当前位置:首页 » 网页前端 » web设计五层模型
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

web设计五层模型

发布时间: 2022-10-06 20:32:12

‘壹’ 什么是开发框架

做为一个程序员,在开发的过程中会发现,有框架同无框架,做起事来是完全不同的概念,关系到开发的效率、程序的健壮、性能、团队协作、后续功能维护、扩展......等方方面面的事情。很多朋友在学习搭建自己的框架,很多公司也在创建或使用自己的框架,网上开源的框架多如牛毛,每年新上线的各种框架也不知多少。而不停的重复造轮子,也让更多的朋友鸟枪换炮,越跑越快,工作效率越来越高。那么什么是框架呢?

框架的主要特点和要求

1、代码模板化

框架一般都有统一的代码风格,同一分层的不同类代码,都是大同小异的模板化结构,方便使用模板工具统一生成,减少大量重复代码的编写。在学习时通常只要理解某一层有代表性的一个类,就等于了解了同一层的其他大部分类结构和功能,容易上手。团队中不同的人员采用类同的调用风格进行编码,很大程度提高了代码的可读性,方便维护与管理。

2、重用

开发框架一般层次清晰,不同开发人员开发时都会根据具体功能放到相同的位置,加上配合相应的开发文档,代码重用会非常高,想要调用什么功能直接进对应的位置去查找相关函数,而不是每个开发人员各自编写一套相同的方法。

3、高内聚(封装)

框架中的功能会实现高内聚,开发人员将各种需要的功能封装在不同的层中,给大家调用,而大家在调用时不需要清楚这些方法里面是如果实现的,只需要关注输出的结果是否是自己想要的就可以了。

4、规范

框架开发时,必须根据严格执行代码开发规范要求,做好命名、注释、架构分层、编码、文档编写等规范要求。因为你开发出来的框架并不一定只有你自己在用,要让别人更加容易理解与掌握,这些内容是非常重要的。

5、可扩展

开发框架时必须要考虑可扩展性,当业务逻辑更加复杂、数量记录量爆增、并发量增大时,能否通过一些小的调整就能适应?还是需要将整个框架推倒重新开发?当然对于中小型项目框架,也不必考虑太多这些内容,当个人能力和经验足够时水到渠成,自然就会注意到很多开发细节。

7、可维护

成熟的框架,对于二次开发或现有功能的维护来说,操作上应该都是非常方便的。比如项目要添加、修改或删除一个字段或相关功能,只需要简单的操作,十来分钟或不用花太多的工夫就可以搞定。新增一个数据表和对应的功能,也可以快速的完成。功能的变动修改,不会对系统产生不利的影响。代码不存在硬编码等等,保证软件开发的生产效率和质量。

8、协作开发

有了开发框架,我们才能组织大大小小的团队更好的进行协作开发,成熟的框架将大大减轻项目开发的难度,加快开发速度,降低开发费用,减轻维护难度。

9、通用性

同一行业或领域的框架,功能都是大同小异的,不用做太大的改动就可以应用到类似的项目中。在框架中,我们一般都会实现一些同质化的基础功能,比如权限管理、角色管理、菜单管理、日志管理、异常处理......或该行业中所要使用到的通用功能,使框架能应用到某一行业或领域中,而不是只针对某公司某业务而设定(当然也肯定存在那些特定功能的应用框架,这只是非常少的特殊情况,不在我们的考虑范围)。

‘贰’ 简要说明TCP/IP参考模型五个层次的名称,各层的传输格式和使用的设备是什么

TCP/IP参考模型是ARPANET及其后继的因特网使用的参考模型。其将协议分为:网络接入层、网际互连层、传输层以及应用层。

1.应用层:对应OSI参考模型的上层,为用户提供所需的各种服务,如FTP,Telnet,DNS,SMTP等。

2.传输层:传输层对应于OSI参考模型的传输层,为应用层实体提供端到端通信功能,确保数据包的顺序传输和数据的完整性。该层定义了两个主要协议:传输控制协议(TCP)和用户数据报协议(UDP)。

