当前位置:首页 » 网页前端 » web架构nginx
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

web架构nginx

发布时间: 2022-11-21 03:14:22

‘壹’ 解剖nginx服务器架构

模块化结构的思想是一个很久的概念,但也正是成熟的思想造就了Nginx的巨大优越性。

我们知道Nginx从总体上来讲是有许多个模块构成的。习惯将Nginx分为5大模块分别为:核心模块,标准HTTP模块,可选HTTP模块,邮件服务模块和第三方模块。

这5个模块由上到下重要性一次递减。

(1)核心模块;

核心模块是Nginx服务器正常运行必不可少的模块,如同操作系统的内核。它提供了Nginx最基本的核心服务。像进程管理、权限控制、错误日志记录等;

(2)标准HTTP模块;

标准HTTP模块支持标准的HTTP的功能;

(3)可选HTTP模块;

可选HTTP模块主要用于扩展标准的HTTP功能,让Nginx能处理一些特殊的服务;

(4)邮件服务模块;

邮件服务模块主要用于支持Nginx的邮件服务;

(5)第三方模块;

第三方模块是为了扩展Nginx服务器应用,完成开发者想要的功能;

*******Nginx中的模块命名有自己的习惯*********

一般以Ngx_作为前缀,——mole作为后缀,中间使用一个或者多个英文单词描述模块的工能,例如Ngx_core_mole表示该模块提供Nginx的核心功能等;

具体各个模块中包含哪些模块可以自己去源码中查询,这里略过;

从架构设计上说,Nginx服务器是与众不同的。其一在于它的模块化设计;其二也是更重要的一点在于它对与客户端请求的处理机制上;

web服务器和客户端是一对多的关系,Web服务器必须有能力同时为多个客户端提供服务。一般来说完成并行处理请求工作有三种方式:

1.多进程方式;

2.多线程方式;

3.异步方式;

这里简单说明一下这三种方式:

(1)多进程方式

多进程方式指,服务器每当收到一个客户端时。就有服务器主进程生成一个子进程出来和客户端建立连接进行交互。指导连接断开。该子进程就结束了。

多进程方式的优点是设计简单,各个子进程相对独立,处理客户端请求时彼此不受干扰;缺点是操作系统生成一个子进程需要进行内存复制等操作,在资源和时间上会产生一定的开销;当有大量请求时,会导致系统性能下降;

(2)多线程方式

多线程方式指每当服务器接收到一个请求后,会由服务器主进程派生出一个线程出来和客户端进行交互。由于操作系统产生出一个线程的开销远远小于一个进程的开销。故多线程方式在很大程度上减轻了Web服务器对系统资源的要求。但同时由于多个线程位于一个进程内,可以访问同样的内存空间。所以需要开发者自己对内存进程管理,增大了难度。

(3)异步方式

异步方式适合多进程和多线程完全不同的一种处理客户端请求的方式。这里有几个概念我们需要熟悉一下: 同步,异步,阻塞,非阻塞

在网络通信中同步和异步是描述通信模式的概念。

同步:发送方发送完请求后,需要等待接收到接收方发回的响应,才能发送下一个请求;所有请求在服务端得到同步,发送方和接收方的步调是一致的;

异步 :和同步机制相反,在异步机制中,发送方发出一个请求后,不等接收方响应这个请求,就继续发送下一个请求;所有来自发送方的请求形成一个队列,接收方处理完成后通知发送方;

在进程处理调度方式上用阻塞与非阻塞。在网络通信中主要指套接字socket的阻塞和非阻塞,而socket的实质就是IO操作。

阻塞 :调用结果返回之前,当前线程从运行状态被挂起,一直等到调用结果返回之后,才进入就绪状态,获取CPU后继续执行。

非阻塞 :和阻塞方式正好相反,如果调用结果不能马上返回,当前线程也不会马上返回,而是立即返回执行下一个调用。

因此就衍生出4中方式:同步阻塞,同步非阻塞,异步阻塞,异步非阻塞

这里简单解释一下异步非阻塞:发送方向接收方发送请求后,不用等待响应,可以继续其他工作;接收方处理请求时进行的IO操作如果不能马上得到结果,也不必等待,而是马上返回去去做其他事情。当IO操作完成以后,将完成状态和结果通知接收方,接收方再响应发送方。

与此同时Nginx服务器处理请求是怎样的呢???

Nginx服务器的一个显着的优势就是能够同时处理大量的并发请求。它结合多进程机制和异步机制。异步机制使用的是异步非阻塞方式。(Master-Worker)。

每个工作进程使用异步非阻塞方式,可以处理多个客户端请求。当某个工作进程接收到客户端的请求以后,调用IO进行处理,如果不能立即得到结果,就去处理其他的请求;而客户端在此期间也无需等待响应,可以去处理其他事情;当IO返回时,就会通知此工作进程;该进程得到通知,暂时挂起当前处理的失误去响应客户端请求。

也就是:

Nginx采用异步非阻塞方式来处理请求,处理请求具体到系统底层就是读写事件(所谓阻塞调用方式即请求事件还没准备好,线程只能一直去等,等事件准备好了再处理;而非阻塞即事件没准备好,马上返回ENGAIN,告诉你事件还没准准备好,而在这期间可以先去做其他事,再回头看看事件准备好了吗,时不时会看,需要的开销也是不小的)

异步可以理解为循环处理多个准备好的事件,不会导致无谓的资源浪费,当有更多的并发数只会占用更多的内存而已;

从上面我们可以知道,Nginx服务器的工作进程调用IO后,就取进行其他工作了;当IO调用返回后,会通知工作进程。 但IO调用时如何把自己的状态通知给工作进程的呢??

一般解决这个问题有两种方法:

(1)让工作进程在进行其他工作的过程中间隔一段时间就去检查一下IO的状态,如果完成就响应客户端,如果未完成,继续工作。

(2)IO调用在完成后能主动通知工作进程。

当然最好的就是用第二种方法了;像select/poll/epoll等这样的系统调用就是用来支持第二种解决方案的。这些系统调用也常被称为事件驱动模型。他们提供了一种机制就只让进程同时处理多个并发请求,不用关心IO调用的具体状态。IO调用完全由事件驱动模型来管理。

Nginx中的事件驱动模型

就是用事件驱动处理库(多路IO复用),最常用的就是select模型,poll模型,epoll模型。

关于这三个模型的详解在这里可以看到:https://segmentfault.com/a/1190000003063859

通过这个上面的简单讲解,再加上服务器的架构的了解,可以对Nginx有一个简单的了解,希望对之后的源码剖析有帮助。

大致上Nginx的架构就是这样:

1.Nginx启动后,会产生一个主进程,主进程执行一系列的工作后会产生一个或者多个工作进程;

2.在客户端请求动态站点的过程中,Nginx服务器还涉及和后端服务器的通信。Nginx将接收到的Web请求通过代理转发到后端服务器,由后端服务器进行数据处理和组织;

3.Nginx为了提高对请求的响应效率,降低网络压力,采用了缓存机制,将 历史 应答数据缓存到本地。保障对缓存文件的快速访问;

##工作进程##

工作进程的主要工作有以下几项:

接收客户端请求;

将请求一次送入各个功能模块进行过滤处理;

IO调用,获取响应数据;

与后端服务器通信,接收后端服务器处理结果;

数据缓存

响应客户端请求;

