当前位置:首页 » 网页前端 » web应用程序漏洞
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

web应用程序漏洞

发布时间: 2022-10-02 10:09:09

A. 有状态的Web应用程序都有漏洞吗求答案

在没有足够协作的情况下,许多 Web 应用程序对可变数据(比如 JavaBeans 类)使用了 HttpSession 这个机制,从而使自身面临大量潜在的并发性危险。虽然Java? 生态系统中存在许多 Web 框架,但它们都直接或间接地基于 Servlets 基础设施。Servlets API 提供大量有用特性,包括通过 HttpSession 和ServletContext 机制提供的状态管理,它允许应用程序在跨多个用户请求时保持状态。然而,在 Web 应用程序中使用共享状态受一些微妙的(并且大部分没有进行说明)的规则控制着,因此导致许多应用程序无意中触犯了规则。结果是许多有状态 Web 应用程序存在难以发觉的严重缺陷。 范围容器在Servlet 规范中,ServletContext、HttpSession 和HttpRequest 对象被称为 范围容器(Scoped container)。它们都有 getAttribute() 和setAttribute() 方法,为应用程序存储数据。这些范围容器的区别在于它们的生命周期不同。对于 HttpRequest,数据只在请求期间有效;对于 HttpSession,数据在用户和应用程序的会话期间有效;而对于 ServletContext,数据在应用程序的整个生命周期中都有效。 由于HTTP 协议是没有状态的,所以范围容器在构造有状态 Web 应用程序时十分有用;servlet 容器负责管理应用程序的状态和数据的生命周期。尽管这个规范没有强调,但需要保证嵌套在会话或应用程序中的容器在某种程度上是线程安全的,因为 getAttribute() 和setAttribute() 方法随时都可能被不同的线程调用(这个规范没有直接要求这些实现必须是线程安全的,但它们提供的服务实际上提出了这一点)。范围容器还为 Web 应用程序提供一个潜在的好处:容器可以透明地管理应用程序状态的复制和故障转移。 会话session 是特定用户和 Web 应用程序之间的一系列请求-响应交换。用户希望 Web 站点记住他的身份验证凭证、购物车的物品,以及在前面的请求中输入到 Web 表单的信息。但核心 HTTP 协议是没有状态的,这意味着必须将所有请求信息存储到请求本身。因此,如果要创建比一个请求-响应周期更长的有用交互,就必须存储会话状态。servlet 框架允许将每个请求与一个会话关联起来,并提供充当值存储库的 HttpSession 接口,用于存储与该会话相关的(键,值)数据项。清单 1 是一段典型的 servlet 代码,它用于在 HttpSession 中存储购物车数据:清单1. 使用 HttpSession 存储购物车数据 HttpSession session = request.getSession(true); ShoppingCart cart = (ShoppingCart)session.getAttribute("shoppingCart"); if (cart == null) { cart = new ShoppingCart(...); session.setAttribute("shoppingCart"); } doSomethingWith(cart); 清单1 提供的是 servlet 的典型用途;这个应用程序查看是否已将一个对象放到会话中,如果还没有,它将创建一个该会话的后续请求可以使用的对象。构建在 servlet 之上的 Web 框架(比如 JSP、JSF 和 SpringMVC 等)隐藏了细节情况,但对于标记为嵌入到会话中的数据,它们替您执行了实际操作。不幸的是,清单 1 中的用法很可能是不正确的。 与线程相关的问题当HTTP 请求到达 servlet 容器之后,会在 servlet 容器管理的线程上下文中创建 HttpRequest 和HttpResponse 对象,并传递给 servlet 的 service() 方法。servlet 负责生成响应;在响应完成之前 servlet 一直控制这个线程,响应完成时该线程返回到可用的线程池。Servlet 容器没有保持线程与会话之间的联系;某个会话的下一个请求很可能由另一个不同的线程来处理。事实上,可能有多个请求同时进入同一个会话(当用户与页面交互时,使用框架或 AJAX 技术从服务器获取数据的 Web 应用程序可能发生这种现象)。在这种情况,同一用户可能发出多个请求,这些请求在不同的线程上并行执行。 大多数情况下,这类线程问题与 Web 应用程序开发人员无关。由于自身没有状态,HTTP 鼓励只有存储在请求中的数据(不与其他并发请求共享)和存储在存储库(比如数据库)中的、已进行并发性控制的数据,才具有响应功能。然而,一旦 Web 应用程序将数据存储在 HttpSession 或ServletContext 等共享容器之后,该 Web 应用程序就具有了并发性,因此必须考虑应用程序内部的线程安全问题。 尽管我们常用线程安全描述代码,但实际上它是描述数据的。具体来说,线程安全是指适当地协调对被多个线程访问的可变数据的访问。Servlet 应用程序通常是线程安全的,因为它们没有共享任何可变数据,因此就不需要额外的同步。但可以通过很多种办法将共享状态引入到 Web 应用程序 — 除了 HttpSession 和ServletContext 等范围容器外,还可以使用 HttpServlet 对象的静态字段和实例字段。如果要让 Web 应用程序跨请求共享数据,开发人员就必须注意共享数据的位置,并保证访问共享数据时线程之间有足够的协作(同步),以避免与线程相关的危险。 Web 应用程序的线程风险如果Web 应用程序将购物车等可变会话数据存储在 HttpSession 中,就有可能出现两个请求试图同时访问该购物车。这可能导致以下几种故障: 原子性故障。在数据不一致的状态下,一个线程正在更新多个数据项,而另一个线程正在读取这些数据 读线程和写线程之间的可见性故障。一个线程修改购物车,但另一个线程看到的购物车内容的状态是过时的或不一致的 原子性故障清单2 展示了一个用于在游戏应用程序中设置和获取最高分的不恰当的方法实现。它使用一个 PlayerScore 对象来表示最高分,这实际上是一个具有 name 和score 属性的普通 JavaBean 类,存储在内嵌于应用程序的 ServletContext 中(假设在应用程序启动时,初始最高分在 ServletContext 中被设置为 highScore 属性,因此 getAttribute() 调用不会失败)。 清单2. 在范围容器中存储相关项的不恰当模式 public PlayerScore getHighScore() { ServletContext ctx = getServletConfig().getServletContext(); PlayerScore hs = (PlayerScore) ctx.getAttribute("highScore"); PlayerScore result = new PlayerScore(); result.setName(hs.getName()); result.setScore(hs.getScore()); return result; } public void updateHighScore(PlayerScore newScore) { ServletContext ctx = getServletConfig().getServletContext(); PlayerScore hs = (PlayerScore) ctx.getAttribute("highScore"); if (newScore.getScore() > hs.getScore()) { hs.setName(newScore.getName()); hs.setScore(newScore.getScore()); } } 清单2 中的代码不够好。