业技术人员和地质科学家提供更加普遍的支持和服务奠定基础。

参考文献

[1]Simon W Houlding.3D Geoscience Modeling:Computer Techniques for Geological Characterization[M].Berlin:Springer-Verlag,1994.

[2]朱良峰,潘信,吴信才.三维地质建模及可视化系统的设计与开发[J].岩土力学,2006,27(5):828~832.

[3]姜素华,庄博,刘玉琴等.三维可视化技术在地震资料解释中的应用[J].中国海洋大学学报(自然科学版),2004,34(1):147~152.

[4]Skyline Software System Inc.TerraDeveloper paper[EB/OL].[2007-6-1]http://www.skylinesoft.com/.

Ⅳ 什么是信息管理系统

信息管理系统是将经常变动的信息,类似新闻、新产品发布和部门动态等更新信息集中管理,并通过信息的某些共性进行分类,最后系统化、标准化发布到网络中上的一种网络资源共享的应用程序。信息通过一个操作简单的界面加入数据库,然后通过已有的网页模板格式与审核流程发布到网络服务器上。

本系统提供一个通用接口,可以把其他OA集成起来,形成一个完整的OA办公对外环境。
该产品大大减轻了信息更新维护的工作量,通过网络数据库的引用,将信息的更新维护工作简化到只需录入文字和上传图片,从而使系统内容的更新速度大大缩短,在某些专门的网上新闻站点,如新浪的新闻中心等,新闻的更新速度已经缩短到五分钟一更新,从而大大加快了信息的传播速度,也吸引了更多的长期用户群,时时保持系统的活动力和影响力。本系统可以简化为网站信息管理系统,可将动态等更新信息集中管理,并通过信息的某些共性进行分类,最后系统化、标准化发布到网络上(内部网或广域网)的一种应用程序。信息的采编通过一个操作简单的界面加入数据库,然后通过已有的网页模板格式与审核流程发布到网络上。

主功能模块:

栏目(即类别)管理:类别管理为整个系统的灵活高效提供了可能性,它使系统管理员可随时调整各类别(可无限级添加),都可以根据需要增加、修改、删除、栏目定向、栏目用户的管理以及次序的调整。这对于系统内信息的分类调整以及系统发展规划中第二步的实现具有很大的作用,可以极大地减少二次开发的工作量

信息管理:信息管理实现系统内容的更新与维护,提供在后台输入、查询、修改、删除各信息类别和专题中的具体信息的功能等一系列完善的信息管理功能。

页面编辑(界面方案)功能:页面编辑功能可以通过WEB编辑方式轻松实现系统首页面的定制功能,在保证页面风格不变的情况下,尽可能多的展现出信息的内容,活动模块的引入就显得更加方便,除此之外还可将页面上的一些固定内容如首页栏目,友情链接等,引入WEB编辑功能来处理,将这些日常维护工作量转为系统化、标准化的维护格式,从而保证网站设计风格的统一,同时也可以大大减轻工作量。

Ⅳ 辽宁何氏医学院教务管理系统:http://218.24.88.50/jwweb

辽宁何氏医学院教务管理系统: http://218.24.88.50/jwweb

辽宁何氏医学院(Liaoning Ho's Medical College)位于辽宁省 沈阳市 ,学院创建于1999年,是经 中华人民共和国教育部 批准成立的、涵盖医学、理学、工学、管理学、文学、艺术学等六大学科门类的一所民办普通本科高等院校。

根据2018年1月学院官网显示:现有全日制本、专科生近8000人。

1999年,归国医学博士何伟创立“ 沈阳医学院 —何氏眼科视光学院”;

2004年,学院成为经教育部批准、纳入全国统一招生计划的本科层次独立学院,并更名为“沈阳医学院何氏视觉科学学院”;

2011年,经辽宁省和国家教育部高校设置评议委员会专家组的考察和评议,学院转设为辽宁何氏医学院,成为全国首家也是民办院校转设的医学类普通本科学校;

1995年-今,何氏眼科沈阳医院、大连医院等9家眼科医院先后成立;