##进程交互##

Nginx服务器在使用Master-Worker模型时,会涉及到主进程和工作进程的交互和工作进程之间的交互。这两类交互都依赖于管道机制。

1.Master-Worker交互

这条管道与普通的管道不同,它是由主进程指向工作进程的单向管道,包含主进程向工作进程发出的指令,工作进程ID等;同时主进程与外界通过信号通信;

2.worker-worker交互

这种交互是和Master-Worker交互是基本一致的。但是会通过主进程。工作进程之间是相互隔离的,所以当工作进程W1需要向工作进程W2发指令时,首先找到W2的进程ID,然后将正确的指令写入指向W2的通道。W2收到信号采取相应的措施。

‘贰’ Nginx服务器架构初探

Nginx的每个模块都基本符合单一职责原则

一般来说,Web服务器完成并行处理请求工作的三种方式有:多进程方式、多进程方式和异步方式

多进程方式是指,服务器每当接收到一个客户端时,就由服务器主进程生成一个子进程出来和该客户端建立连接进行交互,直到连接断开,该子进程就结束了

多进程方式的优点在于,设计和实现相对简单,各个子进程之间相对独立,处理客户端请求的过程彼此不受到干扰,并且当一个子进程产生问题时,不容易将影响蔓延到其他进程中,这保证了提供服务的稳定性。当子线程退出时,其占用资源会被操作系统回收,也不会留下任何垃圾。

其缺点是操作系统中生成一个子进程需要进行大量内存复制等操作,在资源和时间上会产生一定的额外开销。因此,如果Web服务器接收大量并发请求,就会对系统资源造成压力,导致系统性能下降。

Apache采用“预生成进程”方式,它将生成子进程的时机提前,在客户端请求还没有到来之前就预先生成好,当请求到来时,主进程分配一个子进程和该客户端进行交互,交互完成之后,该进程也不结束,而被主进程管理起来等待下一个客户端请求的到来

多线程方式是指当服务器每当接收到一个客户端时,会有服务器主进程派生一个线程出来和该客户端进行交互
由于操作系统产生一个线程的开销远远小于产生一个进程的开销,所以多线程方式在很大程度上减轻了Web服务器对系统资源的要求。该方式使用线程进行任务调度,开发方面可以遵循一定的标准,这相对来说比较规范和有利于协作。
多个线程位于同一进程内,可以访问同样的内存空间,彼此之间相互影响;同时,在开发过程中不可避免地要由开发者自己对内存进行管理,其增加了出错的风险

IIS服务器使用了多线程方式对外提供服务

同步机制:发送方发送请求之后,需要等待接收到接收方发回的响应后,才接着发送下一个请求
异步机制:发送方发送请求只有,不等待接收方响应这个请求,就继续发送下一个请求。
在同步机制中,所有的请求在服务器端得到同步,发送方和接收方对请求的处理步调是一致的;在异步机制中,所有来自发送方的请求形成一个队列,接收方处理完成后通知发送方

阻塞和非阻塞用来描述进程处理调用的方式,在网络通信中,主要指网络套接字Socket的阻塞和非阻塞方式,而Socket的实质也就是IO操作。
Socket的阻塞调用方式为,调用结果返回之前,当前线程从运行状态被挂起,一直等到调用结果返回之前,才进入就绪状态,获取CPU继续执行
Socket的非阻塞调用方式为,如果调用结果不能马上返回,当前线程也不会被挂起,而是立即返回执行下一个调用

Nginx结合多进程机制和异步机制对外提供服务。异步机制使用的是异步非阻塞方式

Nginx服务器启动后产生一个主进程和多个工作进程(可在配置文件中配置)。Ngnix服务器的所有工作进程都用于接收和处理客户端的请求。每个工作进程使用异步非阻塞方式,可以处理多个客户端的请求。当某个工作进程接收到客户端的请求以后,调用IO进行处理,如果不能立即得到返回,就去处理其他的请求;而客户端再次期间也无须等待响应,可以去处理其他的事情;当IO调用返回结果时,就会通知此工作进程;该进程得到通知,暂时挂起当前处理的事务,去响应客户端的请求

IO调用把状态通知给工作进程的两种方式:

select/poll/epoll/kqueue等这样的系统调用就是支撑第二种方案的。这种系统调用,也称为事件模型。IO调用完全由事件驱动模型来管理,事件准备好之后就通知工作进程事件已经就绪

事件驱动就是在持续事务管理过程中,由当前时间点上出现的事件引发的调动可用资源执行相关任务,解决不断出现的问题,防止事务堆积的一种策略

事件驱动模型一般由事件收集器、事件发送器和事件处理器三部分基本单元组成
事件收集器 专门负责收集所有的事件,包括来自用户的(鼠标、键盘事件等)、来自硬件的(时钟事件等)和来自软件的(操作系统、应用程序自身)。 事件发送器 负责将收集器收集到的事件分发到目标对象中。目标对象就是事件处理器所处的位置。 事件处理器 主要负责具体事件的响应工作,它往往要到实现阶段才完全确定

目标对象中事件处理器的几种方式:

大部分网络服务器都采用第三种方式,形成了事件驱动库。事件驱动库又被称为多路IO复用方法,最常见的伪:select、poll、epoll。Nginx服务器还支持rtsig、kqueue、dev/poll和eventport

各个版本Linux和Windows平台都支持的基本事件驱动模型
使用select库的一般步骤:

如果没有指定其他事件驱动模型,Nginx自动编译该库。
使用--with-select_mole和--without-select_mole强制Nginx是否编译该库

Linux平台的事件驱动模型,Windows不支持。
poll和select的基本使用方式是相同的,区别在于:select需要为读事件、写事件和异常事件都分别创建一个描述符集合,因此在最后轮询的时候,需要分别轮训这三个集合。而poss库只需要创建一个集合,在每个描述符对应的结构上分别设置读事件、写事件或异常事件,最后轮询的时候,可以同时检查这三种事件是否发生。poll库是select库的优化实现

如果没有指定其他事件驱动模型,Nginx自动编译该库。
使用--with-poll_mole和--without-poll_mole强制Nginx是否编译该库

epoll属于poll库的一个变种,最大的区别在于效率

epoll库通过相关调用通知内核创建一个有N个描述符的事件列表;然后,给这些描述符设置所关注的事件,并将它添加到内核的事件列表中。
完成设置之后,epoll库就开始等待内核通知事件发生了。某一事件发生后,内核将发生事件的描述符列表上报给epoll库。得到列表事件的epoll库,就可以进行事件处理了

epoll库是Linux平台上最高效的。它支持一个进程打开大数目的事件描述符,上限是系统可以打开文件的最大数目。同时,epoll库的IO效率不随描述符数目增加而线性下降,因为它只会对内核上报的“活跃”的描述符进行操作

使用rtsig模型时,工作进程会通过系统内核建立一个rtsig队列用于存放标记事件发生(在Nginx服务器应用中特指客户端请求发生)的信号。每一个事件发生时,系统内核就会发生一个信号存放到rtsig队列中等待工作进程的处理。

rtsig队列有长度限制,如果超过该长度就会发生溢出。默认情况下,Linux系统事件信号队列的最大长度设置为1024。在Liunx2.6.6-mm2之后的版本之前,通过修改内核参数/proc/sys/kernel/rtsig-max来自定义该长度设置。在Liunx2.6.6-mm2之后的版本中,该参数被取消,系统各个进程分别拥有各自的事件信号队列,这个队列的大小由Linux系统的RLIMIT_SIGPENDING参数定义,在执行setrlimit()系统调用时确定该大小。Linux提供了worker+rlimit_sigpending参数用于调节这种情况下的事件信号队列长度