这里采用的方法是在 ServletContext 中存储一个包含最高分玩家的名字和分数的可变容器。当打破记录时,必须更新名字和分数。 假如当前的最高分玩家是 Bob,他的分数为 1000,但是 Joe 以 1100 分打破了这个记录。在正要设置 Joe 的分数时,另一个玩家又发出获得最高分的请求。getHighScore() 将从servlet 上下文获取 PlayerScore 对象,然后从该对象获取名字和分数。如果不慎出现计时失误,就有可能获取 Bob 的名字和 Joe 的分数,显示 Bob 取得了 1100 分,而实际上 Bob 并没有获得这个分数(这种故障在免费游戏站点上是可以接受的,因为 “分数” 并不是 “银行存款”)。这是一种原子性故障,因为彼此之间本应该是原子关系的两个操作 — 获取名字/分数对和更新名字/分数对 — 实际上并没有按照原子关系执行,而且其中一个线程可以在不一致状态下查看共享数据。另外,由于分数更新逻辑遵循 check-then-act 模式,因此可能出现两个线程 “争夺” 更新最高分,从而导致难以预料的结果。假设当前的最高分是 1000,有两个玩家同时注册更高的分数 1100 和 1200。如果出现计时失误,这两个分数都能够通过 “高于现有分数的最高分” 检查,并且都进入到更新最高分的代码块中。和前面一样,根据计时的实际情况,最后的结果可能不一致(采用一个玩家的名字和另一个玩家的分数),或者出现错误(分数为 1100 的玩家可能覆盖分数为 1200 的玩家)。 可见性故障 比原子性故障更复杂的是可见性 故障。没有同步时,如果一个线程读取另外一个线程正在写的变量,读的线程将看到过时的 数据。更糟糕的是,读线程还可能会看到 x 变量的最新数据和 y 变量的过时数据,即使先写 y 变量也是这样。可见性故障非常复杂,因为它的发生是随机的,甚至是频繁的,这会导致罕见的难以调试的间发性故障。可见性故障是由数据争夺引起的 — 访问共享变量时不能正确同步。争夺数据的程序,不管它是什么样的,都属于有漏洞的程序,因为它们的行为不能可靠预测。 Java Memory Model(JMM)定义一些条件,它们保证读变量的线程能够看到另一个线程的写入结果(详细讲解 JMM 超出了本文的范围;参见 参考资料)。JMM 在一个称为 happens-before 的程序的操作上定义一个排序。只有在通用锁上执行同步或访问一个通用的可变变量时,才能创建跨线程的 Happens-before 排序。在没有 happens-before 排序的情况下, Java 平台可以延迟或更改顺序,按照这个顺序,一个线程的写操作对于另一个读取同一变量的线程是可见的。 清单2 中的代码不仅有原子性故障,还有可见性故障。updateHighScore() 方法从 ServletContext 获取HighScore 对象,然后修改它的状态。这样做的目的是让其他调用 getHighScore() 的线程看见这些修改,但是如果 updateHighScore() 的name 和 score 属性的写操作和其他调用 getHighScore() 的线程的 name 和 score 属性的读操作之间没有 happens-before 排序,我们只能期盼运气好些,让读线程能够看到正确的值。 可能的解决方案尽管servlet 规范没有充分地描述 servlet 容器必须提供的 happens-before 保证,但可以得出结论:将一个属性放置在共享范围容器(HttpSession 或ServletContext)应该在另一个线程获取该属性之前发生。(参见 JCiP 4.5.1 了解这个结论的推理过程。该规范中这样描述:“执行请求线程的多个 servlets 可能同时积极地访问单个会话对象。开发人员负责恰当地同步对会话资源的访问)。 set-after-write 技巧更新存储在其他会话容器中的可变数据时,必须在修改该数据后再次调用 setAttribute()。这是一种常用的最佳实践。清单 3 展示了重写 updateHighScore() 以使用这个技巧的示例(这个技巧的目的之一是提示容器值已经更改,因此可以在分布式 Web 应用程序的各个实例之间重新同步会话和应用程序状态)。 清单3. 使用 set-after-write 技巧提示 servlet 容器值已经更新 public void updateHighScore(PlayerScore newScore) { ServletContext ctx = getServletConfig().getServletContext(); PlayerScore hs = (PlayerScore) ctx.getAttribute("highScore"); if (newScore.getScore() > hs.getScore()) { hs.setName(newScore.getName()); hs.setScore(newScore.getScore()); ctx.setAttribute("highScore", hs); } } 不幸的是,尽管这个技巧能够在集群应用程序中高效地复制会话和应用程序状态,但它不能解决本例中的基本线程安全问题。它可以减轻可见性问题(即另一个玩家可能永远看不到在 updateHighScore() 中更新的值),但还不能解决许多潜在的原子性问题。 利用同步set-after-write 技巧可以消除可见性问题,因为 happens-before 排序是可传递的,因而调用 updateHighScore() 中的setAttribute() 和调用 getHighScore() 中的getAttribute() 之间有一个边缘地带。因为 HighScore 状态的更新在 setAttribute() 之前发生,setAttribute() 状态的更新在从 getAttribute() 返回之前发生,getAttribute() 状态的更新在 getHighScore() 的调用方使用状态之前发生,所以通过这种传递可以得出结论:调用方 getHighScore() 看到的值至少和 setAttribute() 的最近一次调用一样新。这个技巧称为利用同步(piggybacking on synchronization),因为 getHighScore() 和updateHighScore() 方法能够在 getAttribute() 和setAttribute() 中使用同步信息来提供一些可见性保证。然而,在上面这个例子中,这还不能完全解决问题。set-after-write 技巧可能对状态复制非常有用,但还不能提供线程安全。 了解不可修改性要创建线程安全的应用程序,一个有用的技巧便是尽可能多地使用不可修改的数据。清单 4 展示了重写后的最高分示例,它使用了 HighScore 的不可修改的 实现,从而避免了原子性故障(允许调用方看见不存在的玩家/分数对)和可见性故障(阻止 getHighScore() 的调用方看见在调用 updateHighScore() 时写的最新值): 清单4. 