1999年,创建辽宁何氏医学院;

2001年,联合 大连医科大学 创建 大连医科大学 何氏眼科研究院。
院系专业
根据2018年学院官网显示:学院现开设临床医学、护理学、医学影像学、医学影像技术、听力与言语康复学、食品卫生与营养学、眼视光学、眼视光医学、药学、制药工程、药事管理、生物医学工程、医学信息工程、应用心理学、公共事业管理、广告学、动画、视觉传达设计、环境设计、产品设计、公共艺术等22个本科专业以及眼视光学技术、护理、医学美容技术、助产等6个高职专业。 ;

Ⅵ 基于web的管理系统好做吗

好做。
技术性比较强,不用接触外界,不用做无用社交,很好做而且前景远大。
基于web的在线管理软件,也就是B/S架构的管理软件,这也管理软件的主流趋势,应该说是很有前景的。这包括去前年热炒的Saas,也包括一些由用户自己部署到虚拟主机或云服务器的管理软件。

Ⅶ 河南农业大学教务网络管理系统入口:http://jwgl.henau.e.cn/jwweb

河南农业大学教务网络管理系统入口: http://jwgl.henau.e.cn/jwweb

筚路蓝缕,栉风沐雨,河南农业大学走过了百余年的办学历程。学校源自1902年创办的河南大学堂,先后经历了河南高等学堂、河南高等学校、河南公立农业专门学校、国立第五中山大学农科、河南大学农学院等办学阶段。1952年全国院系调整时重新独立建制,更名为河南农学院。1984年12月更名为河南农业大学。2009年9月成为农业部与地方省政府共建的第一所省属农业高校。2012年11月成为国家林业局与省政府共建高校。2013年5月学校牵头的河南粮食作物协同创新中心入选国家首批“2011计划”。

学校下设21个学院和许昌校区,设有农、工、理、经、管、法、文、医、教、艺10大学科门类。拥有1个一级学科国家重点学科,4个河南省特色骨干学科,19个省部级重点学科;7个博士后科研流动站;9个博士学位授权一级学科,18个硕士学位授权一级学科,13个硕士专业学位类别;79个本科专业。各类在校生3万余人。
学校在职教职员工2151人。其中教授、副教授等高级专业技术职务810人,博士学位995人。中国工程院院士1人,国家杰出青年科学基金获得者2人,教育部*特聘教授2人,国家有突出贡献中青年专家3人,新世纪百千万人才工程国家级人选9人,获国家中华农业英才奖专家3人,国家骨干教师2人,享受国务院特殊津贴专家41人,农业部现代农业产业技术体系岗位科学家13人;中原学者8人,省特聘教授25人。
学校建有国家“2011计划”河南粮食作物协同创新中心、省部共建小麦玉米作物学国家重点实验室、国家小麦工程技术研究中心、新农村发展研究院、国家农村信息化示范省综合信息服务平台、动物免疫学国家国际联合研究中心、CIMMYT-中国(河南)小麦玉米联合研究中心等7个国际和国家研究平台,国家玉米改良(郑州)分中心、教育部高校林木种质资源创新和生长发育调控重点实验室、农业部动物生化与营养重点实验室、农业部农村可再生能源新材料与装备重点实验室、国家烟草栽培生理生化研究基地等89个省部级研究平台。

学校建有郑州市文化路、龙子湖和许昌新区三个校区,占地面积281.35万㎡。建有两地三校区互联、全方位覆盖的信息网络环境,以及数字化校园综合应用信息共享平台。
学校面向国家和地方经济社会发展需求,长期以来为国家粮食安全和地方经济社会发展作出积极贡献。近年来,学校坚持科学发展,坚持规模与内涵并重,以改革为动力,以学科建设为龙头,突出办学特色,正在努力建设一所以生命科学及其相关基础学科为先导、以农业科学为优势、特色明显的教学研究型大学,努力成为河南高级农业人才的培养基地、农业科技创新的依托基地、农业高新技术的孵化基地、农业发展战略的研究基地。