TCP协议提供可靠的,面向连接的数据传输服务;而UDP协议提供不可靠的无连接数据传输服务。

3.互联网互联层:互联网互联层对应OSI参考模型的网络层,主要解决从主机到主机的通信问题。它包含通过网络逻辑传输的协议设计数据包。重点是重新给主机一个IP地址来完成主机的寻址,它还负责在各种网络中路由数据包。

该层有三个主要协议:Internet协议(IP),Internet组管理协议(IGMP)和Internet控制消息协议(ICMP)。 IP协议是Internetworking层中最重要的协议。它提供可靠的无连接数据报传送服务。

4.网络接入层:网络接入层(即主机 - 网络层)对应于OSI参考模型中的物理层和数据链路层。它负责监视主机和网络之间的数据交换。

实际上,TCP / IP本身并没有定义该层的协议,但参与互连的每个网络都使用自己的物理层和数据链路层协议,然后与TCP / IP的网络接入层连接。地址解析协议(ARP)在此层(OSI参考模型的数据链路层)上工作。

(2)web设计五层模型扩展阅读:

OSI参考模型与TCP/IP参考模型的异同点:

1. OSI参考模型和TCP / IP参考模型都使用分层结构,但OSI使用的七层模型和TCP / IP是四层结构。

2. TCP / IP参考模型的网络接口层实际上没有真正的定义,但是是概念性描述。 OSI参考模型不仅分为两层,而且每层的功能都非常详细。即使在数据链路层,也分离媒体访问子层以解决局域网中共享媒体的问题。

3. TCP / IP的网络互连层等同于OSI参考模型的网络层中的无连接网络服务。

4. OSI参考模型基本上类似于TCP / IP参考模型的传输层功能。它负责为用户提供真正的端到端通信服务,并且还从高层屏蔽底层网络的实现细节。

不同之处在于TCP / IP参考模型的传输层基于网络互连层,网络互连层仅提供无连接网络服务,因此面向连接的功能完全在TCP协议中实现,当然, TCP / IP的传输层还提供UDP等无连接服务;

相反,OSI参考模型的传输层基于网络层,它提供面向连接和无连接的服务,但传输层仅提供面向连接的服务。

5.在TCP / IP参考模型中,没有会话层和表示层。事实证明,这两层的功能可以完全包含在应用层中。

6. OSI参考模型具有高抽象能力,适用于描述各种网络。 TCP / IP是首先开发TCP / IP模型的协议。

7. OSI参考模型的概念明显不同,但它过于复杂;虽然TCP / IP参考模型在服务,接口和协议之间的区别中不清楚,但功能描述和实现细节是混合的。

8. TCP / IP参考模型的网络接口层不是真实层; OSI参考模型的缺点是层数太多,划分意义不大但增加了复杂性。

9.尽管OSI参考模型是乐观的,但由于缺乏时间安排,该技术尚不成熟且难以实施;相反,虽然TCP / IP参考模型有许多令人不满意的地方,但它非常成功。

‘叁’ 开发网页java里面一般都是分几层

一般都才用mvc架构模式,分为3层。
MVC全名是Model View Controller,是模型(model)-视图(view)-控制器(controller)的缩写。
模型(model)是用于处理应用程序数据逻辑的部分。通常模型对象负责在数据库中存取数据。
视图(view)是处理数据显示的部分。通常视图是依据模型数据创建的。
Controller(控制器)是处理用户交互的部分。通常控制器负责从视图读取数据,控制用户输入,并向模型发送数据。

‘肆’ 计算机网络应用层的功能

计算机网络应用层的功能是用于为用户提供服务,是tcp/ip五层模型的最高层。从应用层看通讯,应该是两个通信端点之间进程之间的逻辑连接。例如:A主机访问了B主机,对于二者而言,虽然通信过程中存在多个物理链路。但是对应用层而言,他仅仅关注A程序到B程序的连接。

