当前位置:首页 » 网页前端 » 交叉编译器脚本
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

交叉编译器脚本

发布时间: 2022-10-30 03:27:33

❶ 如何使用CMake进行交叉编译

cmake交叉编译配置

很多时候,我们在开发的时候是面对嵌入式平台,因此由于资源的限制需要用到相关的交叉编译。即在你host宿主机上要生成target目标机的程序。里面牵扯到相关头文件的切换和编译器的选择以及环境变量的改变等,我今天仅仅简单介绍下相关CMake在面对交叉编译的时候,需要做的一些准备工作。

CMake给交叉编译预留了一个很好的变量CMAKE_TOOLCHAIN_FILE,它定义了一个文件的路径,这个文件即toolChain,里面set了一系列你需要改变的变量和属性,包括C_COMPILER,CXX_COMPILER,如果用Qt的话需要更改QT_QMAKE_EXECUTABLE以及如果用BOOST的话需要更改的BOOST_ROOT(具体查看相关Findxxx.cmake里面指定的路径)。CMake为了不让用户每次交叉编译都要重新输入这些命令,因此它带来toolChain机制,简而言之就是一个cmake脚本,内嵌了你需要改变以及需要set的所有交叉环境的设置。

toolChain脚本中设置的几个重要变量

1.CMAKE_SYSTEM_NAME:

即你目标机target所在的操作系统名称,比如ARM或者Linux你就需要写"Linux",如果Windows平台你就写"Windows",如果你的嵌入式平台没有相关OS你即需要写成"Generic",只有当CMAKE_SYSTEM_NAME这个变量被设置了,CMake才认为此时正在交叉编译,它会额外设置一个变量CMAKE_CROSSCOMPILING为TRUE.

2. CMAKE_C_COMPILER:

顾名思义,即C语言编译器,这里可以将变量设置成完整路径或者文件名,设置成完整路径有一个好处就是CMake会去这个路径下去寻找编译相关的其他工具比如linker,binutils等,如果你写的文件名带有arm-elf等等前缀,CMake会识别到并且去寻找相关的交叉编译器。

3. CMAKE_CXX_COMPILER:

同上,此时代表的是C++编译器。

4. CMAKE_FIND_ROOT_PATH:

指定了一个或者多个优先于其他搜索路径的搜索路径。比如你设置了/opt/arm/,所有的Find_xxx.cmake都会优先根据这个路径下的/usr/lib,/lib等进行查找,然后才会去你自己的/usr/lib和/lib进行查找,如果你有一些库是不被包含在/opt/arm里面的,你也可以显示指定多个值给CMAKE_FIND_ROOT_PATH,比如

set(CMAKE_FIND_ROOT_PATH /opt/arm /opt/inst)

该变量能够有效地重新定位在给定位置下进行搜索的根路径。该变量默认为空。当使用交叉编译时,该变量十分有用:用该变量指向目标环境的根目录,然后CMake将会在那里查找。

5. CMAKE_FIND_ROOT_PATH_MODE_PROGRAM:

对FIND_PROGRAM()起作用,有三种取值,NEVER,ONLY,BOTH,第一个表示不在你CMAKE_FIND_ROOT_PATH下进行查找,第二个表示只在这个路径下查找,第三个表示先查找这个路径,再查找全局路径,对于这个变量来说,一般都是调用宿主机的程序,所以一般都设置成NEVER

6. CMAKE_FIND_ROOT_PATH_MODE_LIBRARY:

对FIND_LIBRARY()起作用,表示在链接的时候的库的相关选项,因此这里需要设置成ONLY来保证我们的库是在交叉环境中找的.

7. CMAKE_FIND_ROOT_PATH_MODE_INCLUDE:

对FIND_PATH()和FIND_FILE()起作用,一般来说也是ONLY,如果你想改变,一般也是在相关的FIND命令中增加option来改变局部设置,有NO_CMAKE_FIND_ROOT_PATH,ONLY_CMAKE_FIND_ROOT_PATH,BOTH_CMAKE_FIND_ROOT_PATH

8. BOOST_ROOT:

对于需要boost库的用户来说,相关的boost库路径配置也需要设置,因此这里的路径即ARM下的boost路径,里面有include和lib。

9. QT_QMAKE_EXECUTABLE:

对于Qt用户来说,需要更改相关的qmake命令切换成嵌入式版本,因此这里需要指定成相应的qmake路径(指定到qmake本身)

toolChain demo

# this is required
SET(CMAKE_SYSTEM_NAME Linux)

# specify the cross compiler
SET(CMAKE_C_COMPILER /opt/arm/usr/bin/ppc_74xx-gcc)
SET(CMAKE_CXX_COMPILER /opt/arm/usr/bin/ppc_74xx-g++)

# where is the target environment
SET(CMAKE_FIND_ROOT_PATH /opt/arm/ppc_74xx /home/rickk/arm_inst)

# search for programs in the build host directories (not necessary)
SET(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
# for libraries and headers in the target directories
SET(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
SET(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)

# configure Boost and Qt
SET(QT_QMAKE_EXECUTABLE /opt/qt-embedded/qmake)
SET(BOOST_ROOT /opt/boost_arm)

这样就完成了相关toolChain的编写,之后,你可以灵活的选择到底采用宿主机版本还是开发机版本,之间的区别仅仅是一条-DCMAKE_TOOLCHAIN_FILE=./toolChain.cmake,更爽的是,如果你有很多程序需要做转移,但目标平台是同一个,你仅仅需要写一份toolChain放在一个地方,就可以给所有工程使用。

❷ cygwin 中如何安装arm-linux-gcc交叉编译器

交叉编译工具链作为嵌入式Linux开发的基础,直接影响到嵌入式开发的项目进度和完成质量。由于目前大多数开发人员使用Windows作为嵌入式开发的宿主机,在Windows中通过安装VMware等虚拟机软件来进行嵌入式Linux开发,这样对宿主机的性能要求极高。Cygwin直接作为Windows下的软件完全能满足嵌入式Linux的开发工作,对硬件的要求低及方便快捷的特点成为嵌入式开发的最佳选择。

目前网络上Cygwin下直接可用的交叉编译器寥寥无几且版本都比较低,不能满足开源软件对编译器版本依赖性的要求(如低版本工具链编译U-Boot出现软浮点问题等);Crosstool等交叉工具链制作工具也是更新跟不上自由软件版本的进度;同时系统介绍Cygwin下制作交叉编译器方面的资料很少。针对上述情况,基于最新版gcc等自由软件构建Cygwin下的交叉编译器显得尤为迫切和重要。
构建前准备工作
首先Cygwin下必须保证基本工具比如make}gcc等来构建bootstrap-gcc编译器,这可以在安装Cygwin时选择安装。参照gcc等安装说明文档来在Cygwin下查看是否已经安装,如输入gcc --v等。
源码下载
gcc-4.5.0的编译需mpc的支持,而mpc又依赖gmp和mpfr库。从各个项目官方网站上下载的最新的源码:
binutils-2.20. l .tar.bz2
gmp-S.O. l .tar.bz2
mpc-0.8.2.tar.gz
mpfr-3.O.O.tar.bz2
gcc-4.S.O.tar.bz2
linux-2.6.34.tar.bz2
glibc-2.11.2.tar.bz2
glibc-ports-2. l l .tar.bz2
gdb-7. l.tar.bz2