Ⅷ 远程web管理是什么意思

远程web管理是利用远程控制软件进行远程web管理,远程控制通常通过网络才能进行。位于本地的计算机是操纵指令的发出端,称为主控端或客户端,非本地的被控计算机叫做被控端或服务器端。

远“程”不等同于远“距离”,主控端和被控端可以是位于同一局域网的同一房间中,也可以是连入Internet的处在任何位置的两台或多台计算机。

远程控制,指管理人员在异地通过计算机网络异地拨号或双方都接入Internet等手段,连通需被控制的计算机,将被控计算机的桌面环境显示到自己的计算机上,通过本地计算机对远方计算机进行配置、软件安装程序、修改等工作。

比如,远程唤醒技术(WOL,Wake-on-LAN) 是由网卡配合其他软硬件,通过给处于待机状态的网卡发送特定的数据帧,实现电脑从停机状态启动的一种技术。

(8)研究院信息管理系统web扩展阅读:

web特点:

1、图形化

Web 非常流行的一个很重要的原因就在于它可以在一页上同时显示色彩丰富的图形和文本的性能。在Web之前Internet上的信息只有文本形式。Web可以提供将图形、音频、视频信息集合于一体的特性。

2、与平台无关

无论用户的系统平台是什么,你都可以通过Internet访问WWW。浏览WWW对系统平台没有什么限制。无论从Windows平台、UNIX平台、Macintosh等平台我们都可以访问WWW。对WWW的访问通过一种叫做浏览器(browser)的软件实现。如Mozilla的Firefox、Google的Chrome、Microsoft的Internet Explorer等。

3、分布式的

大量的图形、音频和视频信息会占用相当大的磁盘空间,我们甚至无法预知信息的多少。对于Web没有必要把所有信息都放在一起,信息可以放在不同的站点上,只需要在浏览器中指明这个站点就可以了。在物理上并不一定在一个站点的信息在逻辑上一体化,从用户来看这些信息是一体的。

参考资料来源:

网络-远程控制

网络-远程控制软件

网络-web

Ⅸ 信息管理与信息系统考研方向都有哪些

信息管理与信息系统专业的考研方向有:管理科学与工程,档案学,情报学,行政管理,企业管理,物流管理,电子商务,系统工程,计算机等,当然也可以选择和计算机软件开发相关的方向考研。

管理方向的考研科目有数学一,政治,英语,专业课,但各个学校的考研需要的专业课不同。以浙江大学为例,信息管理与信息系统专业考研方向的考研科目都是数学,政治,英语,管理学。不同学校的同种专业的考研科目也不一样,可以去所要考的那所学校里去查找。

信息管理与信息系统专业培养具有一定的创新能力和领导潜质,具备良好的数理基础、管理学和经济学理论知识、信息技术知识及应用能力,具有一定的信息系统和信息资源开发利用实践和研究能力,能够在国家政府部门、企事业单位、科研机构等组织从事信息系统建设与信息管理的复合型高级专门人才。


(9)研究院信息管理系统web扩展阅读:

信息管理与信息系统的培养要求:

1、掌握信息管理和信息系统的基本理论基本知识。

2、掌握管理信息系统的分析方法、设计方法和实现技术。

3、具有信息收集、组织、分析研究、传播与综合利用的基本能力。

4、具有综合运用所学知识分析和解决问题的基本能力。

5、了解本专业相关领域的发展动态。

6、掌握文献检索、资料查询、收集的基本方法,具有一定的科研和实际工作能力。

7、掌握软件设计流程,熟悉互联网产品开发流程。

8、掌握HTML语言,CSS,JavaScript以及WEB标准思想。

9、具备信息资源管理的综合能力,胜任“IT+管理”类深具发展潜力的工作。

参考资料来源:网络—信息管理与信息系统

参考资料来源:网络—信息管理与信息系统专业

Ⅹ 实验室信息管理系统LIMS系统有功能,主要模块是哪些

LIMS(Laboratory Information Management System)即实验室信息管理系统,是通过对样品检验流程、分析数据及报告、实验室资源和客户信息等要素的综合管理,按照标准化实验室管理规范,建立符合实验室业务流程的质量体系,实现实验室信息化管理。是实验室提高分析水平、规范样品检测过程和降低实验成本,为客户提供优秀服务的信息平台。