当rtsig队列发生溢出时,Nginx将暂停使用rtsig模型,而调用poll库处理未处理的事件,直到rtsig信号队列全部清空,然后再次启动rtsig模型,以防止新的溢出发生

编译Nginx服务器时,使用-with-rtsig_mole配置选项启用rtsig模型的编译

kqueue模型,主要用于FreeBSD4.1及以上版本、OpenBSD2.9及以上版本、NetBSD2.0及以上版本以及Mac OS X平台上。该模型也是poll库的一个变种,其和poll库的处理方式没有本质上的区别。该模型同时支持条件触发(只要满足条件就触发一个事件)和边缘触发(当状态发生改变触发一个事件)。在这些平台下,使用该模型用于请求处理,提高Nginx服务器性能

/dev/poll模型,主要用于Solaris7 11/99及以上版本、HP/US 11.22及以上版本、IRIX6.5.15及以上版本和Tru 64 UNIX 5.1A及以上版本。它使用了虚拟的/dev/poll设备,开发人员可以将要监视的文件描述符加入这个设备,然后通过ioctl()调用来获取事件通知。在以上平台中推荐使用

eventport模型,用于支持Solaris 10及以上版本。它可以有效防止内核崩溃等情况的发生

根据不同的部署平台,选择不同的事件驱动模型以提升Nginx服务器的处理性能

Nginx服务器启动后,产生一个主进程,主进程执行一系列工作后产生一个或者多个工作进程。
主进程主要进行Nginx配置文件解析、数据结构初始化、模块配置和注册、信号处理、网络监听生成、工作进程生成和管理等工作;
工作进程主要进行进程初始化、模块调用和请求处理等工作,是Nginx服务器提供服务的主体

Nginx服务器将接收到的Web请求通过代理转发到后端服务器,由后端服务器进行数据处理和页面组织,然后将结果返回。
Nginx服务器为了提高对请求的响应效率,进一步降低网络压力,采用了缓存机制,将历史应答数据缓存到本地。在每次Nginx服务器启动后的一段时间内,会启动专门的进程进行对本地缓存的内容重建索引,保证对缓存文件的快速访问

依赖于管道机制,交互的准备工作都是在工作进程生成时完成的

Run Loops,指的是进程内部用来不停地调配工作,对事件进行循环处理的一种模型。
该模型是一个集合,集合中的每一个元素称为一个Run-Loop。每个Run-Loop可运行在不同的模式下,其中可以包含它所监听的输入事件源、定时器以及在事件发生时需要通知的Run-Loop监听器。为了监听特定的事件,可以在Run Loops中添加相应的Run-Loop监听器。当被监听的事件发生时,Run-Loop会产生一个消息,被Run-Loop监听器捕获,从而执行预定的动作
Nginx服务器在工作进程中实现了Run-Loop事件处理循环的使用,用来处理客户端发送的请求事件

‘叁’ 如何用Nginx快速搭建一个安全的微服务架构

教你如何用Nginx搭建一个安全的、快速的微服务架构
今天我们要谈论微服务以及如何使用Nginx构建一个快速的、安全的网络系统。最后,我们将向您展示一个使用Fabric模式如何非常快速和轻松地构建一个微服务的demo。
在我们探讨Fabric模式之前,我想谈一谈微服务并且从Nginx的角度来看这意味着什么。
0:56 - 大转变

微服务已经引起了应用程序架构的重大转变。

当我第一次开始构建应用程序时,他们都是差不多的。幻灯片中所展示的单体架构也象征了应用程序的构造方式。
目前存在着某种类型的虚拟机(VM),对我来说,就是通常的Java。在虚拟机中应用的功能组件以对象的形式存在,这些对象是在内存中相互通讯的,它们将来来回回处理并进行方法调用。偶尔,你会采用诸如通知等机制来接触到其他系统以便获取数据或传递信息。

有了微服务之后,应用程序如何构建的范式是完全不同的了。你的功能组件会从在同一个主机的内存中通过虚拟机相互通讯转变到部署在容器中,并且使用Restful API调用通过HTTP来相互连接。
这是非常强大的,因为它赋予了你功能隔离。它为您提供了更细粒度的可伸缩性,并且你可以获得更好地处理故障的弹性。很多情况下这是简单的事实,你只需要使用HTTP进行跨网络调用。
现在,这种方法也有一些缺点。
一件轶事


我有一个暗黑的秘密,我是一个微软的员工并且从事.Net开发已经很多年了。当我在那儿的时候,我搭建了一个他们的名为Showcase的视频发布平台。
Showcase是一个用来将微软内部发布的所有视频发布到网上的工具。人们可以观看这些视频并进行学习,比如Microsoft Word的使用提示和技巧。这是一个非常受欢迎的平台,我们有很多人使用它,并且其中很多人都会在我们发布的视频上发表评论。
Showcase从一开始就是一个.Net单体应用,随着它日益受欢迎,我们决定应该将它更换为SOA架构。转换是相对容易的。Visual Studio提供了本质上的翻转开关的能力,也就是将你的DLL调用转变为Restful API调用。随着一些小的重构,我们能够让我们的代码运行得相当好。我们也为这些评论和应用内的社区功能使用智能社区服务。
紧密的回路问题


看起来我们是SOA可行的,在我们的首次测试中,一切都工作正常,直到我们将系统切换到我们的Staging环境并开始使用生产环境数据时,我们就会看到一些严重的问题。这些问题在在页面上有很多评论。
这是一个非常受欢迎的平台,其中的一些页面已经有多达2000条评论了。当我们深入这些问题时,我们意识到这些页面需要花费一分钟进行渲染的原因是因为智能社区服务首先需要填充用户名,然后对每一个用户名都需要发起一个对于用户数据库的网络调用来获得用户详细信息并且填充在渲染页面上。这是非常低效的,需要一到两分钟来渲染页面,而在内存中进行通常只需要5到6秒钟。
缓解


当我们经历了发现和解决问题的过程后,我们最终通过一些措施来调整优化系统,比如对所有的请求进行分组。我们缓存了一些数据,最终我们优化了网络来真正的提高性能。
所以,这与微服务有什么关系呢?对的,借助于微服务,你基本上是采用SOA架构的,并且会将其放入超光速引擎中。在SOA架构中所有的对象都是包含在单个虚拟机中并且在其内部管理,在内存中相互通讯,而现在微服务中是使用HTTP进行数据交换的。
当这样做没有问题时,你会获得很好的性能和线性可伸缩性。
Nginx能够很好地与微服务工作


Nginx是一个你可以用来过渡到微服务的最佳工具之一。
关于Nginx和微服务的一些历史。我们从一开始就参与了微服务运动,还是第一个从Docker Hub下载应用的,我们的客户以及那些拥有一些世界上最大的微服务安装量的最终用户广泛地在他们的基础设施使用Nginx。
原因是Nginx很小、很快并且很可靠。
Nginx微服务参考架构


我们还致力于在Nginx内部使用微服务工作已经有一段时间了。这是一个我们已经搭建的程式化的Nginx微服务参考架构,目前正在AWS上运行。
我们拥有6个核心的微服务,它们都运行在Docker容器里。我们决定建立一个多语种的应用,所以每个容器都可以运行不同的语言,我们目前使用了Ruby、Python、PHP、Java和Node.js。
我们搭建了这个使用十二要素应用的系统,稍加修改,就会使其更好地为微服务工作从而可以替代Roku平台。稍后,我们将向您展示一个实际上运行在demo里的应用。
MRA的价值