设置环境变量
HOST:工具链要运行的目标机器;BUILD:用来建立工具链的机器;TARGET工具链编译产生的二进制代码可以运行的机器。
BUILD=i686-pc-cygwin
HOST=i686-pc-cygwin TARGET=arm-linux
SYSROOT指定根目录,$PREFIX指定安装目录。目标系统的头文件、库文件、运行时对象都将被限定在其中,这在交叉编译中有时很重要,可以防止使用宿主机的头文件和库文件。本文首选$SYSROOT为安装目录,$PREFIX主要作为glibc库安装目录。
SYSROOT=/cross-root
PREFIX=/cross-root/arm-linux
由于GCC-4.5.0需要mpfr,gmp,mpc的支持,而这三个库又不需要交叉编译,仅仅是在编译交叉编译链时使用,所以放在一个临时的目录。
TEMP_PREFIX=/build-temp
控制某些程序的本地化的环境变量:
LC ALL=POSIX
设置环境变量:
PATH=$SYSROOT/bin:儿in:/usr/bin
设置编译时的线程数f31减少编译时间:
PROCS=2
定义各个软件版本:
BINUTILS V=2.20.1
GCC V=4.5.0
GMP V=5.0.1
MPFR V=3.0.0
MPC V二0.8.2
LINUX V二2.6.34
GLIBC V=2.11.2
GLIBC-PORTS V=2.11
GDB V=7.1
构建过程详解
鉴于手工编译费时费力,统一把构建过程写到Makefile脚本文件中,把其同源码包放在同一目录下,执行make或顺次执行每个命令即可进行无人值守的编译安装交叉工具
链。以下主要以Makefile执行过程为主线进行讲解。
执行“make”命令实现全速运行
可在Cygwin的Shell环境下执行“make>make.log 2>&1”命令把编译过程及出现的错误都输出到make.log中,便于查找:
all:prerequest install-deps install-cross-stage-one install-
cross-stage-two
预处理操作
"make prerequest',命令实现单步执行的第一步,实现输出变量、建立目录及解压源码包等操作。0'set十h”关闭bash的Hash功能,使要运行程序的时候,shell将总是搜索PATH里的目录[4]。这样新工具一旦编译好,shell就可以在$(SYSROOT)/bin目录里找到: prerequest:
set +h&&mkdir -p $(SYSROOT)/bin&&
mkdir -p $(PREFIX)/include&&
mkdir -p $(TEMP一REFIX)&&
export PATH LCes ALL&&
tar -xvf gmp-$(GMP_V).tar.bz2&&
tar -xvf mpfr-$(MPFR_V).tar.bz2&&
tar -xvf mpc-$(MPC_V).tar.gz&&
tar -xvf binutils-$(BINUTILS_V).tar.bz2&&
tar -xvf gcc-$(GCC_V).tar.bz2&&
tar -xvf linux-$(LINUX_V).tar.bz2&&
tar -xvf glibc-$(GLIBC_V).tar.bz2&&
tar -xvf glibc-ports-$(GLIBC-PORTS_V).tar.bz2&&
my glibc-ports-$(GLIBC-PORTS_V)
glibc-$(GLIBC_V)/ports&&
tar -xvf gdb-$(GDB V).tar.bz2
非交叉编译安装gcc支持包mpc
00make install-deps”命令实现单步执行的第二步,实现mpc本地编译,mpc依赖于gmp和mpfr
install-deps:gmp mpfr mpc
gmp:gmp-$(GMP_V)
mkdir -p build/gmp&&cd build/gmp&&
../../gmp-*/configure
--disable-shared --prefix=$(TEMP_PREFIX)&&
$(MAKE)一$(PROCS)&&$(MAKE) install
mpfr:mpfr-$(MPFR_V)
mkdir -p b-uild/mpfr&&cd build/mpfr&&
../..//mpfr-*/configure
LDF'LAGS="-Wl,-search_paths_first”--disable-shared
--with-gmp=$(TEMP_PREFIX)
--prefix=$(TEMP_PREFIX)&&
$(MAKE)一$(PROCS) all&&$(MAKE) install
mpc: mpc-$(MPC_V) gmp mpfr
mkdir -p build/mpc&&cd build/mpc&&
../../mpc-*/configure
--with-mpfr=$(TEMP PREFIX)
--with-gmp=$(TEMP_PREFIX)
--prefix=$(TEMP_PREFIX)&&
$(MAKE)一$(PROCS)&&$(MAKE) install
交叉编译第一阶段
"make install-cross-stage-one',命令实现单步执行的第三步,编译安装binutils,bootstrap-gcc和获取Linux内核头文件:
install-cross-stage-one:cross-binutils cross-gcc get-kernel-headers
编译安装binutils
cross-binutils: binutils-$(BINUTILS_ V)
mkdir -p build/binutils&&cd build/binutils&&
../..//binutils-*/configure --prefix=$(SYSROOT)
--target=$(TARGET)--disable-nls&&
$(MAKE)j$(PROCS)&&$(MAKE) install
编译安装bootstrap-gcc。使用一disable-shared参数的意思是不编译和安装libgcc_ eh.a文件。glibc软件包依赖这个库,因为它使用其内部的一lgcc_eh来创建系统[6]。这种依赖
性,可通过建立一个指向libgcc.a符号链接得到满足,因为该文件最终将含有通常在libgcc- eh.a中的对象(也可通过补丁文件实现)。
cross-gcc:gcc-$(GCC_V)
mkdir -p build/gcc&&cd build/gcc&&
二//gcc-*/configure
--target=$(TARGET)--prefix=$(SYSROOT)
--disable-nls --disable-shared --disable-multilib
--disable-decimal-float--disable-threads
--disable-libmudflap --disable-libssp
--disable-libgomp --enable-languages=c
--with-gmp=$(TEMP_PREFIX)
--with-mpfr=$(TEMP_PREFIX)
--with-mpc=$(TEMP_PREFIX)&&
$(MAKE) -j$(PROCS)&&$(MAICE) install&&
In -vs libgcc.a'arm-linux-gcc -print-libgcc-file-name I
sed's/libgcc/& eh/'}
获取Linux内核头文件:
get-kernel-headersainux-$(LINUX_V)
cd linux-$(LINUX_V)&&
$(MAICE) mrproper&&$(MAKE) headers check&&
$(MAKE) ARCH=arm&&
INSTALLes HDR_ PATH=dest headers_ install&&
find dest/include
(-name .install一。-name ..installNaNd)-delete&&
cp -rv desdinclude/* $(PREFIX)/include
交叉编译第二阶段
编译安装glibc、重新编译安装binutils、完整编译安装gcc和编译安装gdb o "make install-cross-stage-two',命令实现单步执行的第四步: install-cross-stage-two:cross-glibc cross-rebinutils cross-g++ cross-gdb
编译安装glibca glib。的安装路径特意选为$(PREFIX),与gcc更好找到动态链接库也有关系,选在$(SYSROOT)提示找不到crti.o; glibc已经不再支持i386; glibc对ARM等的处理器的支持主要通过glibc-ports包来实现;正确认识大小写敏感(Case Sensitive)和大小写不敏感(CaseInsensitive)系统,大小写敏感问题主要影响到glibc,是交叉编译glibc成功的关键:Cygwin帮助手册中可知Cygwin是默认大小写不敏感的n},但是UNIX系统是大小写敏感的,这也是Cygwin和UNIX类系统的一个区别。通过作者自行参考制作的glibc-2.11.2-cygwin.patch补T使glibc变为Case-Insensitive,此补丁主要是对大小写敏感问题改名来实现。
