⑴ 为什么低噪声放大器一般位于射频接收机的最前端
因为前端的信号相对很小,如果放大器的噪声大了会掩盖掉接收到的信号
⑵ wifi fem是什么意思啊
WiFi-FEM指的是用于WiFi 通信将一系列射频前端电路例如功率放大器(PA)、射频开关、低噪声放大器(LNA)集成在一起的射频模组。下游应用场景广泛,主要包括智能手机、平板电脑、游戏机、路由器等,其中智能手机为最大市场。
WiFi-FEM类似于蜂窝通信的射频前端模组,WiFi-FEM是提升WiFi无线连接能力的射频模组,应用场景与市场空间广阔。其中WiFi 6 FEM与WiFi 5 FEM相比,Wi-Fi 6 FEM将显着提高线性输出功率,同时,降低功耗并获得更出色的热性能。
WIFI的芯片类型及发展
WIFI射频前端芯片分为WiFi FEM、WiFi开关、WiFi LNA、WiFi RX FEM,其中主要是WiFi FEM,分为2.4G WiFi FEM和5.8G WiFi FEM。
之前不太被看好的Wi-Fi FEM赛道,现在引来众多射频芯片公司竞相追逐。当市场的风和资本的风,一起刮来的时候,Wi-Fi FEM赛道成为了热点。无论是Wi-Fi FEM,还是整个射频芯片,甚至整个国产芯片产业,合并是唯一出路。
由于智能手机5GPA模组与WiFi-FEM均需要用到GaAs工艺产能和SOI工艺产能,给予海外射频前端IDM厂商较大产能压力,海外厂商策略性倾斜高价值量5G模组将会给予国内厂商国产替代的良机。
⑶ 什么是噪声系数
有源设备内部都是会产生噪声的,一个载噪比为(C/N)i的信号通过有源设备后载噪比会变坏成为(C/N)o,变坏的原因是输出信号中除了有被放大了的输入信号中的噪声以外,还要加上设备本身产生的噪声。
输入载噪比和输出载噪比之比就是设备的噪声系数,用F来表示:
也可以用dB来表示:
进一步分析噪声系数的意义,当设备的增益为G倍时:
⑷ ADS-B接收组件的研究有什么实际意义
随着ADS-B航空器运行监视技术的快速发展,ADS-B接收系统国产化的需求也在逐渐的提高。本文主要围绕ADS-B接收组件射频前端接收技术进行研究,提出射频接收组件的总体设计方案和关键技术的实现方法,并与信号处理单元和显控单元进行联合调试。给出了前端接收组件的实验室测试结果和测试方案以及联调数据。论文关键词:ADS-B,灵敏度,检波器本文从自动相关监视系统(ADS-B)的工作原理出发,设计了射频接收组件的技术指标和系统架构,并对射频接收组件的设计中的关键技术进行了分析,搭载测试系统对射频接收组件进行闭环测试并与数字处理单元和显示控制单元进行实测验证系统的性能。1ADS-B射频接收组件架构设计ADS-B射频接收组件应用于ADS-B天线接收到的(-90dBm,-10dBm)信号强度的1090MHz的射频信号,通过限幅、滤波、混频、中频放大、检波等过程生成数字信号处理单元中A/D采样模块能够识别和处理的检波信号。根据ADS-B接收系统实际工作的环境,分析出射频组件的具体性能指标,如表1所示。2ADS-B射频组件关键技术研究2.1本振单元设计2.1.1锁相环芯片频率合成技术目前有三种主要方法:一是,由混频器、分频器、倍频器、滤波器分离元器件构成。二是,直接数字频率合成器(DDS),即通过查表的方式将对应点数通过AD转换输出。三是,锁相环路(PLL)方法产生。三种方法中锁相环路的方法在信号输出稳定度和噪声系数上有较大优势,所以采用锁相环路的方法实现本振的输出。一个典型的PLL系统,由鉴相器(PD),压控振荡器(VCO),低通滤波器(LPF)三个基本电路构成。PLL电路在一个反馈电路的作用下,压控振荡器跟踪一个相位稳定的基准参考信号源,直到两个信号的相位信息一致,压控振荡器输出一个稳定的频率。