使用不可修改的 HighScore 对象修复原子性和可见性漏洞 Public class HighScore { public final String name; public final int score; public HighScore(String name, int score) { this.name = name; this.score = score; } } public PlayerScore getHighScore() { ServletContext ctx = getServletConfig().getServletContext(); return (PlayerScore) ctx.getAttribute("highScore"); } public void updateHighScore(PlayerScore newScore) { ServletContext ctx = getServletConfig().getServletContext(); PlayerScore hs = (PlayerScore) ctx.getAttribute("highScore"); if (newScore.score > hs.score) ctx.setAttribute("highScore", newScore); } 清单4 中的代码的潜在故障很少。在 setAttribute() 和getAttribute() 中使用同步保证了可见性。实际上,仅存储单个不可修改数据项消除了潜在的原子性故障,即 getHighScore() 的调用方可以看见名字/分数对的不一致更新。 将不可修改对象放置在范围容器避免了许多原子性和可见性故障;将有效不可修改性 对象放置在范围容器中也是安全的。有效不可修改性对象是指那些虽然理论上是可修改的,但实际上在发布之后再没有被更改过的对象,比如 JavaBean,将一个对象放置到 HttpSession 中之后,它的 setter 方法就不再被调用。 放置在 HttpSession 中的数据不仅被该会话的请求访问;它还可能被容器本身访问(如果容器进行状态复制的话)。所有放置在 HttpSession 或ServletContext 中的数据应该是线程安全的或有效不可修改的。 影响原子状态转换但是清单4 中的代码仍然有一个问题 — updateHighScore() 中的check-then-act 仍然使两个试图更新最高分数的线程之间存在潜在 “争夺”。如果计时失误,有一个更新可能会丢失。两个线程可能同时通过了 “高于现有分数的新最高分” 检查,造成它们同时调用 setAttribute()。不能确保两个分数中最高者获得调用,这取决于计时。要修复这个最后的漏洞,我们需要一种原子性地更新分数引用的方法,同时又要保证不受干扰。有几种方法可以实现这个目的。 清单5 为 updateHighScore() 添加了同步,确保更新进程中固有的 check-then-act 不和另一个更新并发执行。如果所有条件修改逻辑获得 updateHighScore() 使用的同一个锁,用这种方法就可以了。 清单5. 使用同步修复最后一个原子性漏洞 public void updateHighScore(PlayerScore newScore) { ServletContext ctx = getServletConfig().getServletContext(); PlayerScore hs = (PlayerScore) ctx.getAttribute("highScore"); synchronized (lock) { if (newScore.score > hs.score) ctx.setAttribute("highScore", newScore); } } 虽然清单 5 中的技术是可行的,但还有一个更好的技术:使用 java.util.concurrent 包中的 AtomicReference 类。这个类的用途就是通过 compareAndSet() 调用提供原子条件更新。清单 6 展示了如何使用 AtomicReference 来修复本示例的最后一个原子性问题。这个方法比清单 5 中的代码好,因为很难违背更新最高分数的规则。 清单6. 使用 AtomicReference 来修复最后一个原子性漏洞 public PlayerScore getHighScore() { ServletContext ctx = getServletConfig().getServletContext(); AtomicReference<PlayerScore> holder = (AtomicReference<PlayerScore>) ctx.getAttribute("highScore"); return holder.get(); } public void updateHighScore(PlayerScore newScore) { ServletContext ctx = getServletConfig().getServletContext(); AtomicReference<PlayerScore> holder = (AtomicReference<PlayerScore>) ctx.getAttribute("highScore"); while (true) { HighScore old = holder.get(); if (old.score >= newScore.score) break; else if (holder.compareAndSet(old, newScore)) break; } } 对于放置在范围容器中的可修改数据,应该将它们的状态转换变成原子性的,这可以通过同步或 java.util.concurrent 中的原子变量类来实现。 序列化对 HttpSession 的访问在我已给出的示例中,我试图避免与访问整个应用程序中的 ServletContext 相关的各种危险。很明显,访问 ServletContext 时需要细心的协作,因为任何请求都可以访问 ServletContext。然而,大多数有状态 Web 应用程序严重依赖于内嵌于会话的容器 HttpSession。同一个会话中发生多个同步请求的原因不是很直观;毕竟,每个会话都是绑定到一个特定用户或浏览器会话的,并且用户不一定一次请求多个页面。但是在编程式地生成请求的应用程序中(比如 AJAX 应用程序),一个会话中的请求是可以重叠的。 单个会话中的请求当然可以是重叠的,但这不是一件好事。如果可以轻松地序列化会话中的请求,当访问 HttpSession 中的共享对象时,这里提到的所有问题几乎都可以解决;序列化可以阻止原子性故障,并且利用 HttpSession 中的同步可以阻止可见性故障。序列化特定会话的请求不会对吞吐量造成很大的影响,因为一个会话中的请求很少重叠,在一个会话中出现很多请求重叠就更罕见了。 不幸的是,servlet 规范并没有提到 “序列化同一会话中的请求”。不过 SpringMVC 框架提供了一种方法,并且这种方法可以在其他框架中轻松实现。SpringMVC 控制器的基类 AbstractController 提供了一个布尔变量 synchronizeOnSession;设置这里之后,它将使用一个锁,确保一个会话中只同时执行一个请求。 序列化 HttpSession 上的请求消除了很多并发性危险。同样,将对象限制在 Event Dispatch Thread(EDT)中减少了 Swing 应用程序中的同步需求。结束语许多有状态 Web 应用程序有很严重的并发性漏洞。在没有足够协调的情况下,访问存储在 HttpSession 和ServletContext 等范围容器中的可变数据就会产生这些漏洞。开发人员通常会误认为 getAttribute() 和setAttribute() 方法中的同步已经足够 但这只能应付特定情况,比如当属性是不可修改、有效不可修改或线程安全的对象时,或当可能访问容器的请求被序列化时。通常,放置在范围容器中的所有内容都应该是高度不可修改的或线程安全的。servlet 规范提供的范围容器机制并不管理没有提供它们自己的同步的可变对象。将普通的 JavaBean 类存储在 HttpSession 中是很大的隐患。

