#!/bin/bash tmptty=`tty` tmptty=`basename $tmptty` tmpname=`whoami` ip="xxx" #目标主机地址 inp1="xxx^M" #主机的用户名,,注意必须有^M inp2="xxx^M" #主机的密码,注意必须有^M inp3="ls^M" inp4="pwd^M" inputfile=in outputfile=out.log rm -fr $inputfile rm -fr $outputfile mknod $inputfile p touch $outputfile #file description 7 for out and 8 for in exec 7<>$outputfile exec 8<>$inputfile telnet $ip <&8 >&7 & sleep 2; echo $inp1 >> $inputfile sleep 2; echo $inp2 >> $inputfile sleep 2; echo $inp3 >> $inputfile sleep 2; echo $inp4 >> $inputfile tail -f $outputfile & while true do read str if [[ $str = "quit" $str = "exit" ]] then echo $str >> $inputfile exit else echo $str >> $inputfile fi done ps -ef grep telnet grep -v grep grep -v telnetd grep $tmptty grep $tmpname awk '{print " kill -9", $2}' sh ps -ef grep tail grep -v grep grep -v telnetd grep $tmptty grep $tmpname awk '{print " kill -9", $2}' sh
2. java如何调用Linux下的top命令
Runtime.getRuntime().exec("top -n 1>text.txt");
或
test.sh:
#!/bin/bash
top -n 1>test.txt
Runtime.getRuntime().exec("test.sh");
Runtime.getRuntime().exec("bash test.sh");
多试试,肯定是这样调用的,只有这个方法是调用本地进程的。
3. linux系统top给出的信息都有哪些
Linux新手,个人认为首先就应该了解一下top命令各项的含义.
不用有事就问什么搜索引擎,先看看man top.
top - 16:12:56 up 1 day, 22 min, 4 users, load average: 0.02, 0.04, 0.05
Tasks: 158 total, 1 running, 156 sleeping, 0 stopped, 1 zombie
%Cpu(s): 0.7 us, 0.3 sy, 0.0 ni, 98.8 id, 0.1 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem: 1017912 total, 895892 used, 122020 free, 15312 buffers
KiB Swap: 1045500 total, 19608 used, 1025892 free. 230012 cached Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
5761 eechen 20 0 32144 1548 1076 R 6.2 0.2 0:00.01 top
16:12:56 up 1 day, 22 min, 4 users, load average: 0.02, 0.04, 0.05
这句等同于执行 uptime 命令返回的内容.
16:12:56 是当前时间(date).
up 1 day, 22 min 表示系统已经运行1天又22分钟(uptime -p).
4 users 表示当前登录系统的用户(w,who).
load average 表示系统负载,分别是1分钟,5分钟,15分钟前到现在的负载平均值.
Tasks: 158 total 表示系统的进程数(数目等于ps -ef|wc -l的值减去2),按大写H可以切换到线程模式.
running表示正在运行的进程,sleeping表示睡眠的进程,stopped表示暂停的进程,zombie表示已结束但还没有从进程表中删除的僵尸进程.
total表示总内存,used表示已经使用的内存,free表示空闲的内存,按E可以切换单位.
buffers(Buffer Cache)表示块设备的读写缓冲区占用的内存,cached(Page Cache)表示文件系统缓存占用的内存.
buffers:块设备缓冲 cached:文件系统缓存
如果cached的值很大,说明cache住的文件数很多.如果频繁访问到的文件都能被cache住,那么磁盘的读I/O就非常小.
所谓块设备是指对其信息的存取以"块"为单位,如通常的光盘,硬磁盘,软磁盘,磁带等,块长取512字节或1024字节或4096字节.
块设备可以直接通过块设备特别文件来访问,为了提高数据传输效率,块设备驱动程序内部采用块缓冲技术.
Swap是交换空间,交换空间在物理内存(RAM)被充满时被使用.
如果系统需要更多的内存资源,而物理内存已经充满,内存中不活跃的页就会被移到交换空间去.