ADS-B射频模块主要将接收到的1090MHz的射频信号进行下变频,输出110MHz的中频信号,本振单元则输出1200MHz的本振信号与输入信号进行混频。随着集成电路技术的快速发展,锁相环单元可以将分频器、相位检测器、电荷泵、压控振荡器集成在一个芯片上,不仅减小了射频组件的体积,在可测试性设计上也有较大的改进。在这里我们采用ADI公司的一款成熟锁相环芯片ADF4350频率合成器主要用于提供本地振荡信号和用于无线信道下变频使用。包含一个低相位噪声的相位检测PFD),一个高精度的电荷泵(CP),可编程的输入参考分频器,可编程的A/B计数器,以及一双模前置分频器用来实现整数和小数分频。通过外置低通滤波器使电荷泵电流转化为压控电压用来控制内部一个低相位噪声的VCO,在环路锁定的前提下输出稳定的电压信号。2.1.2配置芯片采用一款8位的C8051单片机,8个I/O端口和内部可编程高精度振荡器,I/O端口模拟ADF4351配置端口的时序对PLL芯片进行配置。CLK为配置时钟,DATA为输入数据,LE为使能管脚。本振需要输出1.2GHz的频点,参考输入时钟为10MHz,D=2,R=1,FRAC=0,可以得出INT=40,所以DATA数据线需要输入的二进制代码为101000。2.2检波器单元设计普通的线性检波器的动态范围达到60dB已经比较困难,ADS-B接收机的动态范围在70dB左右,而对数检波的动态范围已经达到90dB,满足设计要求。
⑸ 噪声暴露率的计算公式
噪音计算公式dB = 10 log Ø (Ø 为音能比值,Ø 与距离 r 平方成反比)。
公式表示为:噪声系数NF=输入端信噪比/输出端信噪比,单位常用“dB”。
此外,噪声系数还具有下列特点:
(1)此参数不包括负载对输出噪声的贡献。
(2)噪声系数密切依赖于信号源的内阻。
(3)无噪声二端口的噪声系数为1。
(4)一个含噪声二端口总是会将其自身噪声添加到信号源的噪声,这种贡献可用(F-1)来估计。换言之,噪声系数总大于1。
(5)如果没有信号源内部阻抗的信息,噪声系数的概念是没有意义的。
(6)相对于S/N,噪声系数更便利于测量和计算,因为没有必要知道信号的振幅。此外,由噪声系数的表达式可推导m信号源电阻的最优值,而对于S/N,信号源电阻最优值是零。
⑹ 射频前端接受链路的噪声系数应该怎么计算
传播模型(连接小区半径和边缘速率的桥梁)以2.6G频段的FDD LTE为例,小区半径与最大路径损耗之间存在的关系就是传播模型。通过Cost231-Hata传播模型的计算,我们可以在小区半径和最大路径损耗之间相互推导。通过以下参数: f =频段(MHz) hb =基站天线高度(m) hm =终端天线高度(m) ,一般取1.5米。 R =终端和基站间的距离(km) Kc =环境校正因子 a(hm)=天线高度校正因子=(1.1 × log (f) –0.7) × hm - (1.56 × log (f) –0.8) 根据公式Path Loss (路径损耗) = K1+K2 × log R就可以得到小区半径和路径损耗之间的一个等式。其中K1,K2是可以根据覆盖区域的不同选择相应的常量。可见,要想得到小区半径就必须知道路径损耗的大小。 最大路径损耗由能量守恒可以得出等式:接收机灵敏度=最大发射功率–其他损耗–裕量–最大路径损耗+增益将公式变形得到: MAPL(最大路径损耗)=最大发射功率–其他损耗–裕量+增益–接收机灵敏度 最大发射功率 对上行链路预算来说,最大发射功率就是UE终端的最大发射功率,一般取值为23dBm。 其他损耗 馈线及接头损耗每个接头的插入损耗典型值是0.05dB。馈线的损耗可以参照馈线损耗表来查找,不同频率不...