B. Web应用常见的安全漏洞有哪些

OWASP总结了现有Web应用程序在安全方面常见的十大漏洞分别是:非法输入、失效的访问控制、失效的账户和线程管理、跨站脚本攻击、缓存溢出问题、注入式攻击、异常错误处理、不安全的存储、程序拒绝服务攻击、不安全的配置管理等。

非法输入

Unvalidated Input

在数据被输入程序前忽略对数据合法性的检验是一个常见的编程漏洞。随着OWASP对Web应用程序脆弱性的调查,非法输入的问题已成为大多数Web应用程序安全漏洞方面的一个普遍现象。

失效的访问控制

Broken Access Control

大部分企业都非常关注对已经建立的连接进行控制,但是,允许一个特定的字符串输入可以让攻击行为绕过企业的控制。

失效的账户和线程管理

Broken Authentication and Session Management

有良好的访问控制并不意味着万事大吉,企业还应该保护用户的密码、会话令牌、账户列表及其它任何可为攻击者提供有利信息、能帮助他们攻击企业网络的内容。

跨站点脚本攻击

Cross Site Scripting Flaws

这是一种常见的攻击,当攻击脚本被嵌入企业的Web页面或其它可以访问的Web资源中,没有保护能力的台式机访问这个页面或资源时,脚本就会被启动,这种攻击可以影响企业内成百上千员工的终端电脑。

缓存溢出问题

Buffer Overflows

这个问题一般出现在用较早的编程语言、如C语言编写的程序中,这种编程错误其实也是由于没有很好地确定输入内容在内存中的位置所致。

注入式攻击

Injection Flaws

如果没有成功地阻止带有语法含义的输入内容,有可能导致对数据库信息的非法访问,在Web表单中输入的内容应该保持简单,并且不应包含可被执行的代码。

异常错误处理

Improper Error Handling

当错误发生时,向用户提交错误提示是很正常的事情,但是如果提交的错误提示中包含了太多的内容,就有可能会被攻击者分析出网络环境的结构或配置。

不安全的存储

Insecure Storage

对于Web应用程序来说,妥善保存密码、用户名及其他与身份验证有关的信息是非常重要的工作,对这些信息进行加密则是非常有效的方式,但是一些企业会采用那些未经实践验证的加密解决方案,其中就可能存在安全漏洞。

程序拒绝服务攻击

Application Denial of Service

与拒绝服务攻击 (DoS)类似,应用程序的DoS攻击会利用大量非法用户抢占应用程序资源,导致合法用户无法使用该Web应用程序。

不安全的配置管理

Insecure Configuration Management

有效的配置管理过程可以为Web应用程序和企业的网络架构提供良好的保护。

以上十个漏洞并不能涵盖如今企业Web应用程序中的全部脆弱点,它只是OWASP成员最常遇到的问题,也是所有企业在开发和改进Web应用程序时应着重检查的内容。

C. web漏洞扫描工具有哪些

1、Nexpose:跟其他扫描工具不同的是,它的功能十分强大,可以更新漏洞数据库,也可以看出哪些漏洞可以被Metasploit Exploit,可以生成非常详细、强大的Report,涵盖了很多统计功能和漏洞的详细信息。
2、OpenVAS:类似Nessus的综合型漏洞扫描器,可以用来识别远程主机、Web应用存在的各种漏洞,它使用NVT脚本对剁成远程系统的安全问题进行检测。
3、WebScarab:可以分析使用HTTP和HTTPS协议进行通信的应用程序,它可以简单记录观察的会话且允许操作人员以各种方式进行查看。
4、WebInspect:是一款强大的Web应用程序扫描程序,有助于确认Web应用中已知和未知的漏洞,还可以检查一个Web服务器是否正确配置。
5、Whisker/libwhisker:是一个Perla工具,适合于HTTP测试,可以针对许多已知的安全漏洞,测试HTTP服务器,特别是检测危险CGI的存在。
6、Burpsuite:可以用于攻击Web应用程序的集成平台,允许一个攻击者将人工和自动的技术进行结合,并允许将一种工具发现的漏洞形成另外一种工具的基础。
7、Wikto:是一个Web服务器评估工具,可以检查Web服务器中的漏洞,并提供与Nikto一样的很多功能,但增加了许多有趣的功能部分。
8、Watchfire AppScan:是一款商业类的Web漏洞扫描程序,简化了部件测试和开发早期的安全保证,可以扫描许多常见的漏洞,如跨站脚本攻击、HTTP响应拆分漏洞、参数篡改、隐式字段处理、后门/调试选项、缓冲区溢出等等。
9、N-Stealth:是一款商业级的Web服务器安全扫描程序,主要为Windows平台提供扫描,但并不提供源代码。

D. web安全测试主要有哪些漏洞

以下类型的安全漏洞

权控缺失

系统未能正确分配用户的权限,用户能执行超出自己职能范围的操作,这类漏洞称为权控缺失。权控缺失分为两类:平行越权、垂直越权。

逻辑漏洞

逻辑漏洞通常是由于程序逻辑不严密或逻辑太复杂,导致一些逻辑分支被绕过或处理错误。常见漏洞包括:任意密码修改(没有旧密码验证)、密码找回漏洞、业务数据篡改等。逻辑漏洞的出现易造成账号被盗、免费购物,游戏应用易造成刷钱、刷游戏币等严重问题。

条件竞争

服务端在做并发编程时,需要考虑到条件竞争的情况。在多个并发线程同时访问同一资源时,由于对请求的处理不是原子性的,无法预测调度的顺序,就可能由于时间序列上的冲突而造成对共享资源的操作混乱。

XSS跨站脚本攻击

是指恶意攻击者利用网站没有对用户提交数据进行转义处理或者过滤不足的缺点,提交的数据被WEB应用程序直接使用,使别的用户访问都会执行相应的嵌入代码。从而盗取用户资料、利用用户身份进行某种动作或者对访问者进行病毒侵害的一种攻击方式。

