⑴ 磁盘阵列何意思,有什么好处
阵列可以有几个盘组成一个大的,那样就是把数据分别存放在二个盘,优点比单盘读写速度快,缺点一个盘坏了,数据全没。2,一个硬盘储存,一个备份,优点不容易丢失数据,缺点浪费磁盘。详情你可以网络下,里面有几种阵列方法的,
⑵ 磁盘阵列有什么优点
磁盘阵列的基本功能及优点和缺点
RAID技术主要有以下三个基本功能:
(1)通过对磁盘上的数据进行条带化,实现对数据成块存取,减少磁盘的机械寻道时间,提高了数据存取速度。
(2)通过对一个阵列中的几块磁盘同时读取,减少了磁盘的机械寻道时间,提高数据存取速度。
(3)通过镜像或者存储奇偶校验信息的方式,实现了对数据的冗余保护。
优点
提高传输速率。RAID通过在多个磁盘上同时存储和读取数据来大幅提高存储系统的数据吞吐量(Throughput)。在RAID中,可以让很多磁盘驱动器同时传输数据,而这些磁盘驱动器在逻辑上又是一个磁盘驱动器,所以使用RAID可以达到单个磁盘驱动器几倍、几十倍甚至上百倍的速率。这也是RAID最初想要解决的问题。因为当时CPU的速度增长很快,而磁盘驱动器的数据传输速率无法大幅提高,所以需要有一种方案解决二者之间的矛盾。RAID最后成功了。
通过数据校验提供容错功能。普通磁盘驱动器无法提供容错功能,如果不包括写在磁盘上的CRC(循环冗余校验)码的话。RAID容错是建立在每个磁盘驱动器的硬件容错功能之上的,所以它提供更高的安全性。在很多RAID模式中都有较为完备的相互校验/恢复的措施,甚至是直接相互的镜像备份,从而大大提高了RAID系统的容错度,提高了系统的稳定冗余性。
缺点
RAID0没有冗余功能,如果一个磁盘(物理)损坏,则所有的数据都无法使用。
RAID1磁盘的利用率最高只能达到50%(使用两块盘的情况下),是所有RAID级别中最低的。
RAID0+1以理解为是RAID 0和RAID 1的折中方案。RAID 0+1可以为系统提供数据安全保障,但保障程度要比 Mirror低而磁盘空间利用率要比Mirror高。
关于服务器 更多你可以咨询亚太网络 邓
⑶ 做磁盘阵列有什么好处
RendanArrayofInexpensiveDisk,简称RAID技术。
现在已基本得到公认的有下面八种系列。
1.RAID0(0级盘阵列)
RAID0又称数据分块,即把数据分布在多个盘上,没有容错措施。其容量和数据传输率是单机容量的N倍,N为构成盘阵列的磁盘机的总数,I/O传输速率高,但平均无故障时间MTTF(MeanTimeToFailure)只有单台磁盘机的N分之一,因此零级盘阵列的可靠性最差。
2.RAID1(1级盘阵列)
RAID1又称镜像(Mirror)盘,采用镜像容错来提高可靠性。即每一个工作盘都有一个镜像盘,每次写数据时必须同时写入镜像盘,读数据时只从工作盘读出。一旦工作盘发生故障立即转入镜像盘,从镜像盘中读出数据,然后由系统再恢复工作盘正确数据。因此这种方式数据可以重构,但工作盘和镜像盘必须保持一一对应关系。这种盘阵列可靠性很高,但其有效容量减小到总容量一半以下。因此RAID1常用于对出错率要求极严的应用场合,如财政、金融等领域。
3.RAID2(2级盘阵列)
RAID2又称位交叉,它采用汉明码作盘错检验,无需在每个扇区之后进行CRC(CyclicReDundancycheck)检验。汉明码是一种(n,k)线性分组码,n为码字的长度,k为数据的位数,r为用于检验的位数,故有:n=2r-1r=n-k
因此按位交叉存取最有利于作汉明码检验。这种盘适于大数据的读写。但冗余信息开销还是太大,阻止了这类盘的广泛应用。
4.RAID3(3级盘阵列)