需要注意的是:因为应用层作为最高层的协议集合,所以对应用层协议的添加和去除显得更容易,并不用考虑上层协议的耦合。

(4)web设计五层模型扩展阅读:

应用层协议:每个应用层协议都是为了解决一类应用问题,而解决问题需要通过位于不同主机的多个应用进程之间的通信和协同来完成,应用层的具体内容就是定义这些通信规则。

利用网络的应用程序有很多,包括web浏览器、电子邮件、远程登录、文件传输、网络管理等。能够让这些应用进行特定通信处理的正式应用层协议。TCP和IP等下层协议是不依赖于上层应用类型、使用性范围非常广的协议。而应用协议则是为了实现某种应用而设计和创造的协议。

‘伍’ Java Web四层顺序问题,求教

javaweb的四层/五层逻辑结构。
首先要明白为什么要分层?
分层的目的是为了简化工作流程,避免重复代码和不必要的冗余,提高开发速度和效率。
由上到下分为:
1.UI层(对用户进行显示)
2.持久化层(用来持久化数据库)
3.业务层(有丰富的业务逻辑,并进行处理,就是把实际数据库的映射到内存中,就好比把仓库的粮食放到锅里去煮还是拿去分给大家,这就是两种业务逻辑)
4.表现层(在我看来就是服务层,用来管理容器级别的服务,例如事务,安全,数据访问逻辑等等)
这是这四层结构,还有三层结构表示的:
表示层
业务逻辑
持久化
这个分层主要是看遵循哪一种标准以及分层的用途了。
就好比计算机网络中的网络结构分层,有五层的通用结构,四层的TCP/IP协议,七层的OSI协议。
我觉得不必深究,当你真实的去运用这些知识后,再去质疑也不迟。