E. web应用中的注入漏洞主要有哪几种

网络发展至今,他的高端我们都见识过,但是网络安全也是一直以来不变的话题,怎样能使网络更加安全呢?如何构建一个安全的Web环境,是应该考虑的事情。该选择哪些安全工具呢?我们可以再危险发生之前,先测试一下自己系统中的漏洞。为大家推荐10大Web漏洞扫描程序。 1. Nikto 这是一个开源的Web服务器扫描程序,它可以对Web服务器的多种项目进行全面的测试。其扫描项目和插件经常更新并且可以自动更新。Nikto可以在尽可能短的周期内测试你的Web服务器,这在其日志文件中相当明显。不过,如果你想试验一下,它也可以支持 LibWhisker的反IDS方法。不过,并非每一次检查都可以找出一个安全问题,虽然多数情况下是这样的。有一些项目是仅提供信息类型的检查,这种检查可以查找一些并不存在安全漏洞的项目,不过Web管理员或安全工程师们并不知道。 2. Paros proxy 这是一个对Web应用程序的漏洞进行评估的代理程序,即一个基于Java的web代理程序,可以评估Web应用程序的漏洞。它支持动态地编辑/查看 HTTP/HTTPS,从而改变cookies和表单字段等项目。它包括一个Web通信记录程序,Web圈套程序,hash 计算器,还有一个可以测试常见的Web应用程序攻击的扫描器。 3. WebScarab: 它可以分析使用HTTP和HTTPS协议进行通信的应用程序,WebScarab可以用最简单地形式记录它观察的会话,并允许操作人员以各种方式观查会话。如果你需要观察一个基于HTTP(S)应用程序的运行状态,那么WebScarabi就可以满足你这种需要。不管是帮助开发人员调试其它方面的难题,还是允许安全专业人员识别漏洞,它都是一款不错的工具。 4. WebInspect: 这是一款强大的Web应用程序扫描程序。SPI Dynamics的这款应用程序安全评估工具有助于确认Web应用中已知的和未知的漏洞。它还可以检查一个Web服务器是否正确配置,并会尝试一些常见的 Web攻击,如参数注入、跨站脚本、目录遍历攻击等等。 5. Whisker/libwhisker : Libwhisker是一个Perla模块,适合于HTTP测试。它可以针对许多已知的安全漏洞,测试HTTP服务器,特别是检测危险CGI的存在。 Whisker是一个使用libwhisker的扫描程序。 6. Burpsuite: 这是一个可以用于攻击Web应用程序的集成平台。Burp套件允许一个攻击者将人工的和自动的技术结合起来,以列举、分析、攻击Web应用程序,或利用这些程序的漏洞。各种各样的burp工具协同工作,共享信息,并允许将一种工具发现的漏洞形成另外一种工具的基础。 7. Wikto: 可以说这是一个Web服务器评估工具,它可以检查Web服务器中的漏洞,并提供与Nikto一样的很多功能,但增加了许多有趣的功能部分,如后端 miner和紧密的Google集成。它为MS.NET环境编写,但用户需要注册才能下载其二进制文件和源代码。 8. Acunetix Web Vulnerability Scanner : 这是一款商业级的Web漏洞扫描程序,它可以检查Web应用程序中的漏洞,如SQL注入、跨站脚本攻击、身份验证页上的弱口令长度等。它拥有一个操作方便的图形用户界面,并且能够创建专业级的Web站点安全审核报告。 9. Watchfire AppScan: 这也是一款商业类的Web漏洞扫描程序。AppScan在应用程序的整个开发周期都提供安全测试,从而测试简化了部件测试和开发早期的安全保证。它可以扫描许多常见的漏洞,如跨站脚本攻击、HTTP响应拆分漏洞、参数篡改、隐式字段处理、后门/调试选项、缓冲区溢出等等。 10. N-Stealth: N-Stealth是一款商业级的Web服务器安全扫描程序。它比一些免费的Web扫描程序,如Whisker/libwhisker、 Nikto等的升级频率更高。还要注意,实际上所有通用的VA工具,如Nessus, ISS Internet Scanner, Retina, SAINT, Sara等都包含Web 扫描部件。N-Stealth主要为Windows平台提供扫描,但并不提供源代码。

F. web 应用的常见 漏洞有哪些

web常见的几个漏洞
1. SQL注入
SQL注入攻击是黑客对数据库进行攻击的常用手段之一。
2. XSS跨站点脚本
XSS是一种经常出现在web应用中的计算机安全漏洞,它允许恶意web用户将代码植入到提供给其它用户使用的页面中。
3. 缓冲区溢出
缓冲区溢出漏洞是指在程序试图将数据放到及其内存中的某一个位置的时候,因为没有足够的空间就会发生缓冲区溢出的现象。
4. cookies修改
即使 Cookie 被窃取,却因 Cookie 被随机更新,且内容无规律性,攻击者无法加以利用。另外利用了时间戳另一大好处就是防止 Cookie 篡改或重放。
5. 上传漏洞
这个漏洞在DVBBS6.0时代被黑客们利用的最为猖獗,利用上传漏洞可以直接得到WEBSHELL,危害等级超级高,现在的入侵中上传漏洞也是常见的漏洞。
6. 命令行注入
所谓的命令行输入就是webshell 了,拿到了权限的黑客可以肆意妄为。

G. web安全漏洞有哪些

web常见的几个漏洞
1. SQL注入。SQL注入攻击是黑客对数据库进行攻击的常用手段之一。
2. XSS跨站点脚本。XSS是一种经常出现在web应用中的计算机安全漏洞,它允许恶意web用户将代码植入到提供给其它用户使用的页面中。
3. 缓冲区溢出。缓冲区溢出漏洞是指在程序试图将数据放到及其内存中的某一个位置的时候,因为没有足够的空间就会发生缓冲区溢出的现象。
4. cookies修改。即使 Cookie 被窃取,却因 Cookie 被随机更新,且内容无规律性,攻击者无法加以利用。另外利用了时间戳另一大好处就是防止 Cookie 篡改或重放。
5. 上传漏洞。这个漏洞在DVBBS6.0时代被黑客们利用的最为猖獗,利用上传漏洞可以直接得到WEBSHELL,危害等级超级高,现在的入侵中上传漏洞也是常见的漏洞。
6. 命令行输入。就是webshell ,拿到了权限的黑客可以肆意妄为。

H. 最好的WEB漏洞扫描工具

十大Web漏洞扫描程序,见:http://www.15897.com/blog/post/top-10-vul-scanner.html介绍

I. web漏洞攻击有哪些

一、SQL注入漏洞
SQL注入攻击(SQL Injection),简称注入攻击、SQL注入,被广泛用于非法获取网站控制权,是发生在应用程序的数据库层上的安全漏洞。在设计程序,忽略了对输入字符串中夹带的SQL指令的检查,被数据库误认为是正常的SQL指令而运行,从而使数据库受到攻击,可能导致数据被窃取、更改、删除,以及进一步导致网站被嵌入恶意代码、被植入后门程序等危害。
通常情况下,SQL注入的位置包括:
(1)表单提交,主要是POST请求,也包括GET请求;
(2)URL参数提交,主要为GET请求参数;
(3)Cookie参数提交;
(4)HTTP请求头部的一些可修改的值,比如Referer、User_Agent等;
(5)一些边缘的输入点,比如.mp3文件的一些文件信息等。
常见的防范方法
(1)所有的查询语句都使用数据库提供的参数化查询接口,参数化的语句使用参数而不是将用户输入变量嵌入到SQL语句中。当前几乎所有的数据库系统都提供了参数化SQL语句执行接口,使用此接口可以非常有效的防止SQL注入攻击。
(2)对进入数据库的特殊字符(’”<>&*;等)进行转义处理,或编码转换。
(3)确认每种数据的类型,比如数字型的数据就必须是数字,数据库中的存储字段必须对应为int型。
(4)数据长度应该严格规定,能在一定程度上防止比较长的SQL注入语句无法正确执行。
(5)网站每个数据层的编码统一,建议全部使用UTF-8编码,上下层编码不一致有可能导致一些过滤模型被绕过。
(6)严格限制网站用户的数据库的操作权限,给此用户提供仅仅能够满足其工作的权限,从而最大限度的减少注入攻击对数据库的危害。
(7)避免网站显示SQL错误信息,比如类型错误、字段不匹配等,防止攻击者利用这些错误信息进行一些判断。
(8)在网站发布之前建议使用一些专业的SQL注入检测工具进行检测,及时修补这些SQL注入漏洞。

