‘壹’ 交换机的工作原理是什么
交换机工作原理
1、交换机的作用
连接多个以太网物理段,隔离冲突域
以太网帧进行高速而透明的交换转发
自行学习和维护MAC地址信息
交换机工作在二层,可以用来隔离冲突域,在OSI参考模型中,二层的作用是寻址,这边寻址指的是MAC地址,而交换机就是对MAC地址进行转发,在每个交换机中,都有一张MAC地址表,这个表是交换机自动学习的,所以,总得来说交换机的作用是寻址和转发,这边需要注意的是寻址和转发都是MAC地址,需要跟上周分享的路由器区分开来,路由器寻址寻的是IP地址,而交换机是MAC地址。
2、交换机的特点
主要工作在OSI模型的物理层、数据链路层
提供以太网间的透明桥接和交换
依据链路层的MAC地址,将以太网数据帧在端口间进行转发
3、交换机MAC地址表转发过程:
MAC地址表初始化:
‘贰’ 什么叫一层交换机,二层交换机,三层交换机
简单地说:一层交换机只支持物理层协议(电话程控交换机可以算一个?)二层交换机支持物理层和数据链路层协议,如以太网交换机三层交换机支持物理层,数据链路层及网络层协议,如某些带路由功能的交换机 从ISO/OSI的分层结构上说,交换机可分为二层交换机、三层交换机等。二层交换机指的就是传统的工作在OSI参考模型的第二层--数据链路层上交换机,主要功能包括物理编址、错误校验、帧序列以及流控。一个纯第二层的解决方案,是最便宜的方案,但它在划分子网和广播限制等方面提供的控制最少。传统的路由器与外部的交换机一起使用也能解决这个问题,但现在路由器的处理速度已跟不上带宽要求。因此三层交换机、Web交换机等应运而生。 三层交换机是一个具有三层交换功能的设备,即带有第三层路由功能的第二层交换机,但它是二者的有机结合,并不是简单地把路由器设备的硬件及软件叠加在局域网交换机上。 Web交换机为数据中心设备(包括Internet服务器、防火墙、高速缓冲服务器和网关等)提供管理、路由和负载均衡传输。不同于传统网络设备的是,传统网络设备注重高速完成单个帧和数据包的交换,而Web交换侧重于跟踪和处理Web会话。除了由传统第二/三层交换机所提供的连接和封包路由外,Web交换机还可提供传统局域网交换机和路由器所缺乏的完备策略,将局部和全球服务器负载均衡、存取控制、服务质量保证(QoS)以及带宽管理等管理能力结合起来。目前,Web交换机已由纯粹的传输层(第四层)设备发展到具有基于内容(第七层)的交换的智能。利用内容或用户分类进行Web请求重定向是Web服务器的一项功能。不过,Internet传输和商业的发展远远超过计算机处理能力的提高。把内容分类卸到Web交换机可平衡整个网站的基础设施。 ------------------ 3层交换机是带路由功能的交换机!! 2层的是基于MAC地址访问的!------------------------- 交换机目前常见有两种, 一是2层交换机,也就是我们见的最多的那种, 基于MAC ,2层快速交换,所有的接口同在一个广播域. 第二种就是您说的3层交换机,3层交换机顾名思义,也就是可以起用路由功能.3层交换机早期的需要一个MSFC(多层交换特性卡)来支持 3层路由功能 ,现代的3层交换机都集成了此功能. 例子1_二层交换机: 楼层一 楼层二分别有两台2层交换机,他们之间可以划分VLAN,做策略来进行通讯,但是如果说,楼层1的交换机和楼层2的交换机不在同一VLAN,而他们之间又要互相通讯,那么就需要通过路由器来做路由功能. 例子2_三层交换机: 如上,如果说还有更多楼层,更多交换机, 那么只需要一个3层的核心交换机就可以取代路由器了. ------------------------------------------ 3层交换机的原理很简单:1次路由多次交换. 解释:在广域网中,当然跑的都是3层数据包(被路由的),而路由需要确定每次源到目的的最优路径,每次都要重新进行选择,而如果您使用3层交换机,就可以第一次进行源到目的的路由,3层交换机会将此数据转到2层,那么下次无论是目的到源,还是源到目的都是进行快速交换. -------------------------------------------注意: 1.3层交换机有路由功能,但不能完全取代路由器,因为基础原理并不相同. 2.3层交换机从某种意义上来说会比路由器策略转发快的多! 3..
‘叁’ 交换机工作原理
层交换技术是发展比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中。具体的工作流程如下:
(1) 当交换机从某个端口收到一个数据包,它先读取包头中的源MAC地址,这样它就知道源MAC地址的机器是连在哪个端口上的;
(2) 再去读取包头中的目的MAC地址,并在地址表中查找相应的端口;
(3) 如表中有与这目的MAC地址对应的端口,把数据包直接复制到这端口上;
(4) 如表中找不到相应的端口则把数据包广播到所有端口上,当目的机器对源机器回应时,交换机又可以学习一目的MAC地址与哪个端口对应,在下次传送数据时就不再需要对所有端口进行广播了。
不断的循环这个过程,对于全网的MAC地址信息都可以学习到,二层交换机就是这样建立和维护它自己的地址表。
从二层交换机的工作原理可以推知以下三点:
(1) 由于交换机对多数端口的数据进行同时交换,这就要求具有很宽的交换总线带宽,如果二层交换机有N个端口,每个端口的带宽是M,交换机总线带宽超过N×M,那么这交换机就可以实现线速交换;
(2) 学习端口连接的机器的MAC地址,写入地址表,地址表的大小(一般两种表示方式:一为BEFFER RAM,一为MAC表项数值),地址表大小影响交换机的接入容量;
(3) 还有一个就是二层交换机一般都含有专门用于处理数据包转发的ASIC (Application specific Integrated Circuit)芯片,因此转发速度可以做到非常快。由于各个厂家采用ASIC不同,直接影响产品性能。
以上三点也是评判二三层交换机性能优劣的主要技术参数,这一点请大家在考虑设备选型时注意比较。
(二)路由技术
路由器工作在OSI模型的第三层---网络层操作,其工作模式与二层交换相似,但路由器工作在第三层,这个区别决定了路由和交换在传递包时使用不同的控制信息,实现功能的方式就不同。工作原理是在路由器的内部也有一个表,这个表所标示的是如果要去某一个地方,下一步应该向那里走,如果能从路由表中找到数据包下一步往那里走,把链路层信息加上转发出去;如果不能知道下一步走向那里,则将此包丢弃,然后返回一个信息交给源地址。
路由技术实质上来说不过两种功能:决定最优路由和转发数据包。路由表中写入各种信息,由路由算法计算出到达目的地址的最佳路径,然后由相对简单直接的转发机制发送数据包。接受数据的下一台路由器依照相同的工作方式继续转发,依次类推,直到数据包到达目的路由器。
而路由表的维护,也有两种不同的方式。一种是路由信息的更新,将部分或者全部的路由信息公布出去,路由器通过互相学习路由信息,就掌握了全网的拓扑结构,这一类的路由协议称为距离矢量路由协议;另一种是路由器将自己的链路状态信息进行广播,通过互相学习掌握全网的路由信息,进而计算出最佳的转发路径,这类路由协议称为链路状态路由协议。
由于路由器需要做大量的路径计算工作,一般处理器的工作能力直接决定其性能的优劣。当然这一判断还是对中低端路由器而言,因为高端路由器往往采用分布式处理系统体系设计。
(三)三层交换技术
近年来的对三层技术的宣传,耳朵都能起茧子,到处都在喊三层技术,有人说这是个非常新的技术,也有人说,三层交换嘛,不就是路由器和二层交换机的堆叠,也没有什么新的玩意,事实果真如此吗?下面先来通过一个简单的网络来看看三层交换机的工作过程。
组网比较简单
使用IP的设备A------------------------三层交换机------------------------使用IP的设备B
比如A要给B发送数据,已知目的IP,那么A就用子网掩码取得网络地址,判断目的IP是否与自己在同一网段。
如果在同一网段,但不知道转发数据所需的MAC地址,A就发送一个ARP请求,B返回其MAC地址,A用此MAC封装数据包并发送给交换机,交换机起用二层交换模块,查找MAC地址表,将数据包转发到相应的端口。
如果目的IP地址显示不是同一网段的,那么A要实现和B的通讯,在流缓存条目中没有对应MAC地址条目,就将第一个正常数据包发送向一个缺省网关,这个缺省网关一般在操作系统中已经设好,对应第三层路由模块,所以可见对于不是同一子网的数据,最先在MAC表中放的是缺省网关的MAC地址;然后就由三层模块接收到此数据包,查询路由表以确定到达B的路由,将构造一个新的帧头,其中以缺省网关的MAC地址为源MAC地址,以主机B的MAC地址为目的MAC地址。通过一定的识别触发机制,确立主机A与B的MAC地址及转发端口的对应关
系,并记录进流缓存条目表,以后的A到B的数据,就直接交由二层交换模块完成。这就通常所说的一次路由多次转发。
以上就是三层交换机工作过程的简单概括,可以看出三层交换的特点:
由硬件结合实现数据的高速转发。
这就不是简单的二层交换机和路由器的叠加,三层路由模块直接叠加在二层交换的高速背板总线上,突破了传统路由器的接口速率限制,速率可达几十Gbits。算上背板带宽,这些是三层交换机性能的两个重要参数。
简洁的路由软件使路由过程简化。
大部分的数据转发,除了必要的路由选择交由路由软件处理,都是又二层模块高速转发,路由软件大多都是经过处理的高效优化软件,并不是简单照搬路由器中的软件。
结论
二层交换机用于小型的局域网络。这个就不用多言了,在小型局域网中,广播包影响不大,二层交换机的快速交换功能、多个接入端口和低谦价格为小型网络用户提供了很完善的解决方案。
路由器的优点在于接口类型丰富,支持的三层功能强大,路由能力强大,适合用于大型的网络间的路由,它的优势在于选择最佳路由,负荷分担,链路备份及和其他网络进行路由信息的交换等等路由器所具有功能。
三层交换机的最重要的功能是加快大型局域网络内部的数据的快速转发,加入路由功能也是为这个目的服务的。如果把大型网络按照部门,地域等等因素划分成一个个小局域网,这将导致大量的网际互访,单纯的使用二层交换机不能实现网际互访;如单纯的使用路由器,由于接口数量有限和路由转发速度慢,将限制网络的速度和网络规模,采用具有路由功能的快速转发的三层交换机就成为首选。
一般来说,在内网数据流量大,要求快速转发响应的网络中,如全部由三层交换机来做这个工作,会造成三层交换机负担过重,响应速度受影响,将网间的路由交由路由器去完成,充分发挥不同设备的优点,不失为一种好的组网策略,当然,前提是客户的腰包很鼓,不然就退而求其次,让三层交换机也兼为网际互连。
第四层交换的一个简单定义是:它是一种功能,它决定传输不仅仅依据MAC地址(第二层网桥)或源目标IP地址(第三层路由),而且依据TCPUDP(第四层) 应用端口号。第四层交换功能就象是虚IP,指向物理服务器。它传输的业务服从的协议多种多样,有HTTP、FTP、NFS、Telnet或其他协议。这些业务在物理服务器基础上,需要复杂的载量平衡算法。在IP世界,业务类型由终端TCP或UDP端口地址来决定,在第四层交换中的应用区间则由源端和终端IP地址、TCP和UDP端口共同决定。
在第四层交换中为每个供搜寻使用的服务器组设立虚IP地址(VIP),每组服务器支持某种应用。在域名服务器(DNS)中存储的每个应用服务器地址是VIP,而不是真实的服务器地址。
当某用户申请应用时,一个带有目标服务器组的VIP连接请求(例如一个TCP SYN包)发给服务器交换机。服务器交换机在组中选取最好的服务器,将终端地址中的VIP用实际服务器的IP取代,并将连接请求传给服务器。这样,同一区间所有的包由服务器交换机进行映射,在用户和同一服务器间进行传输。
第四层交换的原理
OSI模型的第四层是传输层。传输层负责端对端通信,即在网络源和目标系统之间协调通信。在IP协议栈中这是TCP(一种传输协议)和UDP(用户数据包协议)所在的协议层。
在第四层中,TCP和UDP标题包含端口号(portnumber),它们可以唯一区分每个数据包包含哪些应用协议(例如HTTP、FTP等)。端点系统利用这种信息来区分包中的数据,尤其是端口号使一个接收端计算机系统能够确定它所收到的IP包类型,并把它交给合适的高层软件。端口号和设备IP地址的组合通常称作“插口(socket)”。 1和255之间的端口号被保留,他们称为“熟知”端口,也就是说,在所有主机TCPIP协议栈实现中,这些端口号是相同的。除了“熟知”端口外,标准UNIX服务分配在256到1024端口范围,定制的应用一般在1024以上分配端口号. 分配端口号的最近清单可以在RFc1700”Assigned Numbers”上找到。TCP/UDP端口号提供的附加信息可以为网络交换机所利用,这是第4层交换的基础。