虽然交换空间可以为带有少量内存的机器提供帮助,但是这种方法不应该被当做是对内存的取代.
交换空间位于硬盘驱动器上,它比进入物理内存要慢.
load average的理解:
load average指的是处于task_running或task_uninterruptible状态的进程(或线程)数的平均值.
处于task_running状态的进程(或线程),可能正在使用CPU或排队等待使用CPU.
处于task_uninterruptible状态的进程(或线程),可能正在等待I/O,比如等待磁盘I/O.这时I/O等待占用的CPU时间百分比iowait(wa)可能会比较高.
sudo strace -p `pidof top` 可见top从/proc读取了很多信息.
man proc 查看 /proc/loadavg 的说明:
man proc | col -b > proc.txt
/proc/loadavg 内容:
0.22 0.13 0.14 2/374 5306
0.22 0.13 0.14表示在过去的1分钟,5分钟,15分钟,
正在运行(task_running)或等待IO(task_uninterruptible)的任务的数量.
2/374中的2表示当前运行的线程数,374则表示系统当前存在的内核调度实体(进程/线程)的数量.
5306是系统最近创建的进程PID编号.
又比如:
load average: 31.09, 29.87, 29.92
表示在过去的1分钟,5分钟,15分钟的时间里,CPU任务队列中平均有30个程序(这里应该是30个Java线程)在使用CPU.
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
20248 root 20 0 0.227t 0.012t 18748 S 3090 5.2 29812:58 java
Java进程的CPU使用率%CPU达到3090%,表示这个Java进程正在使用31个CPU核心,
这样对上了上面load average得出的数据,也就是有30个左右的Java线程正在使用30个CPU核心.
按H(区分大小写)切换到线程模式,因为一个线程最多只能使用一个核心,所以线程模式下显示的CPU使用率不会超过100%.
当CPU和磁盘都忙不过来的时候,开再多的进程也没有任何意义,只会徒增CPU上下文切换和磁盘I/O等待,得不偿失.
系统负载高,普遍是因为系统进程数太多,I/O太多导致的.
load average小于1表示系统空闲,大于1表示系统开始繁忙.
Linux服务器的任务(进程)数量保持在200个以下是比较好的,最好不要超过300个.
us, user : time running un-niced user processes 用户空间进程占用CPU时间百分比
sy, system : time running kernel processes 内核进程占用CPU时间百分比
ni, nice : time running niced user processes 用户空间内改变过优先级的进程占用CPU时间百分比
id, idle : time spent in the kernel idle handler 空闲CPU时间百分比(100%表示系统完全空闲)
wa, iowait : time waiting for I/O completion I/O等待占用的CPU时间百分比
hi : time spent servicing hardware interrupts 硬件中断占用CPU时间百分比
si : time spent servicing software interrupts 软件中断占用CPU时间百分比
st : time stolen from this vm by the hypervisor 虚拟化hypervisor从当前虚拟机vm偷走的时间
如果st这个值很高的话,说明你的VPS提供商的CPU资源有限,而你没能抢过别人,很有可能就是VPS提供商超售了.
按F选择要显示的列和查看每列的含义,默认有下面这些列:
PID = Process Id
USER = Effective User Name
PR = Priority PR和NI的值越高越友好即越不竞争资源,比如PR 20和NI 0,另外,PR=NI+20.
NI = Nice Value 负值表示高优先级,正值表示低优先级,比如kworker的NI为-20,PR为0.
VIRT = Virtual Image (KiB)
RES = Resident Size (KiB) 常驻内存,按E切换单位.
SHR = Shared Memory (KiB)
S = Process Status
%CPU = CPU Usage 四核处理器在Tasks模式下满载为400%,在Threads模式(按H切换)下满载为100%(一个线程最多只能使用一个核心).按Shift+P按CPU使用率排序.
%MEM = Memory Usage (RES) 满载为100%,按Shift+M按RES内存排序.
TIME+ = CPU Time, hundredths 进程使用的CPU时间总计.比如2:32.45代表2分钟32.45秒.