二、跨站脚本漏洞
跨站脚本攻击(Cross-site scripting,通常简称为XSS)发生在客户端,可被用于进行窃取隐私、钓鱼欺骗、窃取密码、传播恶意代码等攻击。
XSS攻击使用到的技术主要为HTML和Javascript,也包括VBScript和ActionScript等。XSS攻击对WEB服务器虽无直接危害,但是它借助网站进行传播,使网站的使用用户受到攻击,导致网站用户帐号被窃取,从而对网站也产生了较严重的危害。
XSS类型包括:
(1)非持久型跨站:即反射型跨站脚本漏洞,是目前最普遍的跨站类型。跨站代码一般存在于链接中,请求这样的链接时,跨站代码经过服务端反射回来,这类跨站的代码不存储到服务端(比如数据库中)。上面章节所举的例子就是这类情况。
(2)持久型跨站:这是危害最直接的跨站类型,跨站代码存储于服务端(比如数据库中)。常见情况是某用户在论坛发贴,如果论坛没有过滤用户输入的Javascript代码数据,就会导致其他浏览此贴的用户的浏览器会执行发贴人所嵌入的Javascript代码。
(3)DOM跨站(DOM XSS):是一种发生在客户端DOM(Document Object Model文档对象模型)中的跨站漏洞,很大原因是因为客户端脚本处理逻辑导致的安全问题。
常用的防止XSS技术包括:
(1)与SQL注入防护的建议一样,假定所有输入都是可疑的,必须对所有输入中的script、iframe等字样进行严格的检查。这里的输入不仅仅是用户可以直接交互的输入接口,也包括HTTP请求中的Cookie中的变量,HTTP请求头部中的变量等。
(2)不仅要验证数据的类型,还要验证其格式、长度、范围和内容。
(3)不要仅仅在客户端做数据的验证与过滤,关键的过滤步骤在服务端进行。
(4)对输出的数据也要检查,数据库里的值有可能会在一个大网站的多处都有输出,即使在输入做了编码等操作,在各处的输出点时也要进行安全检查。
(5)在发布应用程序之前测试所有已知的威胁。

三、弱口令漏洞
弱口令(weak password) 没有严格和准确的定义,通常认为容易被别人(他们有可能对你很了解)猜测到或被破解工具破解的口令均为弱口令。设置密码通常遵循以下原则:
(1)不使用空口令或系统缺省的口令,这些口令众所周之,为典型的弱口令。
(2)口令长度不小于8个字符。
(3)口令不应该为连续的某个字符(例如:AAAAAAAA)或重复某些字符的组合(例如:tzf.tzf.)。
(4)口令应该为以下四类字符的组合,大写字母(A-Z)、小写字母(a-z)、数字(0-9)和特殊字符。每类字符至少包含一个。如果某类字符只包含一个,那么该字符不应为首字符或尾字符。
(5)口令中不应包含本人、父母、子女和配偶的姓名和出生日期、纪念日期、登录名、E-mail地址等等与本人有关的信息,以及字典中的单词。
(6)口令不应该为用数字或符号代替某些字母的单词。
(7)口令应该易记且可以快速输入,防止他人从你身后很容易看到你的输入。
(8)至少90天内更换一次口令,防止未被发现的入侵者继续使用该口令。

四、HTTP报头追踪漏洞
HTTP/1.1(RFC2616)规范定义了HTTP TRACE方法,主要是用于客户端通过向Web服务器提交TRACE请求来进行测试或获得诊断信息。当Web服务器启用TRACE时,提交的请求头会在服务器响应的内容(Body)中完整的返回,其中HTTP头很可能包括Session Token、Cookies或其它认证信息。攻击者可以利用此漏洞来欺骗合法用户并得到他们的私人信息。该漏洞往往与其它方式配合来进行有效攻击,由于HTTP TRACE请求可以通过客户浏览器脚本发起(如XMLHttpRequest),并可以通过DOM接口来访问,因此很容易被攻击者利用。
防御HTTP报头追踪漏洞的方法通常禁用HTTP TRACE方法。

五、Struts2远程命令执行漏洞
ApacheStruts是一款建立Java web应用程序的开放源代码架构。Apache Struts存在一个输入过滤错误,如果遇到转换错误可被利用注入和执行任意Java代码。
网站存在远程代码执行漏洞的大部分原因是由于网站采用了Apache Struts Xwork作为网站应用框架,由于该软件存在远程代码执高危漏洞,导致网站面临安全风险。CNVD处置过诸多此类漏洞,例如:“GPS车载卫星定位系统”网站存在远程命令执行漏洞(CNVD-2012-13934);Aspcms留言本远程代码执行漏洞(CNVD-2012-11590)等。
修复此类漏洞,只需到Apache官网升级Apache Struts到最新版本:http://struts.apache.org

六、文件上传漏洞
文件上传漏洞通常由于网页代码中的文件上传路径变量过滤不严造成的,如果文件上传功能实现代码没有严格限制用户上传的文件后缀以及文件类型,攻击者可通过 Web 访问的目录上传任意文件,包括网站后门文件(webshell),进而远程控制网站服务器。
因此,在开发网站及应用程序过程中,需严格限制和校验上传的文件,禁止上传恶意代码的文件。同时限制相关目录的执行权限,防范webshell攻击。