RAID3为单盘容错并行传输阵列盘。它的特点是将检验盘减小为一个(RAID2校验盘为多个,DAID1检验盘为1比1),数据以位或字节的方式存于各盘(分散记录在组内相同扇区号的各个磁盘机上)。它的优点是整个阵列的带宽可以充分利用,使批量数据传输时间减小;其缺点是每次读写要牵动整个组,每次只能完成一次I/O。
5.RAID4(4级盘阵列)
RAID4是一种可独立地对组内各盘进行读写的阵列。其校验盘也只有一个。
RAID4和RAID3的区别是:RAID3是按位或按字节交叉存取,而RAID4是按块(扇区)存取,可以单独地对某个盘进行操作,它无需象RAID3那样,那怕每一次小I/O操作也要涉及全组,只需涉及组中两台磁盘机(一台数据盘,一台检验盘)即可。从而提高了小量数据的I/O速率。
6.RAID5(5级盘阵列)
RAID5是一种旋转奇偶校验独立存取的阵列。它和RAID1、2、3、4各盘阵列的不同点,是它没有固定的校验盘,而是按某种规则把其冗余的奇偶校验信息均匀地分布在阵列所属的所有磁盘上。于是在同一台磁盘机上既有数据信息也有校验信息。这一改变解决了争用校验盘的问题,因此DAID5内允许在同一组内并发进行多个写操作。所以RAID5即适于大数据量的操作,也适于各种事务处理。它是一种快速,大容量和容错分布合理的磁盘阵列。
7.RAID6(6级盘阵列)
RAID6是一种双维奇偶校验独立存取的磁盘阵列。它的冗余的检、纠错信息均匀分布在所有磁盘上,而数据仍以大小可变的块以交叉方式存于各盘。这类盘阵列可容许双盘出错。
8.RAID7(7级盘阵列)
RAID7是在RAID6的基础上,采用了cache技术,它使得传输率和响应速度都有较大的提高。Cache是一种高速缓冲存储器,即数据在写入磁盘阵列以前,先写入cache中。一般采用cache分块大小和磁盘阵列中数据分块大小相同,即一块cache分块对应一块磁盘分块。在写入时将数据分别写入两个独立的cache,这样即使其中有一个cache出故障,数据也不会丢失。写操作将直接在cache级响应,然后再转到磁盘阵列。数据从cache写到磁盘阵列时,同一磁道的数据将在一次操作中完成,避免了不少块数据多次写的问题,提高了速度。在读出时,主机也是直接从cache中读出,而不是从阵列盘上读取,减少与磁盘读操作次数,这样比较充分地利用了磁盘带宽。
这样cache和磁盘阵列技术的结合,弥补了磁盘阵列的不足(如分块写请求响应差等缺陷),从而使整个系统以高效、快速、大容量、高可靠以及灵活、方便的存储系统提供给用户,从而满足了当前的技术发展的需要,尤其是多媒体系统的需要。
⑷ 简述RAID的分类及其优缺点
RAID技术经过不断的发展,现在已拥有了从 RAID 0 到 6 七种基本的RAID 级别。另外,还有一些基本RAID级别的组合形式,如RAID10(RAID 0与RAID 1的组合),RAID50(RAID 0与RAID 5的组合)等。
不同RAID 级别代表着不同的存储性能、数据安全性和存储成本。但我们最为常用的是下面的几种RAID形式。
1.RAID 0:
RAID 0被称为磁盘的条带化。所有数据在RAID集合中的所有磁盘上以数据块形式分布。RAID 0能够达到出众的性能水平,以为所存储的数据负载会被分散到更多的物理驱动器上。RAID 0没有产生奇偶校验。这就意味着数据在写入RAID 0磁盘时没有任何性能损耗。
RAID 0只适用于更好的性能,而非更高可用性的方面,因为RAID 0的磁盘上不会生产奇偶校验。另外,RAID 0至少需要两个物理磁盘。
2.RAID 1:
RAID 1被称为磁盘镜像,即所有的数据都会写入至少两块独立的物理磁盘。本质上说,两块磁盘彼此互为镜像。假如一块磁盘发生故障,另一块磁盘仍可用于数据应用。