交叉编译过程中安装的链接器,在安装完Glibc以前都无法使用。也就是说这个配置的forced unwind支持测试会失败,因为它依赖运行中的链接器。设置libc_ cvforced unwind=yes这个选项是为了通知configure支持force-unwind,而不需要进行测试。libc cv_c_cleanup=yes类似的,在configure脚本中使用libc_cv_c cleanup=yes,以便配置成跳过测试而支持C语言清理处理。
cross-glibc:glibc-$(GLIBC_V)
cd glibc-$(GLIBC_V)&&
patch -Np 1 –i...//glibc-2.11.2-cygwin.patch&&
cd..&&mkdir -p build/glibc&&
cd build/glibc&&
echo"libc cv_forcedes unwind=yes">config.cache&&
echo "libc cv_c_cleanup=yes">>config.cache&&
echo "libc cv_arm_tls=yes">>config.cache&&
../../glibc-*/configure --host=$(TARGET)
--build=$(../OneScheme/glibc-2.11.2/scripts/config.guess)
--prefix=$(PREFIX)--disable-profile
--enable-add-ons --enable-kernel=2.6.22.5
--with-headers=$(PREFIX)/include
--cache-file=config.cache&&
$(MAKE)&&$(MAKE) install
重新编译安装binutils。编译之前要调整工具链,使其
指向新生成的动态连接器。
调整工具链:
SPECS=
'dirname $(arm-linux-gcc -print-libgcc-file-name)'/specs
arm-linux-gcc -mpspecs
sed -e 's@/lib(64)\?/ld@$(PREFTX)&@g' -e ,}/}}*cPP}$/{n;s,$,-isystem $(PREFIX)/include,}"
>$SPECS
echo "New specs file is: $SPECS"
unset SPECS
测试调整后工具链:
echo 'main(川’>mmy.c
arm-linux-gcc
-B/cross-root/arm-linux/lib mmy.c
readelf -1 a.out I grep’:/cross-roobarm-linux'
调整正确的输出结果:
[Requesting program interpreter: /tools/lib/ld-linux.so.2j
一切正确后删除测试程序:
rm -v mmy.c a.out
重新编译binutils。指定--host,--build及--target,否则配置不成功,其config.guess识别能力不如gcc做的好。
cross-rebinutils: binutils-$(BINUTILS_V)
mkdir -p build/rebinutils&&
cd build/rebinutils&&CC="$(TARGET)-gcc
-B/cross-roodarm-linux/lib/"&&AR=$(TARGET)-ar&&
RANLIB=$(TARGET)-ranlib&&../..//binutils-*/configure
--host=$(HOST)--build=$(BUILD)--target=$(TARGET)
--prefix=$(SYSROOT)--disable-nls
--with-lib-path=$(PREFIX)/lib&&
$(MAKE)--$(PROCS)&&$(MAKE) install
高于4.3版的gcc把这个编译当作一个重置的编译器,并且禁止在被一prefix指定的位置搜索startfiles。因为这次不是重置的编译器,并且$(SYSROOT)目录中的startfiles对于创
建一个链接到$$(SYSROOT)目录库的工作编译器很重要,所以我们使用下面的补丁,它可以部分还原gcc的老功能tai . patch -Npl –i../gcc-4.5.0-startfiles_fix-l.patch
在正常条件下,运行gcc的fixincludes脚本,是为了修复可能损坏的头文件。它会把宿主系统中已修复的头文件安装到gcc专属头文件目录里,通过执行下面的命令,可以抑
制fixincludes脚本的运行[9](此时目录为/gcc-4.5.0)。
cp -v gcc/Makefile.in{,.orig}
sed 's@\./fixinc\.sh@-c true@'
gcc/Makefile.in.orig > gcc/Makefile.in
下面更改gcc的默认动态链接器的位置,使用已安装在/cross-root/ann-linux目录下的链接器,这样确保在gcc真实的编译过程中使用新的动态链接器。即在编译过程中创建的所有
二进制文件,都会链接到新的glibc文件
for file in
$(find gcc/config -name linux64.h-o -name linux.h –o -name sysv4.h)
do cp -uv $file{,.orig}
sed -a 's@/lib(64)?(32)?/Id@/cross-root/arm-linux&@g’-e's@/usr@/cross-rootlarm-linux@g' $file.orig>$file echo‘
#undef STANDARD INCLUDE DIR
#define STANDARD_ INCLUDE DIR "/cross-root/arm-linux/include"
#define STANDARD STARTFILE PREFIX 1 "/cross-root/arm-linux/lib"
#define STANDARD_ STARTFILE_ PREFIX_ 2””’>>$file
touch $file.orig done
完整编译安装gcc。最好通过指定--libexecdir更改libexecdir到atm-linux目录下。--with-local-prefix选项指定gcc本地包含文件的安装路径此处设为$$(PREFIX),安装后就会在内核头文件的路径下。路径前指定$(Pwd)则以当前路径为基点,不指定则默认以/home路径为基点,这点要注意。
cross-g++:gcc-$(GCC-)
mkdir -p build/g十+&&cd build/g++&&
CC="$(TARGET)-gcc AR=$(TARGET)-ar&&
-B/cross-roodarm-linux/lib/"&&
RANLIB=$(TARGET)-ranlib&&
..//gcc-*/configure
--host=$(HOST)--build=$(BUILD)--target=$(TARGET)
--prefix=$(SYSROOT)--with-local-prefix=$(PREFIX)
--enable-clocale=gnu --enable-shared
--enable-threads=posix --enable -cxa_atexit
--enable-languages=c,c++--enable-c99
--enable-long-long --disable-libstdcxx-pch
--disable-libunwind-exceptions
--with-gmp=$(TEMP_PREFIX)
--with-mpfr=$(TEMP_PREFIX)
--with-mpc=$(TEMP_PREFIX)&&
$(MAKE) LD_IBRARY_ATH=
$(pwd)/$(../../gcc-4.5.0/config.guess)/libgcc&&
$(MAKE) install
编译安装gdb,至此完成整个工具链的制作。
cross-gdb: gdb-$(GDB V)
mkdir -p build/gdb&&cd build/gdb&&
../../gdb-*/configure --prefix=$(SYSROOT)
--target=$(TARGET)--disable-werror&&
$(MAKE)-j$(PROCS)&&$(MAKE) install
“make clean”命令清除编译生成的文件和创建解压的文件夹
.PHONY:clean
dean:
rm -fr $(TEMP_PREFIX) build
binutils-$(BINUTIL,S_V) gcc-$(GCC_V)
glibc-$(NEWL.IB_V) gdb-$(GDB_V)
gmp-$(GMP_V) mpc-$(MPC_V) mpfr-$(MPFR_V)
工具链测试
命令行中输入以下内容:
echo 'main(){}’>mmy.c
arm-linux-gcc -o mmy.exe mmy.c
file mmy.exe
运行正常的结果:
mmy.exe: ELF 32-bit LSB executable, ARM, version 1,for GNU/Linux 2.6.22, dynamically linked (uses shared libs),not stripped.