七、私有IP地址泄露漏洞
IP地址是网络用户的重要标示,是攻击者进行攻击前需要了解的。获取的方法较多,攻击者也会因不同的网络情况采取不同的方法,如:在局域网内使用Ping指令,Ping对方在网络中的名称而获得IP;在Internet上使用IP版的QQ直接显示。最有效的办法是截获并分析对方的网络数据包。攻击者可以找到并直接通过软件解析截获后的数据包的IP包头信息,再根据这些信息了解具体的IP。
针对最有效的“数据包分析方法”而言,就可以安装能够自动去掉发送数据包包头IP信息的一些软件。不过使用这些软件有些缺点,譬如:耗费资源严重,降低计算机性能;访问一些论坛或者网站时会受影响;不适合网吧用户使用等等。现在的个人用户采用最普及隐藏IP的方法应该是使用代理,由于使用代理服务器后,“转址服务”会对发送出去的数据包有所修改,致使“数据包分析”的方法失效。一些容易泄漏用户IP的网络软件(QQ、MSN、IE等)都支持使用代理方式连接Internet,特别是QQ使用“ezProxy”等代理软件连接后,IP版的QQ都无法显示该IP地址。虽然代理可以有效地隐藏用户IP,但攻击者亦可以绕过代理,查找到对方的真实IP地址,用户在何种情况下使用何种方法隐藏IP,也要因情况而论。

八、未加密登录请求
由于Web配置不安全,登陆请求把诸如用户名和密码等敏感字段未加密进行传输,攻击者可以窃听网络以劫获这些敏感信息。建议进行例如SSH等的加密后再传输。

九、敏感信息泄露漏洞
SQL注入、XSS、目录遍历、弱口令等均可导致敏感信息泄露,攻击者可以通过漏洞获得敏感信息。针对不同成因,防御方式不同

十、CSRF
http://www.cnblogs.com/hyddd/archive/2009/04/09/1432744.html

Web应用是指采用B/S架构、通过HTTP/HTTPS协议提供服务的统称。随着互联网的广泛使用,Web应用已经融入到日常生活中的各个方面:网上购物、网络银行应用、证券股票交易、政府行政审批等等。在这些Web访问中,大多数应用不是静态的网页浏览,而是涉及到服务器侧的动态处理。此时,如果Java、PHP、ASP等程序语言的编程人员的安全意识不足,对程序参数输入等检查不严格等,会导致Web应用安全问题层出不穷。

本文根据当前Web应用的安全情况,列举了Web应用程序常见的攻击原理及危害,并给出如何避免遭受Web攻击的建议。

Web应用漏洞原理
Web应用攻击是攻击者通过浏览器或攻击工具,在URL或者其它输入区域(如表单等),向Web服务器发送特殊请求,从中发现Web应用程序存在的漏洞,从而进一步操纵和控制网站,查看、修改未授权的信息。

1.1 Web应用的漏洞分类
1、信息泄露漏洞

信息泄露漏洞是由于Web服务器或应用程序没有正确处理一些特殊请求,泄露Web服务器的一些敏感信息,如用户名、密码、源代码、服务器信息、配置信息等。

造成信息泄露主要有以下三种原因:

–Web服务器配置存在问题,导致一些系统文件或者配置文件暴露在互联网中;

–Web服务器本身存在漏洞,在浏览器中输入一些特殊的字符,可以访问未授权的文件或者动态脚本文件源码;

–Web网站的程序编写存在问题,对用户提交请求没有进行适当的过滤,直接使用用户提交上来的数据。

2、目录遍历漏洞

目录遍历漏洞是攻击者向Web服务器发送请求,通过在URL中或在有特殊意义的目录中附加“../”、或者附加“../”的一些变形(如“..\”或“..//”甚至其编码),导致攻击者能够访问未授权的目录,以及在Web服务器的根目录以外执行命令。

3、命令执行漏洞

命令执行漏洞是通过URL发起请求,在Web服务器端执行未授权的命令,获取系统信息,篡改系统配置,控制整个系统,使系统瘫痪等。

命令执行漏洞主要有两种情况:

–通过目录遍历漏洞,访问系统文件夹,执行指定的系统命令;

–攻击者提交特殊的字符或者命令,Web程序没有进行检测或者绕过Web应用程序过滤,把用户提交的请求作为指令进行解析,导致执行任意命令。

4、文件包含漏洞

文件包含漏洞是由攻击者向Web服务器发送请求时,在URL添加非法参数,Web服务器端程序变量过滤不严,把非法的文件名作为参数处理。这些非法的文件名可以是服务器本地的某个文件,也可以是远端的某个恶意文件。由于这种漏洞是由PHP变量过滤不严导致的,所以只有基于PHP开发的Web应用程序才有可能存在文件包含漏洞。

5、SQL注入漏洞

SQL注入漏洞是由于Web应用程序没有对用户输入数据的合法性进行判断,攻击者通过Web页面的输入区域(如URL、表单等) ,用精心构造的SQL语句插入特殊字符和指令,通过和数据库交互获得私密信息或者篡改数据库信息。SQL注入攻击在Web攻击中非常流行,攻击者可以利用SQL注入漏洞获得管理员权限,在网页上加挂木马和各种恶意程序,盗取企业和用户敏感信息。

6、跨站脚本漏洞

跨站脚本漏洞是因为Web应用程序时没有对用户提交的语句和变量进行过滤或限制,攻击者通过Web页面的输入区域向数据库或HTML页面中提交恶意代码,当用户打开有恶意代码的链接或页面时,恶意代码通过浏览器自动执行,从而达到攻击的目的。跨站脚本漏洞危害很大,尤其是目前被广泛使用的网络银行,通过跨站脚本漏洞攻击者可以冒充受害者访问用户重要账户,盗窃企业重要信息。

根据前期各个漏洞研究机构的调查显示,SQL注入漏洞和跨站脚本漏洞的普遍程度排名前两位,造成的危害也更加巨大。

1.2 SQL注入攻击原理
SQL注入攻击是通过构造巧妙的SQL语句,同网页提交的内容结合起来进行注入攻击。比较常用的手段有使用注释符号、恒等式(如1=1)、使用union语句进行联合查询、使用insert或update语句插入或修改数据等,此外还可以利用一些内置函数辅助攻击。

通过SQL注入漏洞攻击网站的步骤一般如下:

第一步:探测网站是否存在SQL注入漏洞。

第二步:探测后台数据库的类型。

第三步:根据后台数据库的类型,探测系统表的信息。

第四步:探测存在的表信息。

第五步:探测表中存在的列信息。

第六步:探测表中的数据信息。

1.3 跨站脚本攻击原理
跨站脚本攻击的目的是盗走客户端敏感信息,冒充受害者访问用户的重要账户。跨站脚本攻击主要有以下三种形式:

1、本地跨站脚本攻击

B给A发送一个恶意构造的Web URL,A点击查看了这个URL,并将该页面保存到本地硬盘(或B构造的网页中存在这样的功能)。A在本地运行该网页,网页中嵌入的恶意脚本可以A电脑上执行A持有的权限下的所有命令。