磁盘镜像对要求快速的读取操作非常有用。数据写入磁盘时速度较慢,以为要两次分别写入。同样,RAID 1亦至少需要两块物理磁盘。
3.RAID 1 + 0:
RAID 1 + 0(也称为RAID 10)使用了磁盘镜像与条带化技术的组合。数据通常先进行镜像,然后再完成条带化。彼此镜像的条带化集合完成相同的任务,但比单独的条带化集合更具容错性。
假如你在条带化集合中丢失驱动器,那么对数据的存取访问必须源自另一条带化集合,应该原来的集合不再具备奇偶校验。 RAID 1 + 0至少需要四个物理磁盘。
4.RAID 2:
使用汉明码,RAID 2在数位级别条带化数据。近年以来,汉明码已被用作用于磁盘驱动器的纠错码,故此RAID 2已不再有使用。
5.RAID 3:
RAID 3所使用的技术被称为奇偶校验磁盘,将RAID控制器生成的奇偶校验信息存储到与实际数据磁盘分开的磁盘上,而非像RAID 5那样和数据在一起条带化。
当有大量数据请求时,例如应用于数据库,这种RAID类型的性能表现不佳。RAID 3对需要长时间持续传输数据的应用(如视频服务器)表现良好。另外,RAID 3至少需要三块物理磁盘。
6.RAID 4:
RAID 4使用专用的奇偶校验磁盘,并在磁盘间使用数据块级的条带化技术。 虽然这样有利于顺序数据访问,但使用专用奇偶校验磁盘可能会导致写入操作过程出现性能瓶颈。 现在RAID 4没有太多使用场合,更多使用诸如RAID 5等类型加以替代。
7.RAID 5:
RAID 5使用磁盘条带化与奇偶校验技术。数据分布在RAID集合的所有磁盘上,并且和在发生磁盘故障,进行数据重构时所用的奇偶校验信息混合在一起。
RAID 5是最常见的RAID类型,因为它在性能和可用性之间取得了良好的平衡。 RAID 5至少需要三块物理磁盘。
8.RAID 6:
RAID 6通过使用两个奇偶校验条来提高可靠性,在RAID集合丢失数据前可以兼容两块磁盘的故障。RAID 6通常应用在SATA环境,以及需要较长数据保留时间的解决方案中,例如数据归档或基于磁盘的备份中。
9.自适应RAID:
自适应RAID让RAID控制器自己找到如何在磁盘上存储奇偶校验码,可以在RAID 3和RAID 5之间选择,这取决于所要写入磁盘的数据类型适用哪一种RAID集合。
10.RAID 7:
RAID 7是一种非标准化的RAID类型——基于RAID 3和RAID 4的技术——需要用到专有硬件。 该RAID类型由现在已倒闭的Storage Computer公司注册拥有。
(4)存储阵列的优势扩展阅读
服务器做raid需要注意的事项:
1、首先我们要看主板是否支持raid功能,如果不支持可以购买一个pci的raid磁盘阵列卡。
2、修改硬盘模式为RAID Mode 。
3、重启电脑,创建一个磁盘阵列”RAID“。
4、调整自己需要的RAID Level,如调整为raid1(mirror),按Y完成创建raid。
5、回到bios设置,把boot启动选项boot option #1选择刚创建的raid,开机正常安装系统即可。
注意,不同的raid卡创建略有不同。
⑸ 什么是硬盘的磁盘阵列磁盘阵列有什么好处
磁盘阵列(Rendant Arrays of Inexpensive Disks,RAID),有“价格便宜且多余的磁盘阵列”之意。原理是利用数组方式来作磁盘组,配合数据分散排列的设计,提升数据的安全性。磁盘阵列是由很多便宜、容量较小、稳定性较高、速度较慢磁盘,组合成一个大型的磁盘组,利用个别磁盘提供数据所产生加成效果提升整个磁盘系统效能。同时利用这项技术,将数据切割成许多区段,分别存放在各个硬盘上。磁盘阵列还能利用同位检查(Parity Check)的观念,在数组中任一颗硬盘故障时,仍可读出数据,在数据重构时,将数据经计算后重新置入新硬盘中。