‘陆’ 网格的结构体系

在介绍网格的特征之前,我们首先要解决一个重要的问题:网格是不是分布式系统?这个问题之所以必须回答,因为人们常常会问另一个相关的问题:为什么我们需要网格?现在已经有很多系统(比如海关报关系统、飞机订票系统)实现了资源共享与协同工作。这些系统与网格有什么区别?
对这个问题的简要回答是:网格是一种分布式系统,但网格不同于传统的分布式系统。IBMGlobal Service与EDS是在这个分布式领域最着名的公司。构建分布式系统有三种方法:即传统方法(我们称之为EDS方法)、分布自律系统(Autonomous Decentralized Systems, ADS)方法,网格(grid)方法。ADS通常用于工业控制系统中。网格方法与传统方法的区别见下表:
特征 传统分布式系统 网格
开放性 需求和技术有一定确定性、封闭性 开放技术、开放系统
通用性 专门领域、专有技术 通用技术
集中性 很可能是统一规划、集中控制 一般而言是自然进化、非集中控制
使用模式 常常是终端模式或C/S模式 服务模式为主
标准化 领域标准或行业标准 通用标准(+行业标准)
平台性 应用解决方案 平台或基础设施
通过以上对比,网格具有以下四点优势:
(1)资源共享,消除资源孤岛:网格能够提供资源共享,它能消除信息孤岛、实现应用程序的互连互通。网格与计算机网络不同,计算机网络实现的是一种硬件的连通,而网格能实现应用层面的连通。
(2)协同工作:网格第二个特点是协同工作,很多网格结点可以共同处理一个项目。
(3)通用开放标准,非集中控制,非平凡服务质量:这是Ian Foster最新提出的网格检验标准。网格是基于国际的开放技术标准,这跟以前很多行业、部门或者公司推出的软件产品不一样。
(4)动态功能,高度可扩展性:网格可以提供动态的服务,能够适应变化。同时网格并非限制性的,它实现了高度的可扩展性。 网格之所以能有以上所说的种种优势特征,是由网格的体系结构赋予它的。网格体系结构的主要功能是划分系统基本组件,指定组件的目的与功能,刻画组件之间的相互作用,整合各部分组件。科研工作者已经提出并实现了若干种合理的网格体系结构。下面介绍影响比较广泛的两个网格体系结构:网格计算协议体系结构(Grid Protocol Architecture,GPA)和计算经济网格体系结构(GRACE)模型。
OGSA(Open Grid Services Architecture)被称为是下一代的网格体系结构,它是在原来“五层沙漏结构”的基础上,结合最新的Web Service 技术提出来的。OGSA包括两大关键技术即网格技术和Web Service 技术。
随着网格计算研究的深入,人们越来越发现网格体系结构的重要。网格体系结构是关于如何建造网格的技术,包括对网格基本组成部分和各部分功能的定义和描述,网格各部分相互关系与集成方法的规定,网格有效运行机制的刻画。显然,网格体系结构是网格的骨架和灵魂,是网格最核心的技术,只有建立合理的网格体系结构,才能够设计和建造好网格,才能够使网格有效地发挥作用。
OGSA最突出的思想就是以“服务”为中心。在OGSA框架中,将一切都抽象为服务,包括计算机、程序、数据、仪器设备等。这种观念,有利于通过统一的标准接口来管理和使用网格。Web Service提供了一种基于服务的框架结构,但是,Web Service 面对的一般都是永久服务,而在网格应用环境中,大量的是临时性的短暂服务,比如一个计算任务的执行等。考虑到网格环境的具体特点,OGSA 在原来Web Service 服务概念的基础上,提出了“网格服务(Grid Service)”的概念,用于解决服务发现、动态服务创建、服务生命周期管理等与临时服务有关的问题。
基于网格服务的概念,OGSA 将整个网格看作是“网格服务”的集合,但是这个集合不是一成不变的,是可以扩展的,这反映了网格的动态特性。网格服务通过定义接口来完成不同的功能,服务数据是关于网格服务实例的信息,因此网格服务可以简单地表示为“网格服务=接口/行为+服务数据”。
在当下,网格服务提供的接口还比较有限,OGSA 还在不断的完善过程之中,下一步将考虑扩充管理、安全等等方面的内容。 Ian Foster于2001年提出了网格计算协议体系结构,认为网格建设的核心是标准化的协议与服务,并与Internet网络协议进行类比(如图1)。该结构主要包括以下五个层次:
构造层(Fabric):控制局部的资源。由物理或逻辑实体组成,目的是为上层提供共享的资源。常用的物理资源包括计算资源、存储系统、目录、网络资源等;逻辑资源包括分布式文件系统、分布计算池、计算机群等。构造层组件的功能受高层需求影响,基本功能包括资源查询和资源管理的QoS保证。
连接层(Connectivity):支持便利安全的通信。该层定义了网格中安全通信与认证授权控制的核心协议。资源间的数据交换和授权认证、安全控制都在这一层控制实现。该层组件提供单点登录、代理委托、同本地安全策略的整合和基于用户的信任策略等功能。
资源层(Resource):共享单一资源。该层建立在连接层的通信和认证协议之上,满足安全会话、资源初始化、资源运行状况监测、资源使用状况统计等需求,通过调用构造层函数来访问和控制局部资源。
汇集层(Collective):协调各种资源。该层将资源层提交的受控资源汇集在一起,供虚拟组织的应用程序共享和调用。该层组件可以实现各种共享行为,包括目录服务、资源协同、资源监测诊断、数据复制、负荷控制、账户管理等功能。
应用层(Application):为网格上用户的应用程序层。应用层是在虚拟组织环境中存在的。应用程序通过各层的应用程序编程接口(API)调用相应的服务,再通过服务调动网格上的资源来完成任务。为便于网格应用程序的开发,需要构建支持网格计算的大型函数库。 现在国内国外运用得最多的可能是在一些大型院校的计算网格(实现计算资源的共享。 什么是计算资源: 简单来说就是计算能力,CPU。 计算资源共享就是CPU计算的共享)。人们把一个集群(cluster, 也就是常说的机房,通常有几十台操作系统为Linux的计算机)的计算机连成一个局域型网格。这样就好像把这几十台电脑连成了一台超级计算机,计算能力当然大大提高了。这种局域计算网格主要运用于一些科研的研究。比如说生物科学。当生物科学的研究员需要高性能的计算资源来帮助他们分析试验的结果时,他们就把这些分析试验的程序提交(submit)给网格,网格通过计算再把结果返回给这些研究员。计算结果可能是一些图像(rendering)也可能是一些数据。这些计算如果在单一PC(Personal computer, 个人计算机)上运行的话,往往会花费几个月的时间,然而在网格中运行一,两天也就完成了。这就是网格技术最直观的优点之一。当然有一些大型主机(super-mainframe)也有很强的计算能力(比如常说的IBM deepblue,打败人类国际象棋大师Kasparov那位),但是这种主机太昂贵,而且配置(deploy)往往不方便,是名副其实的重量级(heavyweight)计算。1996年初,美国数学家和程序设计师乔治· 沃特曼编制了一个梅森素数计算程序,并把它放在网页上供数学家和数学爱好者免费使用,这就是着名的“因特网梅森素数大搜索”(GIMPS)项目。现在只要人们去GIMPS的主页下载那个免费程序,就可以通过计算网格来搜寻新的梅森素数。SETI@Home,一个分布式计算的项目,通过互联网络上的计算机搜索地球外智慧讯息,网格在分布式计算的成功运用。)的网站指出,世界上最强大的计算机IBM 的 ASCI White,可以实现每秒12万亿次的浮点运算,但是花费了1亿千万美元;然而SETI@HOME只用了50万美元却实现了每秒15万亿次浮点运算。
网格另外一个显着的运用可能就是虚拟组织(Virtual Organisations)。这种虚拟组织往往是针对与某一个特定的项目,或者是某一类特定研究人员。在这里面可以实现计算资源、存储资源、数据资源、信息资源、知识资源、专家资源的全面共享。比如说中国2008年奥运会开幕式研究组就可以运用网格组成一个虚拟组织。在这个虚拟组织里,任何成员不管在哪个地方都可以有权访问组织的共享资源(如 开幕式场地图纸,开幕式资金,开幕式节目单);而且可以和另一地方的虚拟组织成员进行交流。这个虚拟组织就像把所有奥运会开幕式的资源,信息,以及人员集中到了一个虚拟的空间,让人们集中精力研讨开幕式项目的问题,而不必考虑其他的问题。据个实例,由英国利兹大学,牛津大学,约克大学和谢菲尔德大学合作的DAME项目就是致力于研究和运用虚拟组织。DAME架构在这四个大学合建的白玫瑰网格White Rose Computational Grid (WRCG)上,运用于对飞机故障的快速检测和维修。