熟知端口号举例
应用协议 端口号
FTP 20(数据)
21(控制)
TELNET 23
SMTP 25
HTTP 80
NNTP 119
NNMP 16
162(SNMP traps)
TCPUDP端口号提供的附加信息可以为网络交换机所利用,这是第四层交换的基础。
具有第四层功能的交换机能够起到与服务器相连接的“虚拟IP”(VIP)前端的作用。
每台服务器和支持单一或通用应用的服务器组都配置一个VIP地址。这个VIP地址被发送出去并在域名系统上注册。
在发出一个服务请求时,第四层交换机通过判定TCP开始,来识别一次会话的开始。然后它利用复杂的算法来确定处理这个请求的最佳服务器。一旦做出这种决定,交换机就将会话与一个具体的IP地址联系在一起,并用该服务器真正的IP地址来代替服务器上的VIP地址。
每台第四层交换机都保存一个与被选择的服务器相配的源IP地址以及源TCP 端口相关联的连接表。然后第四层交换机向这台服务器转发连接请求。所有后续包在客户机与服务器之间重新影射和转发,直到交换机发现
会话为止。
在使用第四层交换的情况下,接入可以与真正的服务器连接在一起来满足用户制定的规则,诸如使每台服务器上有相等数量的接入或根据不同服务器的容量来分配传输流。
如何选用合适的第四层交换
a,速度
为了在企业网中行之有效,第四层交换必须提供与第三层线速路由器可比拟的性能。也就是说,第四层交换必须在所有端口以全介质速度操作,即使在多个千兆以太网连接上亦如此。千兆以太网速度等于以每秒488000 个数据包的最大速度路由(假定最坏的情形,即所有包为以及网定义的最小尺寸,长64字节)。
b,服务器容量平衡算法
依据所希望的容量平衡间隔尺寸,第四层交换机将应用分配给服务器的算法有很多种,有简单的检测环路最近的连接、检测环路时延或检测服务器本身的闭环反馈。在所有的预测中,闭环反馈提供反映服务器现有业务量的最精确的检测。
c,表容量
应注意的是,进行第四层交换的交换机需要有区分和存贮大量发送表项的能力。交换机在一个企业网的核心时尤其如此。许多第二 三层交换机倾向发送表的大小与网络设备的数量成正比。对第四层交换机,这个数量必须乘以网络中使用的不同应用协议和会话的数量。因而发送表的大小随端点设备和应用类型数量的增长而迅速增长。第四层交换机设计者在设计其产品时需要考虑表的这种增长。大的表容量对制造支持线速发送第四层流量的高性能交换机至关重要.
d,冗余
第四层交换机内部有支持冗余拓扑结构的功能。在具有双链路的网卡容错连接时,就可能建立从一个服务器到网卡,链路和服务器交换器的完全冗
‘肆’ 交换机的工作原理是什么呢
交换机也叫交换式集线器,它通过对信息进行重新生成,并经过内部处理后转发至指定端口,具备自动寻址能力和交换作用,由于交换机根据所传递信息包的目的地址,将每一信息包独立地从源端口送至目的端口,避免了和其他端口发生碰撞。广义的交换机就是一种在通信系统中完成信息交换功能的设备。
交换机的工作原理 在计算机网络系统中,交换机是针对共享工作模式的弱点而推出的。集线器是采用共享工作模式的代表,如果把集线器比作一个邮递员,那么这个邮递员是个不认识字的“傻瓜”--要他去送信,他不知道直接根据信件上的地址将信件送给收信人,只会拿着信分发给所有的人,然后让接收的人根据地址信息来判断是不是自己的!而交换机则是一个“聪明”的邮递员--交换机拥有一条高带宽的背部总线和内部交换矩阵。交换机的所有的端口都挂接在这条背部总线上,当控制电路收到数据包以后,处理端口会查找内存中的地址对照表以确定目的MAC(网卡的硬件地址)的NIC(网卡)挂接在哪个端口上,通过内部交换矩阵迅速将数据包传送到目的端口。目的MAC若不存在,交换机才广播到所有的端口,接收端口回应后交换机会“学习”新的地址,并把它添加入内部地址表中。 可见,交换机在收到某个网卡发过来的“信件”时,会根据上面的地址信息,以及自己掌握的“常住居民户口簿”快速将信件送到收信人的手中。万一收信人的地址不在“户口簿”上,交换机才会像集线器一样将信分发给所有的人,然后从中找到收信人。而找到收信人之后,交换机会立刻将这个人的信息登记到“户口簿”上,这样以后再为该客户服务时,就可以迅速将信件送达了。
‘伍’ 交换机的工作原理和主要功能是什么
1、像集线器一样,交换机提供了大量可供线缆连接的端口,这样可以采用星型拓扑布线。
2、像中继器、集线器和网桥那样,当它转发帧时,交换机会重新产生一个不失真的方形电信号。3.像网桥那样,交换机在每个端口上都使用相同的转发或过滤逻辑。
3、像网桥那样,交换机将局域网分为多个冲突域,每个冲突域都是有独立的宽带,因此大大提高了局域网的带宽。
交换机通过方式进行交换:
1、直通式:直通方式的以太网交换机可以理解为在各端口间是纵横交叉的线路矩阵电话交换机。它在输入端口检测到一个数据包时,检查该包的包头,获取包的目的地址,启动内部的动态查找表转换成相应的输出端口,在输入与输出交叉处接通,把数据包直通到相应的端口,实现交换功能。
2、存储转发:存储转发方式是计算机网络领域应用最为广泛的方式。它把输入端口的数据包先存储起来,然后进行CRC(循环冗余码校验)检查,在对错误包处理后才取出数据包的目的地址,通过查找表转换成输出端口送出包。
‘陆’ 交换机的工作原理有哪些
二层交换机工作在数据链路层,主要用于转发数据帧,基于MAC地址表进行寻址,具体工作过程如下:
三层交换机工作在网络层,其技术原理包含:二层交换技术+三层转发技术,具体工作过程如下:
(1)首次寻找局域网某台计算机MAC地址,会以广播包的形式在链路上转发;该广播包中包含发送端的MAC地址。
(2)接收端收到该信息后,记录发送端MAC地址,并回复自身MAC地址信息;
(3)交换机记录MAC地址,再次发送同样MAC地址时查询MAC地址表,匹配到信息后发送单播包。
(1)假设两个使用IP协议的站点A、B通过三层交换机进行通信,发送站点A在数据发送前,将自己的IP地址与B站的IP地址进行比较,判断B站是否与自己在同一子网内。
(2)若目的站B与发送站A在同一子网内,则进行二层的转发。若两个站点不在同一子网内,如发送站A要与目的站B通信,发送站A就需要向三层交换模块发出ARP请求,当发送站A对三层交换模块广播出一个ARP请求时,如果三层交换模块在以前的通信过程中已经知道B站的MAC地址,则向发送站A回复B的MAC地址;否则三层交换模块会根据路由信息向B站广播一个ARP请求,B站得到ARP请求后向三层交换模块回复其MAC地址,三层交换模块保存地址并回复给发送站A,同时将B站的MAC地址发送到二层引擎的MAC地址表中。此后,A向B发送的数据包便全部交给二层交换处理,能够更好地实现信息高速转发。
‘柒’ 交换机工作原理简述
工作原理:
1、地址表
端口地址表记录了端口下包含主机的MAC地址,端口地址表是交换机上电后自动建立的,保存在RAM中,并且自动维护。
交换机隔离冲突域的原理是根据其端口表和转发决策决定的。
2、转发决策
交换机的转发决策有三种操作:丢弃、转发和扩散。
丢弃:当本端口下的主机访问已知本端口下的主机丢弃。
转发:当口端口下的主机访问已知端口下的主机时转发。
扩散:当某端口下的主机访问未知端口下的主机时要扩散。
每个操作都要记录下发包的MAC期,以备其他主机的访问。
‘捌’ 简述网络交换机工作原理
转载
交换机的工作原理
一、交换机的工作原理
1.交换机根据收到数据帧中的源MAC地址建立该地址同交换机端口的映射,并将其写入MAC地址表中。
2.交换机将数据帧中的目的MAC地址同已建立的MAC地址表进行比较,以决定由哪个端口进行转发。
3.如数据帧中的目的MAC地址不在MAC地址表中,则向所有端口转发。这一过程称为泛洪(flood)。
4.广播帧和组播帧向所有的端口转发。