磁盘阵列其样式有三种,一是外接式磁盘阵列柜、二是内接式磁盘阵列卡,三是利用软件来仿真。 外接式磁盘阵列柜最常被使用大型服务器上,具可热抽换(Hot Swap)的特性,不过这类产品的价格都很贵。 内接式磁盘阵列卡,因为价格便宜,但需要较高的安装技术,适合技术人员使用操作。 利用软件仿真的方式,由于会拖累机器的速度,不适合大数据流量的服务器。
优点
提高传输速率。RAID通过在多个磁盘上同时存储和读取数据来大幅提高存储系统的数据吞吐量(Throughput)。在RAID中,可以让很多磁盘驱动器同时传输数据,而这些磁盘驱动器在逻辑上又是一个磁盘驱动器,所以使用RAID可以达到单个磁盘驱动器几倍、几十倍甚至上百倍的速率。这也是RAID最初想要解决的问题。因为当时CPU的速度增长很快,而磁盘驱动器的数据传输速率无法大幅提高,所以需要有一种方案解决二者之间的矛盾。RAID最后成功了。 通过数据校验提供容错功能。普通磁盘驱动器无法提供容错功能,如果不包括写在磁盘上的CRC(循环冗余校验)码的话。RAID容错是建立在每个磁盘驱动器的硬件容错功能之上的,所以它提供更高的安全性。在很多RAID模式中都有较为完备的相互校验/恢复的措施,甚至是直接相互的镜像备份,从而大大提高了RAID系统的容错度,提高了系统的稳定冗余性。
⑹ 使用磁盘阵列的好处是什么
速度更快,安全性更高,相互备份
⑺ 磁盘阵列分为哪几种,各有什么样的优缺点
磁盘阵列就是Raid
RAID(Rendant Array of Independent Disk 独立冗余磁盘阵列)技术是加州大学伯克利分校1987年提出,最初是为了组合小的廉价磁盘来代替大的昂贵磁盘,同时希望磁盘失效时不会使对数据的访问受损失而开发出一定水平的数据保护技术。RAID就是一种由多块廉价磁盘构成的冗余阵列,在操作系统下是作为一个独立的大型存储设备出现。RAID可以充分发挥出多块硬盘的优势,可以提升硬盘速度,增大容量,提供容错功能够确保数据安全性,易于管理的优点,在任何一块硬盘出现问题的情况下都可以继续工作,不会受到损坏硬盘的影响。
二、RAID的几种工作模式
1、RAID0
即Data Stripping数据分条技术。RAID 0可以把多块硬盘连成一个容量更大的硬盘群,可以提高磁盘的性能和吞吐量。RAID 0没有冗余或错误修复能力,成本低,要求至少两个磁盘,一般只是在那些对数据安全性要求不高的情况下才被使用。
(1)、RAID 0最简单方式
就是把x块同样的硬盘用硬件的形式通过智能磁盘控制器或用操作系统中的磁盘驱动程序以软件的方式串联在一起,形成一个独立的逻辑驱动器,容量是单独硬盘的x倍,在电脑数据写时被依次写入到各磁盘中,当一块磁盘的空间用尽时,数据就会被自动写入到下一块磁盘中,它的好处是可以增加磁盘的容量。速度与其中任何一块磁盘的速度相同,如果其中的任何一块磁盘出现故障,整个系统将会受到破坏,可靠性是单独使用一块硬盘的1/n。
(2)、RAID 0的另一方式
是用n块硬盘选择合理的带区大小创建带区集,最好是为每一块硬盘都配备一个专门的磁盘控制器,在电脑数据读写时同时向n块磁盘读写数据,速度提升n倍。提高系统的性能。
2、RAID 1
RAID 1称为磁盘镜像:把一个磁盘的数据镜像到另一个磁盘上,在不影响性能情况下最大限度的保证系统的可靠性和可修复性上,具有很高的数据冗余能力,但磁盘利用率为50%,故成本最高,多用在保存关键性的重要数据的场合。RAID 1有以下特点:
(1)、RAID 1的每一个磁盘都具有一个对应的镜像盘,任何时候数据都同步镜像,系统可以从一组镜像盘中的任何一个磁盘读取数据。
(2)、磁盘所能使用的空间只有磁盘容量总和的一半,系统成本高。
(3)、只要系统中任何一对镜像盘中至少有一块磁盘可以使用,甚至可以在一半数量的硬盘出现问题时系统都可以正常运行。
(4)、出现硬盘故障的RAID系统不再可靠,应当及时的更换损坏的硬盘,否则剩余的镜像盘也出现问题,那么整个系统就会崩溃。
(5)、更换新盘后原有数据会需要很长时间同步镜像,外界对数据的访问不会受到影响,只是这时整个系统的性能有所下降。
(6)、RAID 1磁盘控制器的负载相当大,用多个磁盘控制器可以提高数据的安全性和可用性。
3、RAID0+1
把RAID0和RAID1技术结合起来,数据除分布在多个盘上外,每个盘都有其物理镜像盘,提供全冗余能力,允许一个以下磁盘故障,而不影响数据可用性,并具有快速读/写能力。RAID0+1要在磁盘镜像中建立带区集至少4个硬盘。
4、RAID2
电脑在写入数据时在一个磁盘上保存数据的各个位,同时把一个数据不同的位运算得到的海明校验码保存另一组磁盘上,由于海明码可以在数据发生错误的情况下将错误校正,以保证输出的正确。但海明码使用数据冗余技术,使得输出数据的速率取决于驱动器组中速度最慢的磁盘。RAID2控制器的设计简单。
5、RAID3:带奇偶校验码的并行传送
RAID 3使用一个专门的磁盘存放所有的校验数据,而在剩余的磁盘中创建带区集分散数据的读写操作。当一个完好的RAID 3系统中读取数据,只需要在数据存储盘中找到相应的数据块进行读取操作即可。但当向RAID 3写入数据时,必须计算与该数据块同处一个带区的所有数据块的校验值,并将新值重新写入到校验块中,这样无形虽增加系统开销。当一块磁盘失效时,该磁盘上的所有数据块必须使用校验信息重新建立,如果所要读取的数据块正好位于已经损坏的磁盘,则必须同时读取同一带区中的所有其它数据块,并根据校验值重建丢失的数据,这使系统减慢。当更换了损坏的磁盘后,系统必须一个数据块一个数据块的重建坏盘中的数据,整个系统的性能会受到严重的影响。RAID 3最大不足是校验盘很容易成为整个系统的瓶颈,对于经常大量写入操作的应用会导致整个RAID系统性能的下降。RAID 3适合用于数据库和WEB服务器等。
6、 RAID4
RAID4即带奇偶校验码的独立磁盘结构,RAID4和RAID3很象,它对数据的访问是按数据块进行的,也就是按磁盘进行的,每次是一个盘,RAID4的特点和RAID3也挺象,不过在失败恢复时,它的难度可要比RAID3大得多了,控制器的设计难度也要大许多,而且访问数据的效率不怎么好。
7、 RAID5
RAID 5把校验块分散到所有的数据盘中。RAID 5使用了一种特殊的算法,可以计算出任何一个带区校验块的存放位置。这样就可以确保任何对校验块进行的读写操作都会在所有的RAID磁盘中进行均衡,从而消除了产生瓶颈的可能。RAID5的读出效率很高,写入效率一般,块式的集体访问效率不错。RAID 5提高了系统可靠性,但对数据传输的并行性解决不好,而且控制器的设计也相当困难。
8、RAID6
RAID6即带有两种分布存储的奇偶校验码的独立磁盘结构,它是对RAID5的扩展,主要是用于要求数据绝对不能出错的场合,使用了二种奇偶校验值,所以需要N+2个磁盘,同时对控制器的设计变得十分复杂,写入速度也不好,用于计算奇偶校验值和验证数据正确性所花费的时间比较多,造成了不必须的负载,很少人用。
9、 RAID7