我知道的宏峰科技有为赛宝实验室 广州能源检测研究院做过智检系统~


1检测申请

检测申请是LIMS进行业务管理流程的第一步,检测申请通常由客户直接通过LIMS提出或者由实验室相关服务部门协助客户或代替客户填写检测申请。LIMS应该记录有关申请测试客户(内部客户或外部客户)的相关信息、供试样品的相关信息、检测要求和特殊要求等信息。填写检测申请的客户必须是LIMS中的授权客户。系统还可以记录填写的信息、填写人、填写时间等。并应支持输出和打印纸质的申请单。


先进的LIMS可以提供多种的申请单录入方式,如信息导入、通过互联网填写测试申请,从其他业务信息系统直接下达检测任务等。


2合同评审和样品接收

实验室相关人员在收到客户测试申请和样品后,在LIMS中对申请进行合同评审,审核送检样品是否和申请有偏离。


3检测任务的分配和指派

LIMS应该可以通过识别与检测任务相关的检测部门和该测试的授权情况自动分配到检测人员或检测组。对特殊用户也可以由人工调配的方式下派检测任务。


4检测结果录入

检测结果的录入是指样品检测完成后,将检测结果以各种方式录入到LIMS中的过程。检测结果录入环节是LIMS的重要环节。先进的LIMS会提供很多实用的功能来辅助检测人员进行试验和结果的录入并进行更好的质量控制。


5自动计算

将测试方法编入LIMS中,检测人员只要输入仪器的测试结果就可以完成最终结果的计算。


6仪器数据采集

通过自动采集,直接将仪器输出的结果数据、测试谱图等结果和原始记录导入到LIMS中,减轻测试人员工作量,并减少可能出现的差错。


7多种不同格式的结果和原始记录采集

通过LIMS可以保存大量非数据性的结果文件,如照片、图像、实验谱图等。


8通过质控样品进行结果修正

很多LIMS引入了测试批的概念,既用同一仪器、同一检测方法、很多样品在一批中检测,例如一个具有自动进样功能的ICP进行的含量测定实验。检测人员可以在每批中加入质控样品,根据质控样品的检测结果去对这批样品的结果进行修正,如质控样品的检测结果超出规定范围,则判断整批样品的结果无效,需重新进行仪器校准,重新进行试验。


9查看检测的方法和SOP

LIMS可以关联测试相应的操作指导书,仪器指导书,测试方法文件。检测人员在进行检测过程中,可以方便的查询这些相关技术文档的现行有效版本。

10测试工作流程

如果实验室进行检测的某些实验,需要多人,多步骤完成。如一个测试需要进行制样、称重、消解、定容和上机实验等多步骤,这些步骤可能由不同的检测人员完成,对于这样的情况可以通过LIMS进行测试工作流程的定义,详细记录每步操作的时间、操作人员等信息。


11数据修改跟踪

一个完善的LIMS应该具备数据修改跟踪功能,对于录入和修改过的检测数据,系统应该记录录入或修改人,并记录操作发生的时间,以便进行追溯。


12数据和报告审核

数据和报告审核人员通过LIMS进行试验数据和检测报告的审核。一个好的LIMS应该有报告自动生成的功能。数据和报告审核人员除了可以查看和审核检测结果数据以外,还应可以查看检测过程中的相关质量信息,如实验所用仪器、标准品、检测人员等信息。数据和检测结果报告的审核需要经过电子签名等安全手段的验证,保证操作人员是合法授权的。