COMMAND = Command Name/Line
按F进入域管理窗口后按A可以切换显示模式,按空格选中要显示的列,按S按指定列排序,用向右方向键选中列后可以调整顺序.修改后按Shift+W保存设置到~/.toprc文件.
top里面按Shift+M是按内存排序,按E是切换内存单位,按Shfit+W保存设置.
然后执行top -n1 -b可以看到按内存排序的所有进程的信息.
或者ps后用sort排序:
ps aux | sort -k4nr | head -n5
top里按C或者使用-c参数可以看到进程的绝对路径和启动参数,就可以得到类似ps -ef和ps aux提供的信息了.
看进程路径: top -p `pidof firefox` -c -n1
看进程线程: top -p `pidof firefox` -H -n1
Linux Process Status:
http://blog.csdn.net/tianlesoftware/article/details/6457487
R (task_running) : 可执行状态
S (task_interruptible): 可中断的睡眠状态
D (task_uninterruptible): 不可中断的睡眠状态
T (task_stopped or task_traced): 暂停状态或跟踪状态
Z (task_dead - exit_zombie): 退出状态,进程成为僵尸进程
X (task_dead - exit_dead): 退出状态,进程即将被销毁
running进程:
只有在该状态的进程才可能在CPU上运行。
而同一时刻可能有多个进程处于可执行状态,这些进程的task_struct结构(进程控制块)被放入对应CPU的可执行队列中(一个进程最多只能出现在一个CPU的可执行队列中)。
进程调度器的任务就是从各个CPU的可执行队列中分别选择一个进程在该CPU上运行。
很多操作系统教科书将正在CPU上执行的进程定义为RUNNING状态、而将可执行但是尚未被调度执行的进程定义为READY状态,这两种状态在Linux下统一为TASK_RUNNING状态。
sleeping进程:
处于这个状态的进程因为等待某某事件的发生(比如等待socket连接、等待信号量),而被挂起。
这些进程的task_struct结构被放入对应事件的等待队列中。当这些事件发生时(由外部中断触发、或由其他进程触发),对应的等待队列中的一个或多个进程将被唤醒。
通过ps命令我们会看到,一般情况下,进程列表中的绝大多数进程都处于task_interruptible状态(除非机器的负载很高)。
毕竟CPU就这么一两个,进程动辄几十上百个,如果不是绝大多数进程都在睡眠,CPU又怎么响应得过来。
stopped进程:
向进程发送一个sigstop信号,它就会因响应该信号而进入task_stopped状态,除非该进程本身处于task_uninterruptible状态而不响应信号。
sigstop与sigkill信号一样,是非常强制的。不允许用户进程通过signal系列的系统调用重新设置对应的信号处理函数。
向进程发送一个sigcont信号,可以让其从task_stopped状态恢复到task_running状态。
当进程正在被跟踪时,它处于task_traced这个特殊的状态。“正在被跟踪”指的是进程暂停下来,等待跟踪它的进程对它进行操作。
比如在gdb中对被跟踪的进程下一个断点,进程在断点处停下来的时候就处于task_traced状态。而在其他时候,被跟踪的进程还是处于前面提到的那些状态。
对于进程本身来说,task_stopped和task_traced状态很类似,都是表示进程暂停下来。
而task_traced状态相当于在task_stopped之上多了一层保护,处于task_traced状态的进程不能响应sigcont信号而被唤醒。
只能等到调试进程通过ptrace系统调用执行ptrace_cont、ptrace_detach等操作(通过ptrace系统调用的参数指定操作),或调试进程退出,被调试的进程才能恢复task_running状态。
zombie进程:
在Linux进程的状态中,僵尸进程是非常特殊的一种,它是已经结束了的进程,但是没有从进程表中删除。
太多了会导致进程表里面条目满了,进而导致系统崩溃,倒是不占用其他系统资源。
它已经放弃了几乎所有内存空间,没有任何可执行代码,也不能被调度,
仅仅在进程列表中保留一个位置,记载该进程的退出状态等信息供其他进程收集,除此之外,僵尸进程不再占有任何内存空间。
进程在退出的过程中,处于TASK_DEAD状态。在这个退出过程中,进程占有的所有资源将被回收,除了task_struct结构(以及少数资源)以外。
于是进程就只剩下task_struct这么个空壳,故称为僵尸。
之所以保留task_struct,是因为task_struct里面保存了进程的退出码、以及一些统计信息。
而其父进程很可能会关心这些信息。比如在shell中,$?变量就保存了最后一个退出的前台进程的退出码,而这个退出码往往被作为if语句的判断条件。
当然,内核也可以将这些信息保存在别的地方,而将task_struct结构释放掉,以节省一些空间。
但是使用task_struct结构更为方便,因为在内核中已经建立了从pid到task_struct查找关系,还有进程间的父子关系。
释放掉task_struct,则需要建立一些新的数据结构,以便让父进程找到它的子进程的退出信息。
子进程在退出的过程中,内核会给其父进程发送一个信号,通知父进程来“收尸”。
父进程可以通过wait系列的系统调用(如wait4、waitid)来等待某个或某些子进程的退出,并获取它的退出信息。
然后wait系列的系统调用会顺便将子进程的尸体(task_struct)也释放掉。
这个信号默认是SIGCHLD,但是在通过clone系统调用创建子进程时,可以设置这个信号。
如果他的父进程没安装SIGCHLD信号处理函数调用wait或waitpid()等待子进程结束,又没有显式忽略该信号,那么它就一直保持僵尸状态,子进程的尸体(task_struct)也就无法释放掉。
如果这时父进程结束了,那么init进程自动会接手这个子进程,为它收尸,它还是能被清除的。
但是如果如果父进程是一个循环,不会结束,那么子进程就会一直保持僵尸状态,这就是为什么系统中有时会有很多的僵尸进程。
当进程退出的时候,会将它的所有子进程都托管给别的进程(使之成为别的进程的子进程)。
托管的进程可能是退出进程所在进程组的下一个进程(如果存在的话),或者是1号进程。
所以每个进程、每时每刻都有父进程存在。除非它是1号进程。1号进程,pid为1的进程,又称init进程。
Linux系统启动后,第一个被创建的用户态进程就是init进程。它有两项使命:
1、执行系统初始化脚本,创建一系列的进程(它们都是init进程的子孙);
2、在一个死循环中等待其子进程的退出事件,并调用waitid系统调用来完成“收尸”工作;
init进程不会被暂停、也不会被杀死(这是由内核来保证的)。它在等待子进程退出的过程中处于task_interruptible状态,“收尸”过程中则处于task_running状态。
4. 如何解读系统
具体点!什么系统! 补充: linux系统 ??? top · sar · vmstat · iostat · free 可以作为普通用户运行这些工具。它们都利用/pro c文件 系统得 到它们的数据。这些性能工具和几个rpm一起提供。procps rpm提供top、free和vmstat。sysstat rpm提供sar和iostat。 top命令是一个优秀的交互式实用工具,用于监视性能。它提供关于整体Linux性能的几个概要行,但是报告进程信息才是top真正的 长处 。可以广泛自定义进程显示,也可以添加字段,按照不同指标排序进程列表,甚至从top注销进程。 sar实用工具提供监视每一事件的能力。它至少有15个单独的报告类别,包括CPU、 磁盘 、网络、进程、 交换区 等等。 vmst at命令 报告关于内存和交换区使用的广泛信息。它也报告CPU和一些I/O信息。iostat报告 存储 输入/输出(I/O) 统计资料 。 这些命令覆盖许多相同的地方。 本节 讨论如何使用这些命令并解释每个命令产生的报告,并不讨论所有15种sar 语法 ,但是介绍了其中最常见的。 3.1 top top命令是最流行的性能工具之一。大多 数系 统管理员运行top查看Linux和UNIX系统的运行情况。top实用工具提供一种监视进程和Linux 整体性 能的理想方法。将Linux进程称作任务更准确,但是在本章中我们还是将它们称作进程,因为这个工具也这样称呼它们。 1 普通用户和root用户都可以运行top。图3-1显示一个空闲系统的典型top输出。 图3-1 top输出 top显示有两个部分。大约前三分之一显示关于Linux的整体信息,其余行为各个进程信息。如果扩展窗口则显示更 多进程 而填充整个屏幕。 更全面的Linux信息可以通过使用top之外的几个命令来得到。不过,通过一个命令在一个屏幕上显示所有信息比较理想。第一行显示最近1分钟、5分钟和15分钟的负载平 均值 。负载平均值表示在CPU上运行或者等待运行多少进程。uptime命令也可以用来显示负载平均值。接下来是进程信息,之后是CPU、内存和交换区。内存和交换区信息与free命令输出类似。在我们确定内存和CPU使用之后的下一个问题是哪些进程正在使用它。 大部分进程信息也可以通过ps命令得到,但是top提供一种更易于阅读的格式。最有用的是用于提供帮助的h,它列出top的其他交互式命令。 3.1.1 添加和移除字段 字段可以从显示中添加或移除。进程输出可以按照CPU、内存或者其他指标排序。这是一个查看什么进程抢夺内存的理想方法。各个Linux发布版本的top语法和交互式选项不同,帮助命令可以快速列出什么命令可用。有许多交互式选项可用,用户应该花费一些时间来试验它们。 图3-2显示Red Hat Enterprise Linux ES release 3的帮助屏幕。 图3-2 top的帮助屏幕 f命令用来从top输出中添加或者移除字段。图3-3是一个Red Hat Enterprise Linux ES release 3的帮助屏幕,显示什么字段可以添加。 图3-3 top添加/移除字段的屏幕 图3-4显示一个SUSE Linux 9.0 top的帮助屏幕,可见它们提供的命令差别非常大。 图3-4 SUSE top的帮助屏幕 3.1.2 解释输出 让我们研究top信息的意义,以top的如下输出为例: top输出的第一行显示负载平均值信息: 这个输出与uptime的输出类似。从中可看到Linux已经运行时间、当前时间和用户数量,以及1分钟、5分钟和15分钟负载平均值。接下来显示进程概要: 我们看到总共有73个进程,其中72个进程正在休眠,一个进程正在运行,没有 僵化 进程或者被停止的进程。当一个进程退出并且它的父进程没有通过wait(2)或者waitpid(2)函数等待它时,它就会成为僵化进程。这通常是由于父进程在它的子进程之前退出造成的。不同于进程表中的项,僵化进程不使用资源。停止的进程是已经向它发送STOP信号的进程。更多信息,请参见signal(7)手 册页 。 接下来是CPU信息: CPU行描述CPU如何使用它们的CPU周期。top命令报告CPU在用户或者 内核模式 、运行良好进程以及处在 空闲状态 时所花费时间的百分比。iowait列显示没有进程在CPU上运行时, 处理器 等待I/O完成的时间的百分比。irq和softirq列表示处理硬件和 软件中断 所花费的时间。早于2.6版本的Linux内核不报告irq、softirq和iowait。 接下来是内存信息: 前三个指标提供内存使用的概要,列出了总的可用内存、已使用内存和自由内存,它们都是确定对于Linux内存是否足够所需信息。 接下来五个指标标识已使用的内存如何分配。shrd字段显示共享的内存使用,buff是缓冲使用的内存。分配给内核或者 用户进程 的内存可以处在三种不同状态:活动(active)、不活动脏(inactive dirty)和不活动干净(inactive clean)。活动在top中用aotv表示,表示该内存最近被使用。不活动脏在top中用in_d表示,表示该内存最近没有使用,可以回收。要回收内存,必须将它的内容写到磁盘,这个进程命名为“清洗”,也可称作内存的第四种临时状态。一旦被清洗,不活动脏内存成为不活动干净内存,在top中用in_c表示。由Norm Murray和Neil Horman合着的Understanding Virtual Memory in Red Hat Enterprise Linux 3是一本优秀的参考书,网址为http:people.redhat.com/nhorman/papers/ rhel3_vm.pdf。 接下来是交换区信息: av字段是可用的交换区总量,之后是已用数量和自由数量,最后是内核用于缓存的内存数量。 top显示的其余部分是进程信息: top显示尽可能多的能适合屏幕的进程。top(1)手册页中提供了字段说明的描述。表3-1提供了这些字段的概要。 表3-1 top进程字段 字段 说明 PID 进程id编号 USER 进程所有者的用户名 PRI 进程的 优先级 SIZE 进程大小,包括它的代码、栈和 数据区 域,以 千字节 为单位 RSS 进程使用的内存总量,以千字节为单位 SHARE 进程使用的 共享内存 数量 STAT 进程的状态,通常R表示运行,S表示休眠 %CPU 自从最近的屏幕更新以来,这个进程使用的CPU百分比 %MEM 这个进程使用的内存百分比 TIME 自从进程启动以来,这个进程使用的CPU时间量 CPU 最近执行进程的CPU COMMAND 正在执行的命令 3.1.3 保存自定义 一个非常好的top功能是保存当前配置。可以使用交互式命令s任意更改显示,然后按w保存该视图。 top在用户的主目录中写入一个.toprc文件,用来保存配置,以便下一次这个用户启动top时使用相同的 显示选项 。 top也寻找默认配置文件/etc/toprc。这是一个全局配置文件,当任何用户运行实用工具时,top将读取该文件。这个文件可以使top以安全模式运行,也可以设置刷新延迟。安全模式阻止非root用户注销或者更改进程的 正常值 ,也阻止非root用户更改top的刷新值。Red Hat Enterprise Linux ES release 3的一个/etc/toprc示例文件如下所示: s表示安全模式,3定义三秒钟 刷新间隔 。其他发布版本可能有不同的/etc/toprc格式。注销进程是一个非常实用的功能。如果用户有一个失控的进程,通过top命令可以轻易找到并注销它,具体步骤为:运行top,通过u命令显示用户的所有进程,然后使用k注销它。top不只是一个优秀的性能监视工具,它也可以用来通过注销那些产生问题的进程从而改进性能。 3.1.4 批处理 模式 top也可以以批处理模式运行。尝试运行以下命令: -n 1告诉top只显示一次 迭代 ,-b选项表示以适合写入文件的文本形式输出或者定向到另一个程序(例如less)。类似以下两行脚本的命令可以顺利完成cron工作: 可以将它添加到crontab,并每隔15分钟收集一次输出。 通过批处理可以轻松完成所有任务,无需用户的干涉。所有进程都被列出,输出并不是每5秒钟刷新一次。如果用户的主目录中存在一个.toprc配置文件,那么它用来格式化显示。以下是在一个多CPU Linux 服务器 上运行top批处理模式的输出。注意,其中没有显示top输出的所有258个进程。 现在读者可能明白了为什么top会如此流行。top的交互式本质和容易自定义输出的能力使它成为诊断问题的优秀工具。 3.2 sar sar是一个优秀的一般性能监视工具,它可以输出Linux所完成的几乎所有工作的数据。sar命令在sysetat rpm中提供。示例中使用sysstat版本5.0.5,这是稳定的最新版本之一。关于版本和下载信息,请访问sysstat主页 http://perso.wanadoo.fr/sebastien.godard/ 。 sar可以显示CPU、运行 队列 、磁盘I/O、分页(交换区)、内存、CPU中断、网络等性能数据。最重要的sar功能是创建数据文件。每一个Linux系统都应该通过cron工作收集sar数据。该sar数据文件为 系统管理员 提供历史性能信息。这个功能非常重要,它将sar和其他性能工具区分开。如果一个夜晚批处理工作正常运行两次,直到下一个早上才会发现这种情况(除非被叫醒)。我们需要具备研究12小时以前的性能数据的能力。sar 数据收集 器提供了这种能力。有许多报告语法,我们首先讨论数据收集。 3.2.1 sar数据收集器 sar数据收集通过/usr/lib/sa中的一个 二进制 可执行文件 和两个脚本来完成。sar数据收集器是一个位于/usr/lib/sa/sadc的二进制可执行文件。sadc的工作是写入数据收集文件/var/1og/sa/。可以为sadc提供几个选项。常见语法是: 间隔是取样间的秒数,iterations是要取得的 样本数 量,file name定义 输出文件 。简单的sadc语法是/usr/lib/sa/sadc 360 5/tmp/sadc.out。这个命令在5分钟间隔取得5个样本并将它们保存在/tmp/sadc.out。我们应该定期收集样本,因此需要一个由cron运行的脚本。应该把样本放在一个有意义的地方,如在前一节中使用top脚本时那样。sysstat rpm提供/usr/lib/sa/sa1脚本来完成所有这些事情。 sa1(8)手册页比sa1脚本本身要长得多。/usr/lib/sa/sa1是一个非常简单的脚本,使用语法sadc -F -L 1 1 /var/log/sa/sa##来运行sadc,其中##是某月的日期。较老版本的sa1使用date+.%Y_%m_%d的输出作为文件后缀。如果需要,可以使用-F选项使sadc强制创建输出文件。-L在写入输出文件之前锁定它,以防止两个sadc进程同时运行时损坏该文件。较老版本的sadc没有-L选项,因此sa1 脚本执行 手工 锁定。sa1脚本的选项只是样本之间的间隔和取样迭代的次量。cron文件(/etc/cron.d/sysstat)和sysstat一起提供,在各sysstat版本之间它有所不同。以下是5.0.5版本的sysstat的条目: 可见,在sysstat rpm安装之后,sadc开始取得样本。sysstat主页是 http://perso.wanadoo.fr/ sebastien.godard/ 2 。文档链接提供以下类似2006年1月14日的crontab方案: Sebastien Godard的网站的crontab示例建议周一至周五从早晨8点到下午6点每10分钟取一次样本,其他时间每小时取得一个样本(注意,crontab注释为下午7点,但实际上是18:00,即下午6点)。如果/var中的磁盘空间足够,可以每天都每小时的每10分钟取样一次。如果周末备份较慢,每小时一次sadc取样可能帮助不大。 现在让我们研究更流行的报告语法。 3.2.2 CPU 统计数据 sar -u输出显示CPU信息。-u选项是sar的默认选项。该输出以百分比显示CPU的使用情况。表3-2解释该输出。 表3-2 sar -u字段 字段 说明 CPU CPU编号 %user 在用户模式 中运 行进程所花的时间 %nice 运行正 常进 程所花的时间 %system 在内核模式(系统)中运行进程所花的时间 %iowait 没有进程在该CPU上执行时,处理器等待I/O完成的时间 %idle 没有进程在该CPU上执行的时间 这些看起来应该比较熟悉,它和top报告中的CPU信息内容相同。以下显示 输出格式 : 其中的5 10导致sar以5秒钟间隔取得10个样本。任何sar报告的第一列都是 时间戳 。 我们本来可以研究使用-f选项通过sadc创建的文件。这个sar语法显示sar -f/var/log/ sa/sa21的输出: 在多CPU Linux系统中,sar命令也可以为每个CPU分解该信息,如以下sar -u -P ALL 5 5输出所示:
5. Linux执行下面的脚本后只有Top的输出是乱码,求解决方法。
使用文本编辑器打开是乱码,使用cat命令查看文本内容就正常了,原因应该还是编码问题
6. linux脚本,实现监控进程的CPU和内存值
你可以用top指令,加入你的进程id是1009,你可以使用如下命令试试监控他的性能指标:
top-p1009
7. linux的top命令通过查询哪个文件得到信息。有个实验,要自己写一段能实现top功能的C代码。请高手指点!
我只知道两个,一是/proc/cupinfo ,二是/proc/meminfo。