RAID7即优化的高速数据传送磁盘结构,它所有的I/O传送均是同步进行的,可以分别控制,这样提高了系统的并行性和系统访问数据的速度;每个磁盘都带有高速缓冲存储器,实时操作系统可以使用任何实时操作芯片,达到不同实时系统的需要。允许使用SNMP协议进行管理和监视,可以对校验区指定独立的传送信道以提高效率。可以连接多台主机,当多用户访问系统时,访问时间几乎接近于0。但如果系统断电,在高速缓冲存储器内的数据就会全部丢失,因此需要和UPS一起工作,RAID7系统成本很高。
10、 RAID10
RAID10即高可靠性与高效磁盘结构它是一个带区结构加一个镜象结构,可以达到既高效又高速的目的。这种新结构的价格高,可扩充性不好。
11、 RAID53
RAID7即高效数据传送磁盘结构,是RAID3和带区结构的统一,因此它速度比较快,也有容错功能。但价格十分高,不易于实现。
个人使用磁盘RAID主要是用RAID0、 RAID1或RAID0+1工作模式。
⑻ 比较各个存储类型的优缺点
【块存储】
典型设备:磁盘阵列,硬盘
块存储主要是将裸磁盘空间整个映射给主机使用的,就是说例如磁盘阵列里面有5块硬盘(为方便说明,假设每个硬盘1G),然后可以通过划逻辑盘、做Raid、或者LVM(逻辑卷)等种种方式逻辑划分出N个逻辑的硬盘。(假设划分完的逻辑盘也是5个,每个也是1G,但是这5个1G的逻辑盘已经于原来的5个物理硬盘意义完全不同了。例如第一个逻辑硬盘A里面,可能第一个200M是来自物理硬盘1,第二个200M是来自物理硬盘2,所以逻辑硬盘A是由多个物理硬盘逻辑虚构出来的硬盘。)
接着块存储会采用映射的方式将这几个逻辑盘映射给主机,主机上面的操作系统会识别到有5块硬盘,但是操作系统是区分不出到底是逻辑还是物理的,它一概就认为只是5块裸的物理硬盘而已,跟直接拿一块物理硬盘挂载到操作系统没有区别的,至少操作系统感知上没有区别。
此种方式下,操作系统还需要对挂载的裸硬盘进行分区、格式化后,才能使用,与平常主机内置硬盘的方式完全无异。
优点:
1、 这种方式的好处当然是因为通过了Raid与LVM等手段,对数据提供了保护。
2、 另外也可以将多块廉价的硬盘组合起来,成为一个大容量的逻辑盘对外提供服务,提高了容量。
3、 写入数据的时候,由于是多块磁盘组合出来的逻辑盘,所以几块磁盘可以并行写入的,提升了读写效率。
4、 很多时候块存储采用SAN架构组网,传输速率以及封装协议的原因,使得传输速度与读写速率得到提升。
缺点:
1、采用SAN架构组网时,需要额外为主机购买光纤通道卡,还要买光纤交换机,造价成本高。
2、主机之间的数据无法共享,在服务器不做集群的情况下,块存储裸盘映射给主机,再格式化使用后,对于主机来说相当于本地盘,那么主机A的本地盘根本不能给主机B去使用,无法共享数据。
3、不利于不同操作系统主机间的数据共享:另外一个原因是因为操作系统使用不同的文件系统,格式化完之后,不同文件系统间的数据是共享不了的。例如一台装了WIN7/XP,文件系统是FAT32/NTFS,而Linux是EXT4,EXT4是无法识别NTFS的文件系统的。就像一只NTFS格式的U盘,插进Linux的笔记本,根本无法识别出来。所以不利于文件共享。
【文件存储】
典型设备:FTP、NFS服务器
为了克服上述文件无法共享的问题,所以有了文件存储。
文件存储也有软硬一体化的设备,但是其实普通拿一台服务器/笔记本,只要装上合适的操作系统与软件,就可以架设FTP与NFS服务了,架上该类服务之后的服务器,就是文件存储的一种了。
主机A可以直接对文件存储进行文件的上传下载,与块存储不同,主机A是不需要再对文件存储进行格式化的,因为文件管理功能已经由文件存储自己搞定了。
优点:
1、造价交低:随便一台机器就可以了,另外普通以太网就可以,根本不需要专用的SAN网络,所以造价低。