为什么我们要建立这样一个参考的微服务架构呢?
我们建立这个参考架构是因为我们需要给我们的客户提供构建微服务的蓝图,我们也想在微服务上下文中测试Nginx和Nginx Plus的功能,弄清楚如何才能更好地利用它的优势。最后,我们要确保我们对于微服务生态系统以及其可以给我们提供什么有一个深入的理解。
网络问题


让我们回到我们讨论的大转变。
从将运行在内存里并且被虚拟机管理的你的应用的所有功能组件迁移到通过网络进行工作并且相互通讯的方式,你会本质上引入一系列为了应用有效工作需要你解决的问题。
第一你需要服务发现,第二,你需要在架构中为所有不同的实例进行负载均衡,然后还有第三个,你需要操心性能和安全。
无论是好是坏,这些问题密不可分,你必须做权衡,有希望的是我们有一个可以解决所有这些问题的解决方案。
让我们更深入地看待每一个问题。
服务发现

让我们来谈谈服务发现。在单体应用中,APP引擎会管理所有的对象关系,你永远不必担心一个对象与另一个对象的相对位置,你只需要简单的调用一个方法,虚拟机会连接到对象实例,然后在调用完毕后销毁。
然后有了微服务,你需要考虑那些服务的位置。不幸的是,这不是一个普遍的标准流程。您正在使用的各种服务注册中心,无论是Zookeeper、Consul、etcd或者其它的,都会以不同的方式进行工作。在这个过程中,你需要注册你的服务,还需要能够读取这些服务在哪里并且可以被连接。
负载均衡


第二个问题是关于负载均衡的。当您拥有多个服务实例时,您希望能够轻松地连接到它们,将您的请求在它们中高效地分发,并以最快的方式执行,所以不同实例之间的负载均衡是非常重要的问题。
不幸的是,最简单形式的负载均衡是非常低效的。当你开始使用不同的更加复杂的方案做负载均衡时,它也变得更加复杂并且不易于管理。理想情况下,您希望您的开发人员能够基于他们的应用程序的需求决定何种负载均衡方案。例如,如果你连接到一个有状态的应用程序,你需要拥有持久化,这样可以确保你的Session信息会被保留。
安全和快速通讯


也许微服务最令人生畏的领域是性能和安全。
当在内存中运行时,一切都很快。现在,运行在网络上就会慢了一个数量级。
被安全地包含在一个系统中的信息,通常是二进制格式的,现在会被用文本格式在网络上传输。现在是比较容易在网络上布置嗅探器并能够监听你的应用正在被移动的所有数据。
如果要在传输层加密数据,那么会在连接速率和CPU使用率方面引入显着的开销。SSL/TLS在其全面实施阶段需要九个步骤来初始化一个请求。当你的系统每天需要处理成千上万、几万、数十万或数百万的请求时,这就成为性能的一个重要障碍了。
一个解决方案


我们已经在Nginx开发的一些解决方案,我们认为,会解决所有的这些问题,它赋予你健壮的服务发现、非常棒的用户可配置负载均衡以及安全和快速加密。
网络架构


让我们来谈谈你可以安装和配置你的网络架构的各种方法。
我们提出了三种网络模型,它们本身并不相互排斥,但我们认为它们属于多种格式的。这三种模式是Proxy模式、Router Mesh模式和Fabric模式——这是最复杂的,并在许多方面在其头部进行负载均衡。
Proxy模式


Proxy模式完全聚焦于你的微服务应用的入站流量,并且事实上忽略内部通讯。
你会获得Nginx提供的所有的HTTP流量管理方面的福利。你可以有SSL/TLS终止、流量整形和安全,并且借助于最新版本的Nginx Plus和ModSecurity,你可以获得WAF能力。
你也可以缓存,你可以将Nginx提供给你的单体应用的所有东西添加到你的微服务系统里,并且借助于Nginx Plus,你可以实现服务发现。当你的API实例上下浮动时,Nginx Plus可以在负载均衡工具里动态地添加和减去它们。
Router Mesh模式


Router Mesh模式类似于Proxy模式,在其中我们有一个前端代理服务来管理接入流量,但它也在服务之间添加了集中式的负载均衡。
每个服务连接到集中式的Router Mesh,它管理不同服务之间的连接分发。Router Mesh模式还允许你在熔断器模式中搭建,以便可以对你的应用添加弹性并允许你采取措施来监控和拉回你的失效的服务实例。
不幸的是,因为该模式增加了一个额外的环节,如果你不得不进行SSL/TLS加密,它事实上加剧了性能问题。这就是引入Fabric模式的原因。
Fabric模式


Fabric模式是将其头部的所有东西翻转的模式。
就像之前的另外两个模式一样,在前面会有一个代理服务器来管理流入流量,但与Router Mesh模式不同的地方就是你用运行在每个容器里的Nginx Plus来替代了集中式的Router。
这个Nginx Plus实例对于所有的HTTP流量作为反向和正向代理,使用这个系统,你可以获得服务发现、健壮的负载均衡和最重要的高性能加密网络。
我们将探讨这是如何发生的,以及我们如何处理这项工作。让我们先来看看一个服务如何连接和分发他们的请求结构的正常流程。
正常的流程


在这个图中,你可以看到投资管理器需要跟用户管理器通讯来获取信息。投资管理器创建了一个HTTP客户端,该客户端针对服务注册中心发起了一个DNS请求并获得返回的一个IP地址,接着初始化了一个到用户管理器的SSL/TLS连接,该连接需要通过九阶段的协商或者是”握手”过程。一旦数据传输完毕,虚拟机会关闭连接并进行HTTP客户端的垃圾回收。
整个过程就是这样。这是相当简单和易于理解的。当你把它分解成这些步骤时,您可以看到该模式是如何真正完成请求和响应过程的。
在Fabric模式中,我们已经改变了这一点。
Fabric模式的细节


你会注意到的第一件事是Nginx Plus是运行在每一个服务里的,并且应用程序代码是在本地与Nginx Plus通信的。因为这些是本地连接,你不需要担心加密问题。它们可以是从Java或者PHP代码到Nginx Plus实例的HTTP请求,并且都是在容器内的本地HTTP请求。
你也注意到Nginx Plus会管理到服务注册中心的连接,我们有一个解析器,通过异步查询注册中心的DNS实例来获取所有的用户管理器实例,并且预先建立连接,这样当Java服务需要从用户管理器请求一些数据的时候,可以使用预先建立的连接。
持久的SSL/TLS连接


微服务之间的有状态的、持久化的并且可以加密的连接是真正的益处。
记得在第一个图中服务实例是如何通过一些流程的吧,比如创建HTTP客户端、协商SSL/TLS连接、发起请求并关闭的吗?在这里,Nginx预先建立了微服务之间的连接,并使用Keepalive特性,保持调用之间的持续连接,这样你就不必为每一个请求处理SSL/TLS协商了。
本质上,我们创建了一个迷你的从服务到服务的VPN连接。在我们最初的测试中,我们发现连接速度增加了77%。
熔断器Plus


在Fabric模式以及Router Mesh模式中,你也可以从创建和使用熔断器模式中获得好处。
本质上,您定义了一个在服务内部的活跃的健康检查,并设置缓存,以便在服务不可用的情况下保留数据,从而获得完整的熔断器功能。
所以,现在我可以确定你认为Fabirc模式听起来很酷,并且想在实际环境中跃跃欲试。