❸ 什么是交叉编译器

交叉编译器:在一种计算机环境中运行的编译程序,能编译出在另外一种环境下运行的代码

❹ 如何对lighttpd进行交叉编译安装并配置lighttpdweb服务器

1. 编译、安装
1.1. 先到lighttpd官网下载对应版本的软件包:
http://www.lighttpd.net/
我下载的是 lighttpd-1.4.30.tar.gz
1.2. 将压缩包解压到任意目录(我的是 /root/Desktop/common)得到文件夹 lighttpd-1.4.30
1.3. 在文件夹 lighttpd-1.4.30 中创建shell脚本,命名为:configure-arm.sh
1.4. 在shell脚本 configure-arm.sh 中输入如下代码:
#! /bin/sh
CC=arm-linux-gcc
AR=arm-linux-ar LD=arm-linux-ld RANLIB=arm-linux-ranlib
STRIP=arm-linux-strip ./configure --prefix=/opt/web/lighttpd-1.4.30-arm
--host=arm-linux --build=i686-pc-linux --disable-FEATURE --enable-shared
--disable-static --disable-lfs --disable-ipv6 --without-PACKAGE
--without-valgrind --without-openssl --without-kerberos5 --without-pcre
--without-zlib --without-bzip2 --without-lua

1.5. 打开控制台,cd进入 lighttpd-1.4.30 目录
1.6. 给 configure-arm.sh 文件添加可执行属性,执行命令:
chmod +x configure-arm.sh
1.7. 配置lighttpd,执行命令:
./configure-arm.sh
1.8. 编译lighttpd,执行命令:
make
1.9. 安装lighttpd,执行命令:
make install

❺ 交叉编译的流程是什么

采用交叉编译的主要原因在于,多数嵌入式目标系统不能提供足够的资源供编译过程使用,因而只好将编译工程转移到高性能的主机中进行。
linux下的交叉编译环境重要包括以下几个部分:
1.对目标系统的编译器gcc
2.对目标系统的二进制工具binutils
3.目标系统的标准c库glibc
4.目标系统的linux内核头文件
交叉编译环境的建立步骤
一、下载源代码 下载包括binutils、gcc、glibc及linux内核的源代码(需要注意的是,glibc和内核源代码的版本必须与目标机上实际使用的版本保持一致),并设定shell变量PREFIX指定可执行程序的安装路径。
二、编译binutils 首先运行configure文件,并使用--prefix=$PREFIX参数指定安装路径,使用--target=arm-linux参数指定目标机类型,然后执行make install。
三、配置linux内核头文件
首先执行make mrproper进行清理工作,然后执行make config ARCH=arm(或make menuconfig/xconfig ARCH=arm)进行配置(注意,一定要在命令行中使用ARCH=arm指定cpu架构,因为缺省架构为主机的cpu架构),这一步需要根据目标机的实际情况进行详细的配置,笔者进行的实验中目标机为HP的ipaq-hp3630 PDA,因而设置system type为SA11X0,SA11X0 Implementations中选择Compaq iPAQ H3600/H3700。
配置完成之后,需要将内核头文件拷贝到安装目录: cp -dR include/asm-arm $PREFIX/arm-linux/include/asm cp -dR include/linux $PREFIX/arm-linux/include/linux
四、第一次编译gcc
首先运行configure文件,使用--prefix=$PREFIX参数指定安装路径,使用--target=arm-linux参数指定目标机类型,并使用--disable-threads、--disable-shared、--enable-languages=c参数,然后执行make install。这一步将生成一个最简的gcc。由于编译整个gcc是需要目标机的glibc库的,它现在还不存在,因此需要首先生成一个最简的gcc,它只需要具备编译目标机glibc库的能力即可。
五、交叉编译glibc
这一步骤生成的代码是针对目标机cpu的,因此它属于一个交叉编译过程。该过程要用到linux内核头文件,默认路径为$PREFIX/arm-linux/sys-linux,因而需要在$PREFIX/arm-linux中建立一个名为sys-linux的软连接,使其内核头文件所在的include目录;或者,也可以在接下来要执行的configure命令中使用--with-headers参数指定linux内核头文件的实际路径。
configure的运行参数设置如下(因为是交叉编译,所以要将编译器变量CC设为arm-linux-gcc): CC=arm-linux-gcc ./configure --prefix=$PREFIX/arm-linux --host=arm-linux --enable-add-ons 最后,按以上配置执行configure和make install,glibc的交叉编译过程就算完成了,这里需要指出的是,glibc的安装路径设置为$PREFIXARCH=arm/arm-linux,如果此处设置不当,第二次编译gcc时可能找不到glibc的头文件和库。
六、第二次编译gcc
运行configure,参数设置为--prefix=$PREFIX --target=arm-linux --enable-languages=c,c++。
运行make install。
到此为止整个交叉编译环境就完全生成了。
几点注意事项
第一点、在第一次编译gcc的时候可能会出现找不到stdio.h的错误,解决办法是修改gcc/config/arm/t-linux文件,在TARGET_LIBGCC2_CFLAGS变量的设定中增加-Dinhibit_libc和-D__gthr_posix_h。