‘柒’ 一个项目中说系统分为表现层、控制层、逻辑层、DAO层和最终数据库五层架构 这具体是什么意思啊

1、表现层:主要功能是显示数据和接受传输用户的数据,可以在为网站的系统运行提供交互式操作界面,表现层的应用方式比较常见,例如Windows窗体和Web页面。

2、控制层:将业务规则、数据访问、合法性校验等工作进行处理。通过COM/DCOM通讯与逻辑层建立连接。

3、逻辑层:将用户的输入信息进行甄别处理,分别保存。建立新的数据存储方式,在存储过程中对数据进行读取,将“商业逻辑”描述代码进行包含。

4、DAO层:主要是对非原始数据(数据库或者文本文件等存放数据的形式)的操作层,对数据库的操作,而不是数据,具体为业务逻辑层或控制层提供数据服务。

5、最终数据库:是数据库的主要操控系统,实现数据的增加、删除、修改、查询等操作。实际运行的过程中,最终数据库没有逻辑判断能力,为了实现代码编写的严谨性,提高代码阅读程度,一般软件开发人员会使用DAO层,保证数据处理功能。

(7)web设计五层模型扩展阅读:

系统分为表现层、控制层、逻辑层、DAO层和最终数据库五层架构的优点是:

1、开发人员可以只关注整个结构中的其中某一层。

2、可以很容易的用新的实现来替换原有层次的实现。

3、可以降低层与层之间的依赖。

4、有利于标准化。

5、利于各层逻辑的复用。

6、结构更加的明确。

7、在后期维护的时候,极大地降低了维护成本和维护时间。

8、避免了表示层直接访问数据访问层,表示层只和业务逻辑层有联系,提高了数据安全性。

9、有利于系统的分散开发,每一个层可以由不同的人员来开发,只要遵循接口标准,利用相同的对象模型实体类就可以了,这样就可以大大提高系统的开发速度。

10、方便系统的移植,如果要把一个C/S的系统变成B/S系统,只要修改三层架构的表示层就可以了。业务逻辑层和数据访问层几乎不用修改就可以轻松的把系统移植到网络上。

11、项目结构更清楚,分工更明确,有利于后期的维护和升级。

‘捌’ 互联网产品交互设计的相关流程是什么,最好详细一点

谈一谈互联网产品设计阶段的工作流程

关于互联网产品设计阶段的工作流程,近几年好像有了一个标准的模式,大家都按照这么一个大概的流程来工作,又好像没有标准,每个团队又不尽相同,有的简单粗暴,有的复杂细致 。之前工作过的几个东家工作流程都不是很合理,产生了很多经验教训。最近在馒头商学院回炉改造,又讲到这块,自己总结了一下感觉比较合理的工作流程,希望给一些小伙伴参考和启发。


还想跟大家说一个小的思路,就是让下游的人在做工作时候都提前一个阶段或者两个阶段参与上游工作,不要等着上游有了输出物后才开始工作,花几个小时时间,会让自己的工作思路更清晰,减少很多沟通成本和撕逼。比如在做核心流程时拉着开发负责人一起探讨,开发心中有数,等交付原型时,不用产生太大分歧。之前所在团队在需求分析阶段会多次拉着测试一起讨论,每次花一两个小时的时间,省去的是测试阶段几倍的沟通时间。

标准化工作流程主要是为了规避问题,提高效率,不是为了标准的工作流程去做工作,每个公司的流程都被人员配置,项目周期,甚至公司文化影响着,不论什么样的流程,能够达到工作目标的流程就是好流程。

‘玖’ 网格技术的体系结构

网格技术不断地发展使人们逐渐地意识到了网格体系结构的重要性。网格体系结构用来划分系统的基本组件,指定系统组件的目的和功能,说明组件之间如何相互作用,规定了网格各部分相互的关系与集成的方法。可以说,网格体系结构是网格的骨架和灵魂,是网格技术中最核心的部分。 开放网格服务结构OGSA是Global Grid Forum4的重要标准建议,是目前最新也最有影响力的一种网格体系结构,被称为是下一代的网格结构。
OGSA的目的就是要将Grid的一些功能,更确切的说是Globus的一些功能融合到Web Service这个框架中。与前期网格不同的是,OGSA是面向服务的结构,将所有事务都表示成一个Grid服务,计算资源、存储资源、网络、程序、数据等都是服务,所有的服务都联系对应的接口,所以,OGSA被称为是以服务为中心的“服务结构”,通过标准的接口和协议支持创建、终止、管理和开发透明的服务,其发展象征着Web Service的一个进步,结合Web Service技术,支持透明安全的服务实例,OGSA有效地扩展了Web Service架构的功能。
五层模型与OGSA都相当重视互操作性,但OGSA更强调服务的观点,将互操作性问题转化为定义服务的接口和识别激活特定接口的协议。这一面向服务模型具有很多优点,环境中的所有组件都是虚拟化的,通过提供一个所有Grid服务实现基础的一致接口的核心集,可以使得分级的、更高级别的服务的构建能够跨多个抽象层以一种统一的方式进行处理。虚拟化还促使从多个逻辑资源实例到同一物理资源的映射,不考虑实现的服务组合,以及一个VO内的基于低级资源组合的资源管理。正是Grid服务的虚拟化加强了通用服务语义行为无缝地映射到本地平台设施的能力。