2、反射跨站脚本攻击

A经常浏览某个网站,此网站为B所拥有。A使用用户名/密码登录B网站,B网站存储下A的敏感信息(如银行帐户信息等)。C发现B的站点包含反射跨站脚本漏洞,编写一个利用漏洞的URL,域名为B网站,在URL后面嵌入了恶意脚本(如获取A的cookie文件),并通过邮件或社会工程学等方式欺骗A访问存在恶意的URL。当A使用C提供的URL访问B网站时,由于B网站存在反射跨站脚本漏洞,嵌入到URL中的恶意脚本通过Web服务器返回给A,并在A浏览器中执行,A的敏感信息在完全不知情的情况下将发送给了C。

3、持久跨站脚本攻击

B拥有一个Web站点,该站点允许用户发布和浏览已发布的信息。C注意到B的站点具有持久跨站脚本漏洞,C发布一个热点信息,吸引用户阅读。A一旦浏览该信息,其会话cookies或者其它信息将被C盗走。持久性跨站脚本攻击一般出现在论坛、留言簿等网页,攻击者通过留言,将攻击数据写入服务器数据库中,浏览该留言的用户的信息都会被泄漏。

Web应用漏洞的防御实现
对于以上常见的Web应用漏洞漏洞,可以从如下几个方面入手进行防御:

1)对 Web应用开发者而言

大部分Web应用常见漏洞,都是在Web应用开发中,开发者没有对用户输入的参数进行检测或者检测不严格造成的。所以,Web应用开发者应该树立很强的安全意识,开发中编写安全代码;对用户提交的URL、查询关键字、HTTP头、POST数据等进行严格的检测和限制,只接受一定长度范围内、采用适当格式及编码的字符,阻塞、过滤或者忽略其它的任何字符。通过编写安全的Web应用代码,可以消除绝大部分的Web应用安全问题。

2) 对Web网站管理员而言

作为负责网站日常维护管理工作Web管理员,应该及时跟踪并安装最新的、支撑Web网站运行的各种软件的安全补丁,确保攻击者无法通过软件漏洞对网站进行攻击。

除了软件本身的漏洞外,Web服务器、数据库等不正确的配置也可能导致Web应用安全问题。Web网站管理员应该对网站各种软件配置进行仔细检测,降低安全问题的出现可能。

此外,Web管理员还应该定期审计Web服务器日志,检测是否存在异常访问,及早发现潜在的安全问题。

3)使用网络防攻击设备

前两种为事前预防方式,是比较理想化的情况。然而在现实中,Web应用系统的漏洞还是不可避免的存在:部分Web网站已经存在大量的安全漏洞,而Web开发者和网站管理员并没有意识到或发现这些安全漏洞。由于Web应用是采用HTTP协议,普通的防火墙设备无法对Web类攻击进行防御,因此可以使用IPS入侵防御设备来实现安全防护。

H3C IPS Web攻击防御

H3C IPS入侵防御设备有一套完整的Web攻击防御框架,能够及时发现各种已经暴露的和潜在的Web攻击。下图为对于Web攻击的总体防御框架。

图1:Web攻击防御框架,参见:http://blog.csdn.net/moshenglv/article/details/53439579

H3C IPS采用基于特征识别的方式识别并阻断各种攻击。IPS设备有一个完整的特征库,并可定期以手工与自动的方式对特征库进行升级。当网络流量进入IPS后,IPS首先对报文进行预处理,检测报文是否正确,即满足协议定义要求,没有错误字段;如果报文正确,则进入深度检测引擎。该引擎是IPS检测的核心模块,对通过IPS设备的Web流量进行深层次的分析,并与IPS攻击库中的特征进行匹配,检测Web流量是否存在异常;如果发现流量匹配了攻击特征,IPS则阻断网络流量并上报日志;否则,网络流量顺利通过。

此Web攻击防御框架有如下几个特点:

1) 构造完整的Web攻击检测模型,准确识别各种Web攻击

针对Web攻击的特点,考虑到各种Web攻击的原理和形态,在不同漏洞模型之上开发出通用的、层次化的Web攻击检测模型,并融合到特征库中。这些模型抽象出Web攻击的一般形态,对主流的攻击能够准确识别,使得模型通用化。

2) 检测方式灵活,可以准确识别变形的Web攻击

在实际攻击中,攻击者为了逃避防攻击设备的检测,经常对Web攻击进行变形,如采用URL编码技术、修改参数等。H3C根据Web应用漏洞发生的原理、攻击方式和攻击目标,对攻击特征进行了扩展。即使攻击者修改攻击参数、格式、语句等内容,相同漏洞原理下各种变形的攻击同样能够被有效阻断。这使得IPS的防御范围扩大,防御的灵活性也显着增强,极大的减少了漏报情况的出现。

3) 确保对最新漏洞及技术的跟踪,有效阻止最新的攻击

随着Web攻击出现的频率日益增高,其危害有逐步扩展的趋势。这对IPS设备在防御的深度和广度上提出了更高的要求,不仅要能够防御已有的Web攻击,更要有效的阻止最新出现的、未公布的攻击。目前,H3C已经建立起一套完整的攻防试验环境,可以及时发现潜在Web安全漏洞。同时还在继续跟踪最新的Web攻击技术和工具,及时更新Web攻击的特征库,第一时间发布最新的Web漏洞应对措施,确保用户的网络不受到攻击。

4) 保证正常业务的高效运行

检测引擎是IPS整个设备运行的关键,该引擎使用了高效、准确的检测算法,对通过设备的流量进行深层次的分析,并通过和攻击特征进行匹配,检测流量是否存在异常。如果流量没有匹配到攻击特征,则允许流量通过,不会妨碍正常的网络业务,在准确防御的同时保证了正常业务的高效运行。

结束语

互联网和Web技术广泛使用,使Web应用安全所面临的挑战日益严峻,Web系统时时刻刻都在遭受各种攻击的威胁,在这种情况下,需要制定一个完整的Web攻击防御解决方案,通过安全的Web应用程序、Web服务器软件、Web防攻击设备共同配合,确保整个网站的安全。任何一个简单的漏洞、疏忽都会造成整个网站受到攻击,造成巨大损失。此外 ,Web攻击防御是一个长期持续的工作,随着Web技术的发展和更新,Web攻击手段也不断发展,针对这些最新的安全威胁,需要及时调整Web安全防护策略,确保Web攻击防御的主动性,使Web网站在一个安全的环境中为企业和客户服务。

原文链接: