⑴ 监控中心设计
拼接屏、拼接处理单元(实现视频的拼接、分割、漫游)、解码器,不需要矩阵
⑵ 道路监控系统的设计方案
一、概述:
近几年来,基础设施投资力度越来越大,道路建设便是其中之一。由于道路建设期一般较长,其增长速度远远跟不上车辆的急剧增长,使得交通状况日益恶化,这几乎是所有城市的通病。因而在城市交通管理部门建立功能完善的交通监控系统是改善交通现状的有效解决方法。通过交通监控系统,可以加强交通管理,提高现有道路的通行能力,协调处理突发性交通事件,缓和交通阻塞,从而改善交通状况。
功能完善的交通监控系统包括交通信号控制系统、电视监控系统、交通管理信息系统、通信系统及交通诱导系统等。欲有效管理交通,须利用监控系统对城市的交通信息进行采集、整理与分析,并针对这些资料提出交通控制的策略。因此,交通信息的采集在交通监控中占有非常重要的地位。
改革开放的深入,交通拥挤已经成为限制各行各业发展的主要因素之一。造成交通拥挤的原因主要为:路面窄、车辆多、违章行驶及警力不足。现代化的城市需要现代化的管理手段,城市的繁荣,对城市的综合管理提出了更高的要求。向科技要警力,用现代科学技术监督、疏导交通以减少违章已成为国内交通管理部门的一个急需解决的课题。
在进行该闭路监控(CCTV)系统工程设计的时候,我公司依照客户对道路监控系统的基本要求,本着架构合理、安全可靠、产品主流、低成本、低维护量作为出发点,并依此为客户提供先进、安全、可靠、高效的解决方案。易于集成、性能可靠、操作简便、技术先进、扩展性强、维护方便是我们的设计思想;为用户着想,使业主的投资更合理是我们的宗旨。
二、系统设计
系统设计依据
本安全防范系统设计完全符合中华人民共和国公安部有关条例和规范,包括:
1安全防范工程程序?GA/T75-94
2安全防范系统通用图形符号 GA/T74-94
3安全防范工程费用概预算编制办法 GA/70-94
4电子设备安装工程费用定额 HYD41-01-1999
5风险等级和防护级别的规定 GA/T38-92
6民用建筑闭路监视电视系统工程技术规范 GB50198-94
7防盗报警控制器通用技术条件 GB12663-90
8民用建筑电气设计规范 JGJ/T16-92
9中国电气装置安装工程施工及验收规范 GBJ232-82
10建筑与建筑群综合布线系统工程设计规范 CECS 72.95
11系统接地的形式及安全技术要求 GB14050-93
三.系统需求
1.摄像部分
摄像部分是电视监控系统的前沿部分,是整个系统的“眼睛”。它布置在被监视场所的某一位置上,使其视场角能覆盖整个被监视的各个部位。有时,被监视场所面积较大,为了节省摄像机所用的数量、简化传输系统及控制与显示系统,在摄像机上加装电动的(可遥控的)可变焦距(变倍)镜头,使摄像机所能观察的距离更远、更清楚,同时还把摄像机安装在电动云台上,通过控制器的控制,可以使云台带动摄像机进行水平和垂直方向的旋转,从而使摄像机能覆盖到的角度、面积更大。总之,摄像机就象整个系统的眼睛一样,把它监视的内容变为图象信号,传送给控制中心的监视器上。
2.传输部分
传输部分就是系统图象信号、声音信号、控制信号等的通道。电视监控系统多半采用视频基带传输方式。如果在摄像机距离控制中心较远的情况下,也有采用射频传输方式或光纤传输方式。一般酒店要求传输的距离都比较近,可采用基带传输方式,也就是75欧姆的视频同轴电缆。对图象信号的传输重点要求在图象信号经过传输系统后,不产生明显的噪声、失真(色度信号与亮度信号均不产生明显的失真),保证原始图象信号(从摄像机输出的图象信号)的清晰度和灰度等级没有明显下降等。
3.控制部分
控制部分是整个系统的“心脏”和“大脑”,是实现整个系统功能的指挥中心。控制部分主要由总控制台(有些系统还有副控制台)组成。总控制台中主要的功能有:视频信号放大与分配、图象信号的校正与补偿、图象信号的切换、图象信号的记录等;对摄像机、电动变焦镜头、云台等进行遥控,以完成对被监视场所全面、详细的监视或跟踪监视;对系统防区进行布防、撤防等功能。当前端防区有非法入侵时,报警信号传送到总控制台,可以显示报警防区、联动警号、闪灯、前端灯光、录像机等设备。
组装控制台时,遵循的主要原则是这样的:
根据系统中摄像机的台数,选择视频切换器的最大输入路数。视频切换器最大输入路数一般应大于摄像机的台数,以便为今后扩展时留有余地。根据系统所防范的风险等级及区域中要害地点的数目选择录像机的台数。需要连续录象的情况下,应选择“数字硬盘录像机”。
另外,可根据系统控制的要求,考虑在总控制台之外是否要设分控制台。
根据整个系统供电的要求,考虑电源的设定。
当系统有多路远距离信号传输时,还应根据远距离信号传送的方式(视频传输、光纤传输、射频平衡式传输等等),考虑在控制台中是否应增设解调装置(对应光纤传输或射频传输)、补偿装置(对应视频传输)、还原装置(对应平衡式视频传输)以及远端切换控制器装置(对应视频传输的远端切换方式)等等。
4、显示及记录部分
显示及记录部分有几台或多台监视器、数字硬盘录像机等设备组成。在电视监控系统中,特别是在有多台摄像机组成的电视监控系统中,一般都不是一台监视器对应一台摄像机进行显示,而是通过硬盘录像机把几台摄像机送来的图象信号进行合成同时显示在一台监视器上,也就是在一台较大屏幕的监视器上,把屏幕分成几个面积相等的小画面(四画面、六画面、九画面),每个小画面显示一个摄像机送来的图象,通过数字硬盘录像机进行存储。
利用安全防范技术进行安全防范首先对犯罪分子有一种威慑作用,使其不敢轻易作案;其次,一旦出现了入侵、盗窃等犯罪活动,安全防范系统能及时发现、及时报警,电视监控系统能自动记录下犯罪现场以及犯罪分子的犯罪过程,以便及时破案,节省了大量人力、物力。
5、电子警察部分
城市交通违章抓拍系统是现代城市交通管理的一种重要手段,在城市的交通要道设置该系统,能够有效的减少违章车辆,违章抓拍系统中有两种车辆检测方案的选择:视频车辆检测和线圈式车辆检测。
线圈式车辆检测器检测精度是可以满足客户需求的,但需要切割路面。
视频车辆检测的优点在于不用切割路面,但检测精度低。一般白天的检测精度可以超过50%;而晚上在30%-50%之间。就我们分析,此类产品在国外广泛成功应用的原因是路况简单,机动车、非机动车、行人混行的情况很少。
对比图
点击此处查看全部新闻图片
使用不同的系统和不同的检测方式抓拍律的差异很大。
从取证结果来看,该系统可以提供一张数码相机照片和3张视频图片。能够包含所有的违章信息—停车线、红绿灯、车牌号码等;3张视频图片和普通视频电子警察提供的全景照片相同,可以反映车辆的违章过程。
与数码电子警察相比,优势是可以提供车辆违章过程的信息,减少处罚争议。(正在拟定中的电子警察行业标准的讨论稿中强制要求电子警察系统提供车辆违章过程信息)
与数码电子警察相比,能够提供更清晰的违章照片。视频电子警察为了获得清晰的车牌照片,需要在每条被监控的车道设置一台摄像头。由于摄像头的分辨率有限,最高只能提供分辨率为720*576的图片,车牌特写图片一般只包含车尾部分;而数码相机照片的分辨率可以超过400万像素,照片中除了可以包含清晰的车牌还可以看到停车线和红绿灯,信息量远远大于视频照片,且清晰度天壤之别。能够提高照片的有效率。视频系统为了获得清晰的车牌照片,必须缩小取景范围,这样将导致对于车速的适应性降低,车辆较快时可能导致无法拍到车牌或拍到的车牌无法辨认。
视频+数码组合式电子警察方案,其技术难点是如何融合两种技术。由于得到数码相机厂商的支持,掌握了数码相机的底层控制技术,相机的拍照和设置完全由软件控制,这是推出组合系统的前提。因为一般的数码电子警察系统的拍照是通过对数码相机的快门进行控制的,实际是一种半机械的方式。基于这种技术是无法将数码相机控制和视频采集有效的融合的。违章车牌的照片和违章过程的照片是一一对应的,如果不能从底层控制数码相机是无法实现的。
以下描述视频+数码组合式电子警察系统的工作流程:
工控机扫描车辆检测器提供的车辆状态信息和红绿灯信号以判断是否有违章现象发生;
如果在红灯状态,车辆检测器监测到由车辆进入线圈,工控机将采集第一张违章视频图片;当监测到该车辆离开线圈时,工控机采集第二张违章过程图片并同时通过消息控制数码相机抓拍违章照片,数码相机在存储照片时将是用同样的ID号以便图片关联,该ID号在每次抓拍时产生;
如果埋设的是双线圈,在违章车辆离开第二个线圈时,工控机采集第三张违章过程图片;如果是单线圈,可以在第二张违章图片拍完后延时拍第三张违章过程图片。
软件界面图
点击此处查看全部新闻图片
2.1 系统组成
·视频矩阵切换器
·控制键盘
·前端摄像机
·数字硬盘录像机
·21”彩色监视器
·车辆违章抓拍系统
·视频光端机
⑶ 通过3M流量的网络将10台硬盘录像机的150路视频流在网络监控中心实现集中存储需要哪些设备
3M确实太少了点,传6路还勉强可以,实现集中存储首先要有一个支持集中存储的管理平台,其次是存储介质,比如是多台大容量硬盘的电脑还是专用的IP SAN或更专业的存储设备,不过最重要的还是带宽,要不然存的都是照片,也实去了他的实际意义,还有前端本身是硬盘录像机,采用分散存储集中回放的设计方案在这种带宽下是最合理的
⑷ 存储容量的存贮容量的设计
根据要求,福建工程学院监控系统采用集中式存储解决方案。具体设计为:在监控中心部署H3C EX1000S IPSAN存储服务器,前端所有摄像头的图像通过监控专网传输到监控中心,集中存储到IPSAN服务器上。 监控平台建成后,还需针对存储需求进行不同码流设计: CIF:图像分辨率为352×288 D1:图像分辨率为720×576 采用CIF方式:每路每秒是采用512K进行存储,我们参考512k存储系统按照160个摄像头存储30天的需求,共需要存储容量; (计算公式:存储容量(GB)=(码流/1024/1024/8)×CBR影响系数×60秒×60分钟×24小时×天数) 以512K单路视频图像码流,计算图像存储容量。 每小时容量=3600秒×(512/1024/1024/8)×1.10=0.242G/小时 每路图像一天24小时 一天容量=24 Hour×0.242GB/Hour=5.801GB/天 一月容量=30 天×5.801GB/天=174.03GB 160个摄像头保存30天容量=160×174.03GB =27844.8GB=27.8TB 采用Full D1方式:每路每秒是采用2M进行存储,我们参考2M存储系统按照14个摄像头存储30天的需求,共需要存储容量; (计算公式:存储容量(GB)=(码流/1024/1024/8)×CBR影响系数×60秒×60分钟×24小时×天数) 以1M单路视频图像码流,视频图像分辨率为D1 720*576 PAL 25帧,计算图像存储容量。 每小时容量=3600秒×(2048/1024/1024/8)×1.10=0.967G/小时 每路图像一天24小时 一天容量=24 Hour×0.967GB/Hour=23.203GB/天 一月容量=30 天*23.203GB/天=696.09GB 14个摄像头保存30天容量=14×696.09GB =9745.26GB=9.75TB
⑸ 监控摄像头怎么存储
监控摄像头的存储方式为云端存储。网络的视频监控系统基本上采用中心录像服务器来存储录像。中央录像服务器管理方便,安全可靠,但因为录像随时进行,数据流量大,对承载网带来很大压力。
如果将录像存储边缘化,虽然可以减少视频流的数量,缓减承载网压力,但分散的录像数据将给录像的管理带来很大的麻烦,录像数据的安全性也将大大降低。
由此可见,未来大量的存储需求发生的位置不可能由中心统一存储来承担,而大量的分布式、差异性存储却没有可用的技术方案。未来的视频监控系统要在录像存储方面进行合理的结构设计,才能满足实际的录像要求。
(5)监控中心存储设计扩展阅读:
本地录像,保存一定时间段内的本地视频监控录像资料,并能方便地查询、取证,为事后调查提供依据。
远程视频监控监控人员可远程任意调取网吧存储的监控图像,并可远程发出控制指令,录像资料的智能化检索、回放、调整摄像机镜头焦距、控制云台进行巡视或局部细节观察。
海量数据存储。网络化使得传统的本地录像功能可以转移到远程服务器上来实现,使得海量数据存储成为可能。同时,也要求系统具备更强的存储、检索和备份等功能。
⑹ 监控的设计实现
简介
监测站的设计与实现是整个无线远程监控系统研制开发的重点,监测站对信息数据处理的能力和精度将影响整个系统的最终性能。在整个开发过程中,监测站的设计是工作量最大、所需时间最长的一部分。监测站处于工作现场,只完成数据的采集、处理和控制,任务相对单一、固定,无须用詙大的台式机来完成;考虑到节能和布放方便,监测站多为嵌入式系统。根据整个无线远程监控系统所要实现的功能,和对数据处理与对传感器控制能力的要求,监测站设计的复杂程度和采用的具体技术是不一样的。
基于单片机的设计
采用单片机是大多数嵌入式系统设计时的首选方案。由于在片上集成有丰富的外设,具有良好的控制能力,单片机天生就是为嵌放式系统度身定做的,在嵌入式市场上占据了最大的份额。
基于单片机的设计方案一般适用于对数据处理要求不高,运算量不大的远程监控系统。根据需要,单片机可以选用较为低端的4位机或8位机,如8051等,也可选用功能较强的专用芯片,如MSP430FE42X系列。单片机主要用于监测站端的系统控制。片外存储器一般为RAM、EEPROM和Flash等存储器;I/O设备一般为键盘、LCD等供设计调试用的人机交互接口;传感器一般为话筒、摄像头、扬声器和伺服马达一类的设备。无线通信接口实现相对较为复杂。编解码器是可取舍的,对于低速率数据一般没有必要。根据系统的处理任务和信息的类别,编解码器可选用不同的芯生, 如CMX639(用于音频)或LD9320等,也可用编程逻辑器件实现。监测站软件可直接通过C或汇编语言实现,也可在实时操作系统上开发应用软件。对于低档的4位或8位单片机,控制能力较低,系统简单,一般采用直接编写控制程序的方法。
基于DSP的设计
众所周知,DSP的数字处理方面能力较强,技术已经很成熟,能处理各种运算的通用、专用芯片也很多。以DSP为核心设计开发的监测站,可以完成高速率数据处理,保证系统实时性方面的要求。
这类设计方案一般适用于数据处理运算量比较大,实时性要求高而对控制能力要求相对较低的监控系统。与以单片机为基础的监控系统不同的是,DSP除了作控制器以外,还可兼作数据计算、编/解码之用。对于较复杂的编/解码以及压缩解压运算(比如对图像视频数据的处理等)是否仍由DSP完成,须综合考虑。若DSP在系统控制和实现传输协议方面负担太重,则这部分运算需要由专门的处理芯片完成;若系统控制和传输协议较简单,或根本没有到上层协议栈,则这部分复杂的运算可由DSP完成。
基于MCU DSP的设计