‘肆’ Nginx + Apache + Tomcat架构方式,为什么需要ApacheApache的作用

nginx和apache两者的作用相同,都是常见webserver服务器,相互独立也可相符搭配,都是用于浏览器用户过来的http请求,然后把请求结果反应给浏览器。

apache是出现比较早的web server,90年代就有了,兼容性好文档全应用广泛。
nginx是后起之秀,2000年以后才有的,在web2.0年代性能远远超过apache,是时下比较流行的web server。

至于tomcat ,那是用来处理java程序的解释器。本身apache也好,nginx也好,都是无法直接处理java语言的,只能通过设置,当收到java文件请求时,传给后方tomcat处理,再把tomcat的反应回给浏览器。另php-fpm,是用来处理php程序的,作用跟tomcat差不多。

怎么选择搭配,这个就看各人的喜欢和开发需要了。我比较常用的就是nginx+php-fpm,apache+tomcat,nginx+tomcat。也试过nginx+apache+php-fpm+tomcat等复杂组合。

只要了解每个软件的功能和作用,就可以合理利用自由搭配。

‘伍’ iis apache nginx的优缺点是什么,该如何选择哪种架构

1,iis 不用说如果你程序是asp的你就只能选择iis
2,apache 这个没得说,优点很明显,稳定,强大,php可以用mole的方式,如果你装了xcache,没得说apache是你最好的选择。不过apache有个很大的缺点,ddos的时候支持的并发数非常低
3,nginx 这个重点是反向代理,如果你做镜像或者网站静态页面的而且流量比较大,用nginx分流是个不错的选择,不过php只能用fastcgi的方式跑,缺点就是php装了xcache他每个fastcgi的进程里面的缓存都是独立的,有点浪费资源的感觉,优点是ddos的时候这3个服务器之中他是最好的,并发数支持最大。

‘陆’ “微服务架构”部署NGINX Plus作为API网关,第1部分 - NGINX

了解着名的Nginx服务器(微服务必不可少的东西)如何用作API网关。

现代应用程序体系结构的核心是HTTP API。 HTTP使应用程序能够快速构建并轻松维护。无论应用程序的规模如何,HTTP API都提供了一个通用接口,从单用途微服务到无所不包的整体。通过使用HTTP,支持超大规模Internet属性的Web应用程序交付的进步也可用于提供可靠和高性能的API交付。

有关API网关对微服务应用程序重要性的精彩介绍,请参阅我们博客上的构建微服务:使用API​​网关。

作为领先的高性能,轻量级反向代理和负载均衡器,NGINX Plus具有处理API流量所需的高级HTTP处理功能。这使得NGINX Plus成为构建API网关的理想平台。在这篇博文中,我们描述了许多常见的API网关用例,并展示了如何配置NGINX Plus以便以高效,可扩展且易于维护的方式处理它们。我们描述了一个完整的配置,它可以构成生产部署的基础。

注意:除非另有说明,否则本文中的所有信息均适用于NGINX Plus和NGINX开源。

API网关的主要功能是为多个API提供单一,一致的入口点,无论它们在后端如何实现或部署。并非所有API都是微服务应用程序。我们的API网关需要管理现有的API,单块和正在部分过渡到微服务的应用程序。

在这篇博文中,我们引用了一个假设的库存管理API,即“仓库API”。我们使用示例配置代码来说明不同的用例。 Warehouse API是一个RESTful API,它使用JSON请求并生成JSON响应。但是,当部署为API网关时,使用JSON不是NGINX Plus的限制或要求; NGINX Plus与API本身使用的架构风格和数据格式无关。

Warehouse API实现为离散微服务的集合,并作为单个API发布。库存和定价资源作为单独的服务实施,并部署到不同的后端。所以API的路径结构是:

例如,要查询当前仓库库存,客户端应用程序会向/ api / warehouse / inventory发出HTTP GET请求。

使用NGINX Plus作为API网关的一个优点是,它可以执行该角色,同时充当现有HTTP流量的反向代理,负载平衡器和Web服务器。如果NGINX Plus已经是应用程序交付堆栈的一部分,那么通常不需要部署单独的API网关。但是,API网关所期望的某些默认行为与基于浏览器的流量的预期不同。出于这个原因,我们将API网关配置与基于浏览器的流量的任何现有(或未来)配置分开。

为实现这种分离,我们创建了一个支持多用途NGINX Plus实例的配置布局,并为通过CI / CD管道自动配置部署提供了便利的结构。 / etc / nginx下的结果目录结构如下所示。

所有API网关配置的目录和文件名都以api_为前缀。这些文件和目录中的每一个都启用API网关的不同特性和功能,并在下面详细说明。

所有NGINX配置都以主配置文件nginx.conf开头。要读入API网关配置,我们在nginx.conf的http块中添加一个指令,该指令引用包含网关配置的文件api_gateway.conf(下面的第28行)。请注意,默认的nginx.conf文件使用include伪指令从conf.d子目录中引入基于浏览器的HTTP配置(第29行)。本博文广泛使用include指令来提高可读性并实现配置某些部分的自动化。

api_gateway.conf文件定义了将NGINX Plus公开为客户端的API网关的虚拟服务器。此配置公开API网关在单个入口点https://api.example.com/(第13行)发布的所有API,受第16到21行配置的TLS保护。请注意,此配置纯粹是HTTPS - 没有明文HTTP侦听器。我们希望API客户端知道正确的入口点并默认进行HTTPS连接。

此配置是静态的 - 各个API及其后端服务的详细信息在第24行的include伪指令引用的文件中指定。第27到30行处理日志记录默认值和错误处理,并在响应中讨论错误部分如下。

一些API可以在单个后端实现,但是出于弹性或负载平衡的原因,我们通常期望存在多个API。使用微服务API,我们为每个服务定义单独的后端;它们一起作为完整的API。在这里,我们的Warehouse API被部署为两个独立的服务,每个服务都有多个后端。

API网关发布的所有API的所有后端API服务都在api_backends.conf中定义。这里我们在每个块中使用多个IP地址 - 端口对来指示API代码的部署位置,但也可以使用主机名。 NGINX Plus订户还可以利用动态DNS负载平衡,自动将新后端添加到运行时配置中。

配置的这一部分首先定义Warehouse API的有效URI,然后定义用于处理对Warehouse API的请求的公共策略。

Warehouse API定义了许多块。 NGINX Plus具有高效灵活的系统,可将请求URI与配置的一部分进行匹配。通常,请求由最具体的路径前缀匹配,并且位置指令的顺序并不重要。这里,在第3行和第8行,我们定义了两个路径前缀。在每种情况下,$ upstream变量都设置为上游块的名称,该上游块分别代表库存和定价服务的后端API服务。

此配置的目标是将API定义与管理API交付方式的策略分开。为此,我们最小化了API定义部分中显示的配置。在为每个位置确定适当的上游组之后,我们停止处理并使用指令来查找API的策略(第10行)。

使用重写指令将处理移至API策略部分

重写指令的结果是NGINX Plus搜索匹配以/ _warehouse开头的URI的位置块。第15行的位置块使用=修饰符执行完全匹配,从而加快处理速度。

在这个阶段,我们的政策部分非常简单。位置块本身标记为第16行,这意味着客户端无法直接向它发出请求。重新定义$ api_name变量以匹配API的名称,以便它在日志文件中正确显示。最后,请求被代理到API定义部分中指定的上游组,使用$ request_uri变量 - 其中包含原始请求URI,未经修改。