⑺ 电路噪音大小
为了衡量某一线性电路(如放大器)或一系统(如接收机)的噪声特性,通常需要引入一个衡量电路或系统内部噪声大小的量度。有了这种量度就可以比较不同电路噪声性能的好坏,也可以据此进行测量。广泛使用的一个噪声量度称作噪声系数。由于放大器本身有噪声,输出端的信噪比和输入端信噪比是不一样的,为此,使用噪声系数来衡量放大器本身的噪声水平。该系数表征放大器的噪声性能恶化程度的一个参量,并不是越大越好,它的值越大,说明在传输过程中掺入的噪声也就越大,反映了器件或者信道特性的不理想。
在一些部件和系统中,噪声对它们性能的影响主要表现于信号与噪声的相对大小,即信号噪声功率比上。就以收音机和电视机来说,若输出端的信噪比越大,声音就越清楚,图像就越清晰。因此,希望有这样的电路和系统:当有用信号和输入端的噪声通过它们时,此系统不引入附加的噪声。这意味着输出端与输入端具有相同的信噪比。实际上,由于电路或系统内部总有附加噪声,信噪比不可能不变。我们希望输出端信噪比的下降应尽可能小。噪声系数的定义涉及下列几个限制:
(1)如果信号源的内部阻抗是纯电抗,它无噪声,由此导致噪声系数变为无穷大。
(2)当二端口添加的噪声与源噪声相比可忽略时,噪声系数是两个几乎相等的量的比值。这可能会导致不可接受的误差。
(3)噪声系数的值取决于信号频率、偏压、温度以及信号源阻抗。如果这些条件不同.比较两个噪声系数是毫无意义的。
(4)噪声系数被定义在标准参考温度(290K),只有使用相同的参考温度,它才是有意义的。因此,它不像噪声温度那么通用,噪声温度只要求噪声功率必须是已知的,而对温度没有任何限制。
此外,噪声系数只适用于线性电路,对于非线性电路,即使电路内部没有任何噪声源,其输出端的信噪比也与输入端不同,噪声系数的概念不再适用。
⑻ 噪声分析计算公式是怎样计算的
噪音计算公式dB = 10 log Ø (Ø 为音能比值,Ø 与距离 r 平方成反比)。
公式表示为:噪声系数NF=输入端信噪比/输出端信噪比,单位常用“dB”。
在放大器的噪声系数比较低的情况下,通常放大器的噪声系数用噪声温度(T)来表示。
放大电路不仅把输入端的噪声放大,而且放大电路本身也存在噪声。所以,其输出端的信噪比必小于输入端信噪比。在放大器中,内部噪声与外部噪声愈小愈好。放大电路本身噪声越大,它的输出端信噪比越小于输入端信噪比,NF就越大。
Lpi——第i个噪声源在受声点P出的声级;
Lwi——第i个噪声源的声功率级;
Lp总——受声点P出的总声级;
ΔL1——噪声随传播距离的衰减;
ΔL2——噪声被空气吸收的衰减;
ΔL3——墙壁屏障效应衰减;
ΔL4——户外建筑物屏障效应衰减。
(8)射频前端模组的噪声系数的意义扩展阅读:
此外,噪声系数还具有下列特点:
(1)此参数不包括负载对输出噪声的贡献。
(2)噪声系数密切依赖于信号源的内阻。
(3)无噪声二端口的噪声系数为1。
(4)一个含噪声二端口总是会将其自身噪声添加到信号源的噪声,这种贡献可用(F-1)来估计。换言之,噪声系数总大于1。
(5)如果没有信号源内部阻抗的信息,噪声系数的概念是没有意义的。
(6)相对于S/N,噪声系数更便利于测量和计算,因为没有必要知道信号的振幅。此外,由噪声系数的表达式可推导m信号源电阻的最优值,而对于S/N,信号源电阻最优值是零。