显然,这种设计方式吸取了单片机和DSP各自的优点:单片机的特点决定其擅长于控制,DSP的内部结构保证较强的数据处理能力。两者的组合可实现一些相当复杂的系统功能,但由于系统中采用了两个处理器,其间的信息交互是设计这类监测站时须着重考虑的问题。只有单片机和DSP之间较好地协同工作,才能充分发挥各自的优点;否则,由于两者间的协调而耗费了大量资源,整体性能未必高于采用单一处理器的系统。实现单片机和DSP间通信协调的常用方法是采用双口RAM。
有些DSP或单片机厂家为了扩大芯片的适用范围,在原有基础上进行扩展,相互间容入了对方的特点,使同一芯片在数据处理和控制方面同时具有较好的性能。比如Microchip公司推出的dsPIC,使客户能方便地将单片机的功能转移到DSP上,推出的产品有dsPIC30FXXX系列。由于DSP和MCU两个功能模块在同一芯片内实现,提高了系统的可靠性、降低了监测站的设计难度并节省印制板空间。这类芯片得到广大用户的青睐。
基于MPU的设计
设计嵌入式产品的另一可选方案是采用基于微处理器的设计方式。与工业控制计算机相比,嵌入式微处理器具有体积小、重量轻、成本低、可靠性高等优点;同时,在该领域技术成熟、产品类型多、选择空间大,满足各种性能需求的处理器比较容易获得。随着采用RISC体系的高性能MPU(比如采用ARM构架的处理器芯片等)的出现,MPU在嵌入式领域中的地位经久不衰;但是,由于在设计监测站时,电路板上必须包括ROM、RAM、Flash、总线接口和各种外设等器件,系统的可靠性将有所下降,技术保密性差,实现难度也较大。
无线通信的设计实现
无线通信的设计相对于监测站而言较简单,有许多现有的产品和通信系统可以利用,重点只是在于从多种实现方式中作出最优的选择。
常用的实现方式有:利用现有的通信网络(GSM/GPRS、CDMA移动网等)和相应的无线通信产品;通过无线收发设备,如无线Modem,无线网桥等专门的无线局域网;利用收发集成芯片在监测站端实现电路板级与监控中心的无线通信。
利用网络实现无线通信
现有的通信网络较多,按业务建网是3G以前通信网络的特点,无线网络也不例外。设计无线远程监控系统可以借用的无线网络主要有:全球数字移动电话系统(GSM)、通用分组无线业务(GPRS)、采用码分多址(CDMA)技术的移动网、蜂窝式数字分组数据(CDPD)系统。
GSM(Globem System for Mobile)是全球最主要的2G标准,能够在低服务成本、低终端成本条件下提供较高的通信质量。就其业务而言,GSM是一个能够提供多种业务的移动ISDN(Integrated Services Digital Network,综合业务数字网络)。
GPRS(General Packet Packet Radio Service)在现有的GSM网络基础上增加一些硬件设备和软件升级,形成一个新的网络逻辑实体。它以分组交换技术为基础,采用IP数据网络协议,提高了现有的GSM网的数据业务传输速率,最高可达170kb/s。GPRS把分组交换技术引入现有GSM系统,使得移动通信和数据网络合二为一,具有“极速传送”、“永远在线”、“价格实惠”等特点。
CDMA(Code Division Multiple Access)网络采用扩展频谱技术,使用多种分集接收方式,使其具有容量大、通信质量好、保密性高和抗干扰能力强等特点。
CDPD(Cellular Digital Data)无线移动数据通信基于数字分组数据通信技术,以蜂窝移动通信为组网形式,是数据朎与移动通信的结合物。这种通信方式基于TCP/IP,系统结构为开放式,提供同层网络无缝连接和多协议网络服务。CDPD网络具有速度快、数据安全性高等特点,可与公用有线数据网络互联互通,非常适合传输实时、突发性和在线数据。