13样品管理

样品管理是LIMS中非常重要的一个部分。LIMS应该动态记录样品从到达实验室到检测结束直至用户取回样品或由实验室处置的全过程。样品进入实验室时,用户可以在系统中记录样品到达的时间、样品当前状态、是否与描述或规定的条件有偏离。LIMS应该采用条码等方式对样品进行标识,并保证样品标识的唯一性以方便样品在整个检测过程中的传递和查询。
LIMS应该提供样品存放位置和条件的信息。如果可能,应通过识别样品性质、材质等特性,自动的分配符合存放条件的存放位置。实验样品的领用、归还应在LIMS中进行记录,可以通过条码扫描的方式进行领用和归还操作。对于超过留样日期需要进行处置的样品,系统中应记录处置的方式、处置日期等信息。


14分包管理

当实验室由于未预料原因或持续性原因需要将检测工作分包时,LIMS需要对这一工作进行有效的控制和管理。首先,除客户指定特定分包商外,实验室分包的检测机构或实验室必须是经过本实验室考核、认可的实验室。需要在LIMS中保持被分包实验室的信息,包括其检测能力、质量体系情况、相关资质证明、联系方式等信息。如需要,LIMS也可以保存分包协议、分包商审核记录等文件的电子版。LIMS在分包样品时,应该可以输出分包申请单,输出信息时,应该确保客户信息的原则。LIMS应提供分包样品的追踪功能,包括分包日期,如邮寄方式寄送样品,可以通过快递单号码进行样品的追踪。执行检测任务的实验室出具检测报告后,实验室可以将分包结果录入到LIMS中,如需要,还可以将执行检测任务的实验室出具的报告扫描本或电子版本存入系统中。


15人员管理

LIMS中的人员管理不像人力资源系统那样大而全,其中虽然包含人员的一些基本信息,但是LIMS中的人员管理应该更偏重于对人员的检测能力、培训和授权的管理。LIMS应该可以维护人员的相关技术档案、教育背景、资格、当前工作描述等相关信息。人员的培训过程是一个动态的过程,培训包含培训的计划、培训的实施和培训的考核。实验室可以通过LIMS选定与当期和预期检测任务相适应的培训计划,并根据实际情况进行计划的评价和修订。实验室可以通过LIMS通知参与培训人员,并通过系统发放培训相关的电子版材料和教材。参与培训人员也可以通过LIMS对培训进行反馈以提高培训的针对性和有效性。LIMS还应该提供培训考核情况,培训资料归档等相关辅助功能。LIMS应该保持人员的授权情况,并根据这些授权情况进行流程上的控制,如授权签字人未经过系统的授权,不允许签发检测报告。一个检测人员未经某测试方法和仪器的授权,不能进行该实验。


16仪器和计量器具管理

LIMS中的仪器和检测计量器具的管理也不同于我们常见的固定资产的管理系统。它分为静态数据管理和动态管理。仪器的静态管理包括仪器设备的基本信息的管理,仪器配件的管理,仪器技术参数维护等。仪器的动态管理包括仪器的期间核查、日常维护、仪器的校准、仪器的检定、量值溯源计划、仪器状态的管理等。通过测量仪器的动态管理,可以让实验室检测人员和管理人员随时了解仪器状况,确保检测结果的准确性和有效性。


17试剂、标准物质和供应商管理

试剂和标准物质的采购流程通常不在LIMS中进行管理。但是对提供这些试剂和标准物质的供应商需要进行管理。需要在LIMS中维护实验室认可的合格供应商的资料,如地址、联系方式、供应试剂和标准物质的目录等。对于采购的每一批试剂均应记录其供应商,以便进行追溯。LIMS还应对试剂的存放、库存等进行管理。对于严重影响试验结果的试剂和标准物质,LIMS应在每次试验时录入或通过条码扫描的方式记录使用的试剂批号等信息。


18方法管理

LIMS应对实验方法进行严格的版本控制,通过在LIMS中的方法的版本更新和控制,保证实验室使用的检测方法是一致的并且是现行有效的。


19设施和环境条件管理

随着科学技术的不断发展,越来越多的实验室使用可以进行数据采集和分析的温湿度计和检测试验环境的电磁干扰、辐射、振级的测量仪器。通过LIMS和这些实时监控实验室环境的仪器的结合,可以更为有效的监控、分析实验室的环境条件,并可以将环境条件与仪器和测试项目进行关联,设置环境条件阈值,超过相应阈值时,通过LIMS对测试人员进行提醒和警告。保证检测结果的准确性和有效性。