❻ Linux嵌入式交叉编译工具链问题 浅谈

简介

交叉编译工具链是一个由编译器、连接器和解释器组成的综合开发环境,交叉编译工具链主要由binutils、gcc和glibc 3个部分组成。有时出于减小libc库大小的考虑,也可以用别的c库来代替glibc,例如uClibc、dietlibc和newlib。交叉编译工具链主要包括针对目标系统的编译器gcc、目标系统的二进制工具binutils、目标系统的标准c库glibc和目标系统的Linux内核头文件。第一个步骤就是确定目标平台。每个目标平台都有一个明确的格式,这些信息用于在构建过程中识别要使用的不同工具的正确版本。因此,当在一个特定目标机下运行GCC时,GCC便在目录路径中查找包含该目标规范的应用程序路径。GNU的目标规范格式为CPU-PLATFORM-OS。例如,建立基于ARM平台的交叉工具链,目标平台名为arm-linux-gnu。

交叉编译工具链的制作方法

  1. 分步编译和安装交叉编译工具链所需要的库和源代码,最终生成交叉编译工具链。

  2. 通过Crosstool脚本工具来实现一次编译生成交叉编译工具链。

  3. 直接通过网上(ftp.arm.kernel.org.uk)下载已经制作好的交叉编译工具链。

方法1相对比较困难,适合想深入学习构建交叉工具链的读者。如果只是想使用交叉工具链,建议使用方法2或方法3构建交叉工具链。方法3的优点不用多说,当然是简单省事,但与此同时该方法有一定的弊端就是局限性太大,因为毕竟是别人构建好的,也就是固定的没有灵活性,所以构建所用的库以及编译器的版本也许并不适合你要编译的程序,同时也许会在使用时出现许多莫名的错误,建议你慎用此方法。


方法1:分步构建交叉编译工具链


  1. 下载所需的源代码包

  2. 建立工作目录

  3. 建立环境变量

  4. 编译、安装Binutils

  5. 获取内核头文件

  6. 编译gcc的辅助编译器

  7. 编译生成glibc库

  8. 编译生成完整的gcc

由于在问答中的篇幅,我不能细述具体的步骤,兴趣的同学请自行阅读开源共创协议的《Linux from scratch》,网址是:linuxfromscratch dot org


方法2:用Crosstool工具构建交叉工具链(推荐)

Crosstool是一组脚本工具集,可构建和测试不同版本的gcc和glibc,用于那些支持glibc的体系结构。它也是一个开源项目,下载地址是kegel dot com/crosstool。用Crosstool构建交叉工具链要比上述的分步编译容易得多,并且也方便许多,对于仅仅为了工作需要构建交叉编译工具链的你,建议使用此方法。

运行which makeinfo,如果不能找见该命令,在解压texinfo-4.11.tar.bz2,进入texinfo-4.11目录,执行./configure&&make&&make install完成makeinfo工具的安装

  • 准备文件:

下载所需资源文件linux-2.4.20.tar.gz、binutils-2.19.tar.bz2、gcc-3.3.6.tar.gz、glibc- 2.3.2.tar.gz、glibc-linuxthreads-2.3.2.tar.gz和gdb-6.5.tar.bz2。然后将这些工具包文件放在新建的$HOME/downloads目录下,最后在$HOME/目录下解压crosstool-0.43.tar.gz,命

令如下:
#cd$HOME/
#tar–xvzfcrosstool-0.43.tar.gz
  • 建立脚本文件

接着需要建立自己的编译脚本,起名为arm.sh,为了简化编写arm.sh,寻找一个最接近的脚本文件demo-arm.sh作为模板,然后将该脚本的内容复制到arm.sh,修改arm.sh脚本,具体操作如下:

# cd crosstool-0.43

# cp demo-arm.sh arm.sh

# vi arm.sh

修改后的arm.sh脚本内容如下:

#!/bin/sh
set-ex
TARBALLS_DIR=$HOME/downloads#定义工具链源码所存放位置。
RESULT_TOP=$HOME/arm-bin#定义工具链的安装目录
exportTARBALLS_DIRRESULT_TOP
GCC_LANGUAGES="c,c++"#定义支持C,C++语言
exportGCC_LANGUAGES
#创建/opt/crosstool目录
mkdir-p$RESULT_TOP
#编译工具链,该过程需要数小时完成。
eval'catarm.datgcc-3.3.6-glibc-2.3.2.dat'shall.sh--notest
echoDone.
  • 建立配置文件

在arm.sh脚本文件中需要注意arm-xscale.dat和gcc-3.3.6-glibc-2.3.2.dat两个文件,这两个文件是作为Crosstool的编译的配置文件。其中arm.dat文件内容如下,主要用于定义配置文件、定义生成编译工具链的名称以及定义编译选项等。

KERNELCONFIG='pwd'/arm.config#内核的配置
TARGET=arm-linux#编译生成的工具链名称
TARGET_CFLAGS="-O"#编译选项


gcc-3.3.6-glibc-2.3.2.dat文件内容如下,该文件主要定义编译过程中所需要的库以及它定义的版本,如果在编译过程中发现有些库不存在时,Crosstool会自动在相关网站上下载,该工具在这点上相对比较智能,也非常有用。

BINUTILS_DIR=binutils-2.19
GCC_DIR=gcc-3.3.6
GLIBC_DIR=glibc-2.3.2
LINUX_DIR=linux-2.6.10-8(根据实际情况填写)
GDB_DIR=gdb-6.5
  • 执行脚本

将Crosstool的脚本文件和配置文件准备好之后,开始执行arm.sh脚本来编译交叉编译工具。具体执行命令如下:

#cdcrosstool-0.43
#./arm.sh

经过数小时的漫长编译之后,会在/opt/crosstool目录下生成新的交叉编译工具,其中包括以下内容:

arm-linux-addr2linearm-linux-g++arm-linux-ldarm-linux-size
arm-linux-ararm-linux-gccarm-linux-nmarm-linux-strings
arm-linux-asarm-linux-gcc-3.3.6arm-linux-objarm-linux-strip
arm-linux-c++arm-linux-gccbugarm-linux-objmpfix-embedded-paths
arm-linux-c++filtarm-linux-gcovarm-linux-ranlib
arm-linux-cpparm-linux-gprofarm-linux-readelf
  • 添加环境变量

然后将生成的编译工具链路径添加到环境变量PATH上去,添加的方法是在系统/etc/ bashrc文件的最后添加下面一行,在bashrc文件中添加环境变量

export PATH=/home/jiabing/gcc-3.3.6-glibc-2.3.2/arm-linux-bin/bin:$PATH

至此,arm-linux下的交叉编译工具链已经完成,现在就可以使用arm-linux-gcc来生成试验箱上的程序了!