API定义有两种方法 - 广泛而精确。每种API最合适的方法取决于API的安全要求以及后端服务是否需要处理无效的URI。

在warehouse_api_simple.conf中,我们通过在第3行和第8行定义URI前缀来使用Warehouse API的广泛方法。这意味着以任一前缀开头的任何URI都代理到相应的后端服务。使用基于前缀的位置匹配,对以下URI的API请求都是有效的:

如果唯一的考虑是将每个请求代理到正确的后端服务,则广泛的方法提供最快的处理和最紧凑的配置。另一方面,精确的方法使API网关能够通过显式定义每个可用API资源的URI路径来理解API的完整URI空间。采用精确的方法,Warehouse API的以下配置使用精确匹配(=)和正则表达式(〜)的组合来定义每个URI。

此配置更详细,但更准确地描述了后端服务实现的资源。这具有保护后端服务免于格式错误的客户端请求的优点,代价是正常表达式匹配的一些小额外开销。有了这个配置,NGINX Plus接受一些URI并拒绝其他URI无效:

使用精确的API定义,现有的API文档格式可以驱动API网关的配置。可以从OpenAPI规范(以前称为Swagger)自动化NGINX Plus API定义。此博客文章的Gists中提供了用于此目的的示例脚本

随着API的发展,有时会发生需要更新客户端的重大更改。一个这样的示例是重命名或移动API资源。与Web浏览器不同,API网关无法向其客户端发送命名新位置的重定向(代码301)。幸运的是,当修改API客户端不切实际时,我们可以动态地重写客户端请求。

在下面的示例中,我们可以在第3行看到定价服务以前是作为库存服务的一部分实现的:rewrite指令将对旧定价资源的请求转换为新的定价服务。

动态重写URI意味着当我们最终在第26行代理请求时,我们不能再使用$ request_uri变量(正如我们在warehouse_api_simple.conf的第21行所做的那样)。这意味着我们需要在API定义部分的第9行和第14行使用稍微不同的重写指令,以便在处理切换到策略部分时保留URI。

HTTP API和基于浏览器的流量之间的主要区别之一是如何将错误传达给客户端。当NGINX Plus作为API网关部署时,我们将其配置为以最适合API客户端的方式返回错误。

顶级API网关配置包括一个定义如何处理错误响应的部分。

第27行的指令指定当请求与任何API定义都不匹配时,NGINX Plus会返回错误而不是默认错误。此(可选)行为要求API客户端仅向API文档中包含的有效URI发出请求,并防止未经授权的客户端发现通过API网关发布的API的URI结构。

第28行指的是后端服务本身产生的错误。未处理的异常可能包含我们不希望发送到客户端的堆栈跟踪或其他敏感数据。此配置通过向客户端发送标准化错误来进一步提供保护。

完整的错误响应列表在第29行的include伪指令引用的单独配置文件中定义,其前几行如下所示。如果首选不同的错误格式,并且通过更改第30行上的default_type值以匹配,则可以修改此文件。您还可以在每个API的策略部分中使用单独的include指令来定义一组覆盖默认值的错误响应。

有了这种配置,客户端对无效URI的请求就会收到以下响应。

在没有某种形式的身份验证的情况下发布API以保护它们是不常见的。 NGINX Plus提供了几种保护API和验证API客户端的方法。有关基于IP地址的访问控制列表(ACL),数字证书身份验证和HTTP基本身份验证的信息,请参阅文档。在这里,我们专注于API特定的身份验证方法。

API密钥身份验证

API密钥是客户端和API网关已知的共享密钥。它们本质上是作为长期凭证发布给API客户端的长而复杂的密码。创建API密钥很简单 - 只需编码一个随机数,如本例所示。

在顶级API网关配置文件api_gateway.conf的第6行,我们包含一个名为api_keys.conf的文件,其中包含每个API客户端的API密钥,由客户端名称或其他描述标识。

API密钥在块中定义。 map指令有两个参数。第一个定义了API密钥的位置,在本例中是在$ http_apikey变量中捕获的客户端请求的apikey HTTP头。第二个参数创建一个新变量($ api_client_name)并将其设置为第一个参数与键匹配的行上的第二个参数的值。

例如,当客户端提供API密钥7B5zIqmRGXmrJTFmKa99vcit时,$ api_client_name变量设置为client_one。此变量可用于检查经过身份验证的客户端,并包含在日志条目中以进行更详细的审核。

地图块的格式很简单,易于集成到自动化工作流程中,从现有的凭证存储生成api_keys.conf文件。 API密钥身份验证由每个API的策略部分强制执行。

客户端应在apikey HTTP头中显示其API密钥。如果此标头丢失或为空(第20行),我们发送401响应以告知客户端需要进行身份验证。第23行处理API键与地图块中的任何键都不匹配的情况 - 在这种情况下,api_keys.conf第2行的默认参数将$ api_client_name设置为空字符串 - 我们发送403响应告诉身份验证失败的客户端。

有了这个配置,Warehouse API现在可以实现API密钥身份验证。

JWT身份验证

JSON Web令牌(JWT)越来越多地用于API身份验证。原生JWT支持是NGINX Plus独有的,可以在我们的博客上验证JWT,如使用JWT和NGINX Plus验证API客户端中所述。

本系列的第一篇博客详细介绍了将NGINX Plus部署为API网关的完整解决方案。可以从我们的GitHub Gist仓库查看和下载此博客中讨论的完整文件集。本系列的下一篇博客将探讨更高级的用例,以保护后端服务免受恶意或行为不端的客户端的攻击。

原文:https://dzone.com/articles/deploying-nginx-plus-as-an-api-gateway-part-1-ngin

本文:http://pub.intelligentx.net/deploying-nginx-plus-api-gateway-part-1-nginx

讨论:请加入知识星球或者小红圈【首席架构师圈】

‘柒’ 17《Nginx 入门教程》Nginx 的基础架构解析(上)

前面介绍 Nginx 时有介绍过 Nginx 的进程模型。Nginx 启动时首先启动一个 Master 进程,然后由 Master 进程启动一个或者多个 Worker 子进程。Master 进程主要完成配置读取,通过发送信号控制 Worker 进程的启动和停止等,而 Worker 子进程是用来处理客户端发来的 Http 请求,且Worker进程之间会通过共享内存进行通信。

假设 Nginx 启动了多个 Worker 进程,并且在 Master 进程中通过 socket 套接字监听80端口。 这些 Worker 进程 fork 自 Master 进程,然后每个worker进程都可以去 accept 这个监听的 socket。 当一个连接进来后,所有在 accept 在这个 socket 上面的进程,都会收到消息,但是只有一个进程可以 accept 这个连接,其它的则 accept 失败,这便是所谓的惊群现象。Nginx 处理这种情况的方式就是加锁。有了锁之后,在同一时刻,就只会有一个 Worker 进程在 accpet 连接,这样就不会有惊群问题了。在 Worker 进程拿到 Http 请求后,就开始按照前面介绍的 11个阶段处理该 Http 请求,最后返回响应结果并断开连接。

最早我们学习了 Nginx 命令行操作,这些命令行操作都是给 Master 进程发信号,然后再由 Master 进程发送信号给 Worker 进程,从而达到控制 Worker 进程的目标。我们以 Nginx 的热部署命令 ./nginx -s reload 来描述 Nginx 命令行的执行流程。具体过程如下:

Nginx 命令行中 -s 参数的每个值都对应这一个信号。因此,我们也可以直接对 Master 进程发生相应信号达到同样的目的。

事件驱动模型是实现异步非阻塞的一个手段。对于 web 服务器来说,客户端 A 的请求连接到服务端时,服务端的某个进程(Nginx 的 worker 进程)会处理该请求,此进程在没有返回给客户端 A 结果时,它又去处理了客户端 B 的请求。服务端把客户端 A 以及客户端 B 发来的请求作为事件交给了"事件收集器",而"事件收集器"再把收集到的事件交由"事件发送器"发送给"事件处理器"进行处理。最后"事件处理器"处理完该事件后,通知服务端进程,服务端进程再把结果返回给客户端A、客户端B。在这个过程中,服务端进程做的事情属于用户级别的,而事件处理这部分工作属于内核级别的。也就是说这个事件驱动模型是需要操作系统内核来作为支撑的。

Nginx 的事件驱动模型,支持 select、poll、epoll、rtsig、kqueue、/dev/poll、eventport 等。 最常用的是前三种,特别是 epoll 模型,这也是 Nginx 中的默认配置。可以说 epoll 模型成就了 Nginx 的高性能和高并发特性。

按照前面的讲解,我们测试给 Nginx 的 Master 进程直接发送信号,并观察进程情况:

可以看到 Nginx 启动了 Master 进程(pid=10640),后由 Master 进程 fork 除了两个 Worker 进程和两个 Cache 进程,他们的父进程 id 均为10640。现在做如下几个操作:

可以看到原先的 Worker 进程被杀死后,Nginx 的主进程又立马拉起来一个新的 Worker 进程提供服务。这说明 Nginx 是非常可靠的,只要 Master 进程还在就会保证 Worker 进程持续存在并提供服务。

可以看到,在移除 Nginx 的 access.log 日志后,在向 Nginx 主进程发送 USR1 信号,Nginx 会重新生成一个新的 access.log 日志。

本节主要介绍 Nginx 的进程模型以及介绍了 Master 和 Worker 之间的通信过程。此外,我们介绍了 Nginx 的事件驱动模型。异步、多路IO复用、非阻塞等特点早就了 Nginx 的高性能。接下来,我们完成了 Nginx 进程模型的几个实验,直观体检 Nginx 的进程模型。下一节将重点介绍 Nginx 模块相关的内容,并手动实现一个简单的 http 模块。

‘捌’ Nginx + Apache + Tomcat架构方式,为什么需要ApacheApache的作用

这是为了让Nginx + Apache + Tomcat架构方式实现反向代理与动静分离
Nginx跑静态和做负载反向代理,动态php还是交给apache处理比较稳定。nginx跑静态的能力是无与伦比的,是目前web服务器里最强的,但是处理动态还是用Apache好点。nginx和apache、tomcat、resin的动静分离配置其实很简单,就几句配置,稳定性也非常好。你可以在网上搜索一下。

‘玖’ 如何在Ubuntu 16.04上使用Nginx的OpenResty Web框架

第1步 - 下载OpenResty的源代码和依赖关系

在本节中,我们将从源代码安装OpenResty。

首先,从OpenResty网站的下载页面找到最新的OpenResty源代码版本。下载tarball,确保如果更改了版本号,请使用最新版本号。

wget https://openresty.org/download/openresty-1.11.2.2.tar.gz
下载PGP密钥文件,以便我们可以验证文件的内容。

wget https://openresty.org/download/openresty-1.11.2.2.tar.gz.asc
接下来,我们需要添加作者的公共密钥,如下载页面上所列。在撰写本文时,这是公钥A0E98066 。但是,请检查它是否已更改;它被列在同一下载页面上。

gpg --keyserver pgpkeys.mit.e --recv-key A0E98066

第2步 - 安装OpenResty

我们将配置OpenResty与PCRE正则表达式和IPv6支持。我们还将通过提供-j2标志来并行化构建过程的一部分,这将告诉make 2个作业可以同时运行。此命令将主要测试所有依赖项是否可用于您的系统,并收集将由构建步骤稍后使用的信息。它也已经构建了一些依赖项,如LuaJIT。./configure -j2 --with-pcre-jit --with-ipv6
然后,您可以通过提供-j2并行度标志来构建OpenResty。这将编译OpenResty本身。make -j2
最后,您可以安装OpenResty。使用sudo确保所有文件可以复制到系统上的正确位置,以便OpenResty可以在运行时找到它们。sudo make install
您需要在防火墙中允许HTTP连接才能使Web服务器正常工作。sudo ufw allow http
您也可以选择允许HTTPS与sudo ufw allow https如果你要使用它。您可以通过检查防火墙的状态来验证防火墙的更改。sudo ufw status
您应该看到显示的输出中允许HTTP流量(端口80 ),以及如果您添加它的HTTPS(端口443 )。

您现在可以检查安装是否有效。首先,启动OpenResty。sudo /usr/local/openresty/bin/openresty
如果命令成功,它将立即完成而不输出文本。在这种情况下,您可以在浏览器中访问http:// your_server_ip 。 你会看到一个页面,说欢迎来到OpenResty!确认它已完全安装和工作。

您现在可以停止OpenResty服务器。sudo /usr/local/openresty/bin/openresty -s quit
OpenResty已安装,但您仍需要配置OpenResty在启动时运行,所以服务器不必手动启动。

第3步 - 将OpenResty设置为服务

在这里,我们将OpenResty设置为一个服务,所以它在启动时自动启动。我们将使用systemd init服务。 您可以阅读此systemd基础教程了解更多信息,以及本单元文件教程 ,了解单元文件的具体信息。

首先使用nano或您喜欢的文本编辑器创建一个新的systemd文件。sudo nano /etc/systemd/system/openresty.service
对于本教程,我们将从全新安装中复制默认的Nginx systemd文件,并针对OpenResty进行修改。

第4步 - 配置OpenResty

要配置OpenResty,我们使用默认的Nginx配置作为参考,以便它大部分匹配你可能会熟悉的。 首先,再次打开OpenResty配置文件: sudo nano /usr/local/openresty/nginx/conf/nginx.conf
这一次,我们将修改http块并将此http块中的server块移动到一个新文件以具有更好的结构。 首先,找到http {行,并删除之后的一切,除了最后一行与对应的} 。

当前/usr/local/openresty/nginx/conf/nginx.conf

user www-data;worker_processes auto;pid /run/openresty.pid;events {
worker_connections 1024;}http {
include mime.types;
default_type application/octet-stream;

. . .}
然后,将以下内容复制到http块中,以便整个文件看起来像这样。我们将一次过一个更改。

/usr/local/openresty/nginx/conf/nginx.conf

user www-data;worker_processes auto;pid /run/openresty.pid;events {
worker_connections 1024;}http {
include mime.types;
default_type application/octet-stream;

sendfile on;
tcp_nopush on;
tcp_nodelay on;

keepalive_timeout 65;

ssl_protocols TLSv1 TLSv1.1 TLSv1.2; # Dropping SSLv3, ref: POODLE
ssl_prefer_server_ciphers on;

access_log /var/log/openresty/access.log;
error_log /var/log/openresty/error.log;

gzip on;
gzip_disable "msie6";

include ../sites/*;
}
保存并关闭文件。 我们对默认文件所做的更改是:

  • 取消tcp_nopush on; ,它告诉OpenResty只发送完整的数据包。 当使用sendfile选项时,此选项很有用,这将允许OpenResty优化将静态文件发送到客户端。

  • 添加tcp_nodelay on; 。 此选项将尝试尽快发送数据包,这可能看起来与上述选项相反,但它在不同的时间使用。 tcp_nodelay仅在对HTTP请求使用keepalive选项时使用,这是通过Web浏览器连接到Web服务器,这将避免每次请求时启动HTTP连接的开销。

  • 添加和修改ssl_protocols和ssl_prefer_server_ciphers行。这些选项配置OpenResty的SSL选项。我们删除了易受已知的HTTPS攻击的旧协议,例如POODLE攻击。

  • 添加access_log和error_log行,它们配置Web服务器的日志位置。 我们将日志存储在上一步中创建的/var/log/openresty目录中。

  • 取消注释gzip on并添加gzip_disable "msie6" 。这些选项将配置GZIP,这将压缩网页,以便有更少的数据传输。我们还添加了最后一个选项,因为Internet Explorer 6(及更早版本)并不总是正确处理GZIP内容。

  • 添加include ../sites/*; ,它告诉OpenResty在/usr/local/openresty/nginx/sites目录中查找额外的配置文件,稍后我们将创建它。

  • 删除所有server块,我们将在此步骤中稍后重新定位到新文件。

  • 接下来,创建我们在include行中指定的新sites目录。 sudo mkdir /usr/local/openresty/nginx/sites

  • 创建default网站。 sudo nano /usr/local/openresty/nginx/sites/default.conf

  • 在此新文件中添加以下内容。这是从nginx.conf重新定位原始服务器块,但有更多细节的内联注释。
  • /usr/local/openresty/nginx/sites/default.conf

  • server {

  • # Listen on port 80.

  • listen 80 default_server;

  • listen [::]:80 default_server;


  • # The document root.

  • root /usr/local/openresty/nginx/html/default;


  • # Add index.php if you are using PHP.

  • index index.html index.htm;


  • # The server name, which isn't relevant in this case, because we only have one.

  • server_name _;


  • # When we try to access this site...

  • location / {

  • # ... first attempt to serve request as file, then as a directory,

  • # then fall back to displaying a 404.

  • try_files $uri $uri/ =404;

  • }


  • # Redirect server error pages to the static page /50x.html.

  • error_page 500 502 503 504 /50x.html;

  • location = /50x.html {

  • root /usr/local/openresty/nginx/html;

  • }}

  • 保存并关闭文件。 现在,为此网站创建一个新目录。 sudo mkdir /usr/local/openresty/nginx/html/default

  • 然后将原始index.html从其原始位置移动到新目录。 sudo mv /usr/local/openresty/nginx/html/index.html /usr/local/openresty/nginx/html/default

  • 最后,重新启动OpenResty以使用此新站点。 sudo systemctl restart openresty

  • 您现在可以再次访问http:// your_server_ip ,并查看与之前相同的网页。 现在OpenResty是完全配置的,我们可以尝试一些由OpenResty介绍的,在Nginx默认情况下不可用的功能。
  • 第5步 - 使用OpenResty Lua模块

  • 在本节中,我们将看看OpenResty添加的不同模块的组合,这些模块都存在以适应Lua脚本。我们将在整个步骤中/usr/local/openresty/nginx/sites/default.conf /usr/local/openresty/nginx/sites/default.conf,因此首先打开它。 sudo nano /usr/local/openresty/nginx/sites/default.conf

  • 首先,我们将看一下content_by_lua_block配置选项。 从下面的示例配置中复制location块,并将其添加到server块中,位于两个现有location块下面。
  • /usr/local/openresty/nginx/sites/default.conf content_by_lua_block示例

  • server {

  • . . .


  • location /example {

  • default_type 'text/plain';


  • content_by_lua_block {

  • ngx.say('Hello, Sammy!')

  • }

  • }}

  • 保存并关闭文件,然后重新加载配置。 sudo systemctl reload openresty

  • 如果您http:// your_server_ip /example访问http:// your_server_ip /example ,您会看到一个http:// your_server_ip /example 您好,Sammy的页面! 。让我们解释这是如何工作的。 content_by_lua_block配置指令执行其中的所有内容作为Lua代码。 在这里,我们使用Lua函数ngx.say来打印消息Hello,Sammy!到页面。 对于另一个示例,将location /example块的内容替换为:
  • /usr/local/openresty/nginx/sites/default.conf content_by_lua_file示例

  • server {

  • . . .


  • location /example {

  • default_type 'text/plain';


  • content_by_lua_file /usr/local/openresty/nginx/html/default/index.lua;

  • }}

  • content_by_lua_file从外部文件加载Lua内容,所以让我们创建上面指定的内容: /usr/local/openresty/nginx/html/default/index.lua 。 sudo nano /usr/local/openresty/nginx/html/default/index.lua

  • 将以下内容添加到文件,然后保存并将其关闭。
  • /usr/local/openresty/nginx/html/default/index.lua

  • local name = ngx.var.arg_name or "Anonymous"ngx.say("Hello, ", name, "!")

  • 这是一个简单的Lua,它读取URL中的查询参数, name并自定义问候消息。如果没有传递参数,则使用“匿名”。 再次重新加载配置。 sudo systemctl reload openresty

  • 现在,在浏览器中访问http:// your_server_ip /example?name= Sammy 。 这将显示你好,Sammy! 。 您可以更改name查询参数,或完全忽略它。 Hello, Sammy!

  • 您还可以更改name查询参数以显示任何其他名称。 警告:请勿将您要加载的Lua文件从Web访问到的位置。如果这样做,如果有人访问此文件,则可能会包含应用程序代码。将文件放在文档根目录之外,例如,将文档根目录更改为/usr/local/openresty/nginx/html/default/public ,并将Lua文件放在其上一个目录。

‘拾’ 远程服务器返回错误:(502)错误的网关 是什么原因、

502错误原因分析:

1、这类错误常见于Nginx+PHP的Web架构,Nginx将请求提交给网关PHP-FPM执行,但是由于某些原因请求没有执行完毕导致PHP-FPM进程终止执行。说到此,这个问题就很明了了,与网关服务如PHP-FPM的配置有关了。

2、php-fpm.conf配置文件中有两个参数就需要你考虑到,分别是max_children和request_terminate_timeout。

3、max_children最大子进程数,在高并发请求下,达到php-fpm最大响应数,后续的请求就会出现502错误的。可以通过netstat命令来查看当前连接数。

4、request_terminate_timeout设置单个请求的超时终止时间。还应该注意到php.ini中的max_execution_time参数。当请求终止时,也会出现502错误的。

5、当积累了大量的php请求,你重启php-fpm释放资源,但一两分钟不到,502又再次呈现, 这时还应该考虑到数据库,查看下数据库进程是否有大量的locked进程,数据库死锁导致超时,前端终止了继续请求,但是sql语句还在等待释放锁,这时就要重启数据库服务了或kill掉死锁SQL进程了。

6、所以在调整max_children和request_terminate_timeout、max_execution_time也需要考虑到服务器资源使用情况及应用代码sql执行效率情况,需要综合衡量。502 Bad Gateway:服务器作为网关或者代理时,为了完成请求访问下一个服务器,但该服务器返回了非法的应答。 亦说Web服务器用作网关或代理服务器时收到了无效响应。