20文件管理

LIMS还应对实验室的技术文档、质量文件、检验标准、校准规范、以及相关的其他文件进行管理,实现对文件的起草、发布,修改,审核全过程的管理和监控。建立文件目录和分类,可对文件进行查阅等级控制。对文件可以进行自由查询,即通过指定任意查询条件进行查询或者进行模糊查询,并可打印查询得到的文件。可添加和删除文件,对删除(废止)的文件进行
标记,并有备注说明删除原因。可记录文件发放情况。当文件临近失效或超出有效期时,系统自动提醒文件管理员进行相应处理。

21实验室质量控制

实验室质量控制是为将分析测试结果的误差控制在允许限度内所采取的控制措施。传统意义上,我们通过实验室内质量控制和实验室间比对来进行实验室的质量控制。在实验室内,质量控制一般包括空白实验、校准曲线的核查、仪器设备的标定、平行样分析、加标样分析以及使用质量控制图等。实验室间比对包括分发标准样对诸实验室的分析结果进行评价、对分析方法进行协作实验验证、加密码样进行考察等。它是发现和消除实验室间存在的系统误差的重要措施。可以通过LIMS进行实验室质量的控制。LIMS对质量控制方面的管理体现在两方面,首先是有计划、有目的和针对性的对考核样的处理以及实验室内部和实验室间的比对试验和评价。另一个方面就是在日常检测工作中对质控样品的处理,检测仪器校准曲线,检测结果趋势图和控制图等。


22实验室质量活动管理

实验室的日常质量活动可以通过LIMS进行管理。如管理评审、内部评审、纠正措施、预防措施、不符合检测工作控制等。这些质量活动可以通过LIMS进行动态的管理,也可以通过其他办公自动化系统进行流程管理或用纸质进行流转管理。但是,正如本文上面提到的,LIMS的实质其实就是实验室管理思想的实体化,所以,实验室通过质量活动提出的持续改进的措施和管理流程的调整需求反映到LIMS上,不断的完善,为管理体系服务。


23服务客户

通过LIMS服务客户表现在两个层面上,第一就是通过信息化的管理,更为有效的保护客户信息的私密性。第二就是通过LIMS和其相关外延功能提供客户更好的服务,如建立客户意见反馈和投诉平台,通过互联网直接下载检测报告,网上查询报告真伪,通过互联网随时查询检测进度,检测报告完成后进行短信或邮件的提醒,授权客户可以通过互联网直接提出测试申请等。


24结果报告管理

LIMS的一个非常重要的功能就是自动生成检测结果报告,现在许多实验室首先使用LIMS的此项功能。其通常实现的方式是采用第三方报表工具或自主研发的报表工具来设置一定格式的报告模板,自动获取检测结果数据和客户要求的、说明检测或校准结果所必需的和所用方法要求的信息来自动的组织和生成报告。报告的生成过程中无需人工干预。报告的模板应按照实验室要求和《检测和校准实验室能力认可准则》的要求来制定,以确保提供必需的信息。所有报告中的信息必须是从系统数据库中抽取的,换句话说,体现在结果报告中的任何客户信息、检测和方法信息、仪器信息和实验结果信息必须和LIMS数据库中的信息完全一致,并可以在系统中追溯这些信息。如果LIMS提供结果电子传送的功能,通过WEB方式或者自动发送邮件、或者电子传真平台等方式发送结果报告时,需要系统保证结果报告在传送过程中的完整性和保密性。消除在传送过程中的风险,保护客户信息。


25数据的统计和查询

一个信息系统最大的优势就是对数据的统计、查询和分析功能。通过建立LIMS,实验室的管理者不再需要通过经验判断,而是通过更加科学和准确的大量统计数据进行管理的决策以及管理体系和质量体系的改进。由此可见,一个LIMS的统计和查询功能是非常重要的功能。一个好的LIMS应该有着开放的、强大的、可自由定制的查询和统计功能。