❼ 如何在windows上用ndk交叉编译其他平台程序

目标 :编译arm64的.so库

编译方法:理论上应该有两种交叉编译方法,法一,在Linux服务器上安装交叉工具链,直接用交叉工具链进行编译链接;法二,使用ndk完成交叉编译,因为

ndk已经安装好交叉编译工具链,以及相关的系统库和系统头文件了。这两种方法的区别在于,linux服务器上的编译使用的makefile和ndk使用的.mk
文件显然不同。原因是ndk作为一个集成编译环境,制定了一套特定的规则用于生成最终的编译脚本。

这里简单总结下,如何在windows用ndk进行交叉编译arm64目标平台的.so库:

step1:找到ndk开发工具包,官网之类的都可以下载,Android-ndk64-r10-windows-x86_64.rar文件

step2:解压上述ndk工具包,将包含程序源文件和头文件的文件夹testProject都放入android-ndk-r10下的samples目录下。

放在其他地方当然也可以,但是后续相对路径之类的不太好加,既然其他例子都放这,把代码放这编译是最保险的了。

step3:在testProject中增加一个jni的文件夹,必须要添加!!!!!!

step4:在jni文件夹中,添加一个Android.mk的文件,必须要添加!!!!!

step5:在jni文件夹中,添加一个Application.mk的文件与Android.mk并列,必须要添加!!!!!

step6:Android.mk和Application.mk合起来就类似于linux环境下的makefile编译文件。

如何写Android.mk,可以参考例子helllo-jni中jni文件夹下的Android.mk。

LOCAL_PATH:=$(call my-dir) #必须要写的

include $(CLEAR_VARS) #必须要写的

LOCAL_MODULE:=hello-jni #编译出来的模块名称

LOCAL_SRC_FILES:=hello-jni.c #制定编译的源文件名称

include $(BUILD_SHARED_LIBRARY)#放在最后

除了上述变量之外,还有其他的指定的变量,

LOCAL_CFLAGS,用于指定编译选项,这个和makefile中是完全一样的,可以指定编译选项-g,也可以指定编译宏及宏值

LOCAL_LDLIBS,用于指定链接的依赖库,这个可以makefile也是完全一样的,可以指定链接库用-l库名,以及指定库搜索路径用_L路径名

LOCAL_STATIC_LIBRARIES,指定链接的静态库名,makefile中没有

LOCAL_C_INCLUDES,用于指定编译头文件的路径,和makefile中不同,路径前不需要加-I,直接写路径即可,可以是相对路径或绝对路径,

多个路径之间用空格隔开。

编写上述Android.mk碰到的问题有,

(1)使用默认的系统自动加载stl库头文件总是出错,只好手动在LOCAL_STATIC_LIBRARIES指定sources/cxx-stl/stlport/stlport来完成对#include<string>这种c++形式的头文件加载

(2)使用$(SYSROOT)/usr/include来完成对系统库头文件的加载,结果找不到sem_t符号,只好指定platforms/android-L/arch-arm64/usr/include

step7:Application.mk编写

APP_STL指定使用的stl移植库,动态或者静态都行

APP_CPPFLAGS,指定app编译的编译选项

APP_ABI指定abi规范类型,例如arm64-v8a,也可以写成ALL就是把所有的类型全部编一编

APP_PLATFORM指定编译的platform名称,这里可以写成android-L或者不指定全编。

step8:编译完成后,运行。

启动cmd,使用cd /D进行到testProject的jni目录下

step9:将android-ndk-r10下的ndk-build.cmd直接拖拽到cmd中,此时直接敲回车,就可以编译了。当然也可以加一个 clean,清除编译中间文件。

step10:检查下编译结果,编译成功后在testProject中多了两个文件夹与jni并列的,libs和obj。
编译链接后的结果就在libs中!

❽ 怎么在ubuntu系统下安详交叉编译器

1.主机:ubuntu 10.10 gcc-4.4.5, kernel-2.6.35
sudo apt-get install bison flex build-essential patch libncurses5-dev
更新系统基本的编译工具集
(用UBUNTU最大的好处就是可以 在线更新一些需要的系统包,APT-GET)
2 使用的是CROSSTOOL做的,需要的软件包

第一个是工具链编译脚本
第二个是2进制工具集
第三个是GCC-3.4.5的源代码
第四个是依赖的LINUX标准函数库
第五个是依赖的thread库
第六个是LINUX代码
(1).linux 源代码其实是用了 在编译的时候需要调用一些了linux库文件和数据结构或者是头文件,类似驱动开发依赖源代码
(2).这个是可以指定的找到合适的就可以,不一定就是这个版本的
第七个是标准库的头文件了
3 UBUNTU10自带的GCC版本是4.4.5 太高编译会出现语法错误,所以安装4.1的就好
sudo apt-get install gcc-4.1
sudo rm /usr/bin/gcc (删除GCC,它只是个到gcc-4.3.2的软链接文件)
sudo ln -s /usr/bin/gcc-4.1 /usr/bin/gcc (建立GCC到gcc-4.1的软链接)
(重新做个软件连接指向4.1就好,这个可以在/usr/bin 下会出现:gcc-4.1 gcc-4.4)
4 修改 dash (ubuntu 默认的是 dash ,编译指向的是bash)
ls -la /bin/sh
看到链接的是 dash ,则请运行以下命令
sudo dpkg-reconfigure dash
选择 no 以删除 dash
此处如果不改好的话,编译时会出现错
5 以上系统配置完成,下面开始修改脚本编译(一下就是网上参考的了,很多的都是这么做的,谢谢那些真正看懂脚本的大牛们)

$tar –zxvf crosstool-0.43.tar.gz
$cd crosstool-0.43
在此目录下可以看到有很多.sh脚本和.dat配置文件,每一个支持的处理器都有它所相应的脚本。http://www.linuxidc.com/假如选用demo- arm- softfloat.sh 就是建立目标为支持软浮点的arm交叉编译工具链。
3.修改demo-arm-softfloat.sh
$vim demo-arm-softfloat.sh
修改下面两句
TARBALLS_DIR=$HOME/downloads //表示下载的源码的存放目录
RESULT_TOP=/opt/crosstools //表示生成的工具链的存放目录
为:
TARBALLS_DIR=/home/linux/downloads(源码存放目录)
RESULT_TOP=/home/linux/crosstools(生成工具链目录)
4.修改 gcc-3.4.5-glibc-2.3.6.dat
$ vim gcc-3.4.5-glibc-2.3.6.dat
修改内容为:
BINUTILS_DIR=binutils-2.15
GCC_DIR=gcc-3.4.5
GLIBC_DIR=glibc-2.3.6
LINUX_DIR=linux-2.6.26.5(内核版本)
LINUX_SANITIZED_HEADER_DIR=linux-libc-headers-2.6.12.0
GLIBCTHREADS_FILENAME=glibc-linuxthreads-2.3.6
5.修改glibc-2.3.6.tar.bz2包内的configure文件