2、方便文件共享:例如主机A(WIN7,NTFS文件系统),主机B(Linux,EXT4文件系统),想互拷一部电影,本来不行。加了个主机C(NFS服务器),然后可以先A拷到C,再C拷到B就OK了。(例子比较肤浅,请见谅……)
缺点:
读写速率低,传输速率慢:以太网,上传下载速度较慢,另外所有读写都要1台服务器里面的硬盘来承担,相比起磁盘阵列动不动就几十上百块硬盘同时读写,速率慢了许多。
【对象存储】
典型设备:内置大容量硬盘的分布式服务器
对象存储最常用的方案,就是多台服务器内置大容量硬盘,再装上对象存储软件,然后再额外搞几台服务作为管理节点,安装上对象存储管理软件。管理节点可以管理其他服务器对外提供读写访问功能。
之所以出现了对象存储这种东西,是为了克服块存储与文件存储各自的缺点,发扬它俩各自的优点。简单来说块存储读写快,不利于共享,文件存储读写慢,利于共享。能否弄一个读写快,利 于共享的出来呢。于是就有了对象存储。
首先,一个文件包含了了属性(术语叫metadata,元数据,例如该文件的大小、修改时间、存储路径等)以及内容(以下简称数据)。
以往像FAT32这种文件系统,是直接将一份文件的数据与metadata一起存储的,存储过程先将文件按照文件系统的最小块大小来打散(如4M的文件,假设文件系统要求一个块4K,那么就将文件打散成为1000个小块),再写进硬盘里面,过程中没有区分数据/metadata的。而每个块最后会告知你下一个要读取的块的地址,然后一直这样顺序地按图索骥,最后完成整份文件的所有块的读取。
这种情况下读写速率很慢,因为就算你有100个机械手臂在读写,但是由于你只有读取到第一个块,才能知道下一个块在哪里,其实相当于只能有1个机械手臂在实际工作。
而对象存储则将元数据独立了出来,控制节点叫元数据服务器(服务器+对象存储管理软件),里面主要负责存储对象的属性(主要是对象的数据被打散存放到了那几台分布式服务器中的信息),而其他负责存储数据的分布式服务器叫做OSD,主要负责存储文件的数据部分。当用户访问对象,会先访问元数据服务器,元数据服务器只负责反馈对象存储在哪些OSD,假设反馈文件A存储在B、C、D三台OSD,那么用户就会再次直接访问3台OSD服务器去读取数据。
这时候由于是3台OSD同时对外传输数据,所以传输的速度就加快了。当OSD服务器数量越多,这种读写速度的提升就越大,通过此种方式,实现了读写快的目的。
另一方面,对象存储软件是有专门的文件系统的,所以OSD对外又相当于文件服务器,那么就不存在文件共享方面的困难了,也解决了文件共享方面的问题。
所以对象存储的出现,很好地结合了块存储与文件存储的优点。
最后为什么对象存储兼具块存储与文件存储的好处,还要使用块存储或文件存储呢?
1、有一类应用是需要存储直接裸盘映射的,例如数据库。因为数据库需要存储裸盘映射给自己后,再根据自己的数据库文件系统来对裸盘进行格式化的,所以是不能够采用其他已经被格式化为某种文件系统的存储的。此类应用更适合使用块存储。
2、对象存储的成本比起普通的文件存储还是较高,需要购买专门的对象存储软件以及大容量硬盘。如果对数据量要求不是海量,只是为了做文件共享的时候,直接用文件存储的形式好了,性价比高。
⑼ 阵列卡的优点
磁盘阵列有许多优点:首先,提高了存储容量;其次,多台磁盘驱动器可并行工作,提高了数据传输率;提供校验和冗余,提高了数据的安全性...
RAID技术确实提供了比通常的磁盘存储更高的性能指标、数据完整性和数据可用性,尤其是在当今面临的I/O总是滞后于CPU性能的瓶颈问题越来越突出的情况下,RAID解决方案能够有效地弥补这个缺口。