case $ac_prog_version in
'') ac_prog_version="v. ?.??, bad"; ac_verc_fail=yes;;
2.1[3-9]*) 《--------------------------------------------3920行
ac_prog_version="$ac_prog_version, ok"; ac_verc_fail=no;;
*) ac_prog_version="$ac_prog_version, bad"; ac_verc_fail=yes;;
修改为
case $ac_prog_version in
'') ac_prog_version="v. ?.??, bad"; ac_verc_fail=yes;;
2.[1-2][0-9]*) 《--------------------------------------------3920行
ac_prog_version="$ac_prog_version, ok"; ac_verc_fail=no;;
*) ac_prog_version="$ac_prog_version, bad"; ac_verc_fail=yes;;
还有3981行也有这样的代码 一个是ld,一个是ar
6.$ ./ demo-arm-softfloat.sh
注意啊UBUNTU权限管理很严格,在执行脚本前,最好的就是把crosstool脚本所在的目录和几个源文件的目录设置成 777
脚本运行的第一个是创建build的目录,在脚本所在的目录下,然后是解压所有的源文件,检查所有的依赖关系,进行编译
大概需要很长时间吧,我是睡觉醒来看看 好了,,,,,,呵呵
即使如此的工作,干了2个通宵搞定,当然边干我还在三国杀,,,,,,,
当然成功后,有点小激动,熬了一宿,失眠了,,,,亢奋中

❾ 如何交叉编译mkfs.jffs2等工具链mtd-utils

首先说明一下:
在YAFFS2源文件的utils目录下,执行make就可以生成 mkyaffs2image工具,执行
.(要制作yaffs2的目录) (目标镜像)/mkyaffs2image

acl_2.2.47.orig.tar.gz
lzo-2.03.tar.gz
mtd-utils_20080508.orig.tar.gz
zlib-1.2.3.tar.gz
mkfs.jffs2.for.arm-linux-gcc.3.4.1平台.tar.bz2
mkfs.jffs2.for.arm-linux-gcc.4.3.2平台.tar.bz2
mkfs.jffs2.for.pc平台.tar.bz2

如果只需要mkfs.jffs2工具,那么ubuntu 8.10下直接安装jffnms软件包即可,
luther@gliethttp:~$ sudo apt-get install jffnms
如果需要将jffs2移植到arm开发板上,那么就需要下载源码进行交叉编译了,这就是本文的内容.
1.下载工具软件源码包
luther@gliethttp:~$ wget http://ftp.de.debian.org/debian/pool/main/m/mtd-utils/mtd-utils_20080508.orig.tar.gz
luther@gliethttp:~$ wget http://www.zlib.net/zlib-1.2.3.tar.gz
luther@gliethttp:~$ wget http://www.oberhumer.com/opensource/lzo/download/lzo-2.03.tar.gz
luther@gliethttp:~$ mkdir libs 用来存放下面生成的lib库.
2.编译zlib库
luther@gliethttp:~/zlib-1.2.3$ ./configure --prefix=~/libs --shared
对于交叉编译输入如下指令
luther@gliethttp:~/zlib-1.2.3$ CC=arm-linux-gcc ./configure --prefix=~/libs --shared
luther@gliethttp:~/zlib-1.2.3$ make -j4
luther@gliethttp:~/zlib-1.2.3$ make install
luther@gliethttp:~$ tree ~/libs
/home/ubuntu/libs
|-- include
| |-- zconf.h
| `-- zlib.h
|-- lib
| |-- libz.so -> libz.so.1.2.3
| |-- libz.so.1 -> libz.so.1.2.3
| `-- libz.so.1.2.3
`-- share
`-- man
`-- man3
`-- zlib.3
5 directories, 6 files
这就表示完成了.
3.编译lzo库
luther@gliethttp:~/lzo-2.03$ ./configure --prefix=/home/ubuntu/libs --enable-shared
对于交叉编译输入如下指令
luther@gliethttp:~/lzo-2.03$ CC=arm-linux-gcc ./configure --host=arm-linux --prefix=/home/ubuntu/libs --enable-shared --disable-static
这个还必须要绝对路径才行.
luther@gliethttp:~/lzo-2.03$ make
luther@gliethttp:~/lzo-2.03$ make install
luther@gliethttp:~$ tree ~/libs
.
|-- include
| |-- lzo
| | |-- lzo1.h
| | |-- lzo1a.h
| | |-- lzo1b.h
| | |-- lzo1c.h
| | |-- lzo1f.h
| | |-- lzo1x.h
| | |-- lzo1y.h
| | |-- lzo1z.h
| | |-- lzo2a.h
| | |-- lzo_asm.h
| | |-- lzoconf.h
| | |-- lzodefs.h
| | `-- lzoutil.h
| |-- zconf.h
| `-- zlib.h
|-- lib
| |-- liblzo2.a
| |-- liblzo2.la
| |-- liblzo2.so -> liblzo2.so.2.0.0
| |-- liblzo2.so.2 -> liblzo2.so.2.0.0
| |-- liblzo2.so.2.0.0
| `-- libz.a
`-- share
`-- man
`-- man3
`-- zlib.3
6 directories, 22 files
手工将静态库删掉就行了,
如果是arm平台还需要strip优化.
4.编译mtd-utils-20080508前的准备工作.
编译之前的代码工作
luther@gliethttp:~$ wget http://ftp.de.debian.org/debian/pool/main/a/acl/acl_2.2.47.orig.tar.gz
luther@gliethttp:~$ mkdir libs/include/sys -p
luther@gliethttp:~$ cp acl-2.2.47/include/acl.h libs/include/sys
luther@gliethttp:~/mtd-utils-20080508$ export LD_LIBRARY_PATH=~/libs/lib:$LD_LIBRARY_PATH
如果还找不到-llzo2,那么把他拷到/usr/lib下,对于交叉编译器,就是拷贝到
比如
luther@gliethttp:~/libs/lib$ sudo cp -a * /vobs/tools/arm-tools/arm-linux-gcc-3.4.1/arm-linux/lib/
luther@gliethttp:~/mtd-utils-20080508$ vim Makefile
修改安装路径
DESTDIR=.
SBINDIR=gliethttp/sbin
MANDIR=gliethttp/share/man
INCLUDEDIR=gliethttp/include
修改CFLAGS变量
CFLAGS := -I./include -I/home/ubuntu/libs/include $(OPTFLAGS)
如果是arm-linux-gcc定义为
CFLAGS := -I./include -I/home/ubuntu/libs/include -DAI_ADDRCONFIG=0x0020 $(OPTFLAGS)
来自/usr/include/netdb.h
luther@gliethttp:~/mtd-utils-20080508$ vim ubi-utils/Makefile
DESTDIR := ~/mtd-utils-20080508
SBINDIR=gliethttp/sbin
MANDIR=gliethttp/share/man
INCLUDEDIR=gliethttp/include
luther@gliethttp:~/mtd-utils-20080508$ vim recv_image.c
拷贝/usr/include/netinet/in.h文件中
arm-linux-gcc中不需要拷贝它.
struct ip_mreq
{

struct in_addr imr_multiaddr;

struct in_addr imr_interface;
};
结构体数据到头部,否则在u盘版的ubuntu 8.10上老是提示没有ip_mreq定义,虽然上面明明写了#define _USE_MISC
arm-linux-gcc中还需要创建如3下个目录
luther@gliethttp:~/mtd-utils-20080508$ mkdir arm-linux
luther@gliethttp:~/mtd-utils-20080508$ cp -r ubi-utils arm-linux/
luther@gliethttp:~/mtd-utils-20080508$ cp -r include arm-linux/
luther@gliethttp:~/mtd-utils-20080508$ vim ubi-utils/src/libpfiflash.c
将所有EBUF(PFIFLASH_ERRSTR[-rc]);全部替换为EBUF("%s", PFIFLASH_ERRSTR[-rc]);
vim下替换脚本为
:%s/EBUF(PFIFLASH_ERRSTR\[-rc\]);/EBUF("\%s", PFIFLASH_ERRSTR\[-rc\]);/g
luther@gliethttp:~/mtd-utils-20080508$ vim ubi-utils/src/ubimirror.c
将第206行的
fprintf(stderr, err_buf);
改为
fprintf(stderr, "%s", err_buf); // 想法是好的,因为err_buf中含有%d等format信息,这样接口更加统一,但是编译器似乎还并不支持这样的操作.[luther.gliethttp]
luther@gliethttp:~/mtd-utils-20080508$ vim ubi-utils/src/unubi.c
将第898行
char fname[PATH_MAX];
改为
char fname[PATH_MAX+1];
luther@gliethttp:~/mtd-utils-20080508$ cd ubi-utils/new-utils
因为-O2优化的原因,会导致如下log信息
error: ignoring return value of ‘scanf’, declared with attribute warn_unused_result
所有手工先编译.o
luther@gliethttp:~/mtd-utils-20080508/ubi-utils/new-utils$ gcc -Iinclude -Isrc -I../../include -Wall -Werror -Wall src/ubiformat.c -c -o ubiformat.o
对于交叉编译执行如下1条语句
luther@gliethttp:~/mtd-utils-20080508/ubi-utils/new-utils$ arm-linux-gcc -Iinclude -Isrc -I../../include -Wall -Werror -Wall src/ubiformat.c -c -o ubiformat.o
luther@gliethttp:~/mtd-utils-20080508/ubi-utils/new-utils$ cd -
好了,上面的所有修改完成之后,就可以执行make成功编译了[luther.gliethttp].
luther@gliethttp:~/mtd-utils-20080508$ make
如果是交叉编译,执行
luther@gliethttp:~/mtd-utils-20080508$ make CROSS=arm-linux-
luther@gliethttp:~/mtd-utils-20080508$ make install
对于交叉编译,执行
luther@gliethttp:~/mtd-utils-20080508$ make CROSS=arm-linux- install
luther@gliethttp:~/mtd-utils-20080508$ tree gliethttp/
gliethttp/
|-- sbin
| |-- bin2nand
| |-- doc_loadbios
| |-- docfdisk
| |-- flash_erase
| |-- flash_eraseall
| |-- flash_info
| |-- flash_lock
| |-- flash_otp_mp
| |-- flash_otp_info
| |-- flash_unlock
| |-- flashcp
| |-- ftl_check
| |-- ftl_format
| |-- jffs2mp
| |-- mkbootenv
| |-- mkfs.jffs2
| |-- mkpfi
| |-- mtd_debug
| |-- nand2bin
| |-- nandmp
| |-- nandtest
| |-- nandwrite
| |-- nftl_format
| |-- nftlmp
| |-- pddcustomize
| |-- pfi2bin
| |-- pfiflash
| |-- recv_image
| |-- rfdmp
| |-- rfdformat
| |-- serve_image
| |-- sumtool
| |-- ubiattach
| |-- ubicrc32
| |-- ubicrc32.pl
| |-- ubidetach
| |-- ubigen
| |-- ubimirror
| |-- ubimkvol
| |-- ubinfo
| |-- ubinize
| |-- ubirmvol
| |-- ubiupdatevol
| `-- unubi
`-- share
`-- man
`-- man1
`-- mkfs.jffs2.1.gz
4 directories, 45 files
ep9312开发板上没有任何文件系统flash数据读取
# ./mtd_debug read /dev/mtd0 0 100 gliethttp.bin
Copied 100 bytes from address 0x00000000 in flash to gliethttp.bin
# hexmp gliethttp.bin
0000000 03ff ea00 350c e59f 001c e583 410e e3a0
0000010 4004 e583 4a03 e3a0 4001 e254 fffd 1aff
0000020 4106 e3a0 4004 e583 420f e202 5000 e594
0000030 4001 e084 5000 e594 4001 e084 5000 e594
0000040 4001 e084 5000 e594 4010 e3a0 4008 e583
0000050 4050 e3a0 4001 e254 fffd 1aff 4e1e e3a0
0000060 4008 e583
0000064
#
# ./mtd_debug read /dev/mtd2 0 100 gliethttp.bin;hexmp gliethttp.bin -Cv
Copied 100 bytes from address 0x00000000 in flash to gliethttp.bin
00000000 1f 8b 08 00 ca 14 7d 4a 02 03 e4 5a 0f 70 93 e7 |......}J...Z.p..|
00000010 79 7f 3f 49 36 b2 31 41 80 a0 0e 38 cd 57 70 16 |y.?I6.1A...8.Wp.|
00000020 93 18 f3 19 3b 60 12 9a d9 60 08 09 4e 22 c0 a4 |....;`...`..N"..|
00000030 b4 81 ca 42 92 6d 0d 59 d2 49 72 02 2b 4d dd 60 |...B.m.Y.Ir.+M.`|
00000040 72 84 e1 86 03 a7 21 01 8a d2 b2 4b 2e f3 56 76 |r.....!....K..Vv|
00000050 63 b7 34 0b 1d cd b1 1d 6b b3 95 36 dc 95 db d1 |c.4.....k..6....|
00000060 8b 90 d1 ea |....|
00000064