对使监控中心与监测站间的无线通信能利用现有的网络,对于特定的无线网需用相应的接入设备。这类设备市面上有现成的产品可供选择。接入GSM网络的通信模块有西门子的SIEMENS TC35i,接入GPRS可用西门子的MC35GPRS模块,接入CDMA网络的有华立H110CDMA模块和AnyDATA公司的CDMA Modem(DTS-800/1800),遵循CDPD方式的无线调制解调器(Modem)有OmniSky和NovatelMinstrel。
利用现有的网络组建无线远程监控系统,网络连接如图1所示。其中无线接入模块产品一般都提供有RS232作为外通信接口,有些天线是内置的。利用现有的网络覆盖面广和可漫游等特点,使监测站和控制中心的位置不受距离的限制;但由于利用公网,安全性会有所降低。
利用芯片实现无线通信
前两种组网方式的一个特点是采用现有的网络系统和产品,无线通信部分不须专门开发,实现较为容易。但由于所购买的产品均是独立器件,使整个系统特别是监测站一端结构复杂、体积庞大,往往在系统推广时会带来不利,且外购产品会增加系统的成本。若能将外购产品的功能与监测站集成在一起,在电路板级实现,将可以避免上述不利因素;但这会增加系统开发的难度,延长研制周期。须权衡利弊,根据项目组的开发实力和系统生命周期作最有利的选择。
采用此方法设计监测站需要实现的部分只是图1、2和3中的无线通信接口(可参看本文的网络版全文)。这部分的硬件实时框图以及处理器、存储器的关系大致如图4所示。各个子模块都有多种芯片可供选择,比如射频前端可用ML2751和RTF6900,实现调制/解调的有ML2722,扩频、解扩可用LD9002DX2和Stel-2000A等。
设计实现2
控制中心的设计相对于监测站的设计开发来讲较为简单,硬件设计少,除了普通微机(或工作站、工控机)外,还需要网络接入设备(若无线通信采用自行设计的模块实现,则须开发专用的无线网卡插入微机主板的预留总线插槽中)。控制中心的设计开发主要集中在应用软件的设计开发上,一般是基于Windows和Unix等常用操作系统的。当前用于此类软件开始、调试的工具较多,且功能强大,给控制中心软件的设计带来便利。
就软件的实现形式而言,一般除了界面模块外,其余各个功能模块均可设计成动态连接库文件(.dll)。人机接口界面模块可以为该无线远程监控系统的实际应用进行定制,以满足用户在界面美观、操作方便等方面的特殊要求。
采用C/C 语言在VC 开发环境下设计这样的系统软件涉及到的技术较多,包括内存管理、网络通信、多线程管理和数据库编程,甚至ActiveX等。
无线局域网方案
基于微波扩频技术及MPEG4编码技术的无线网络监控,主要采用一体化无线网络视频服务器以及普通枪机/球机。一体化无线网络视频服务器集成了2.4G/5.8Ghz无线网桥,MPEG4编码器,18dbi高增益天线。集成型设备安装简单,能在较短的时间内完成整个安装施工。产品为室外防水型设备,设备传输距离远,抗干扰性强,图像清晰。适合港口、码头、油田、工厂、小区、建筑工地等环境复杂区域。
无线AP覆盖方案
无线AP覆盖型监控解决方案主要采用无线AP以及无线网络摄像机。无线网络摄像机的IP网络信号通过无线AP覆盖的WiFi网络传输至监控中心的电脑上。监控中心的电脑PC通过软件来实现监控。
CDMA无线方案
CDMA无线视频监控系统主要由CDMA无线网络视频服务器以及普通摄像机组成。摄像机模拟信号通过CDMA视频服务器转换成IP数字信号后通过联通CDMA网络传输到监控中心。监控中心需要一台PC以及一个固定IP地址。在监控中心能控制前端摄像机的转动。
模拟无线方案
模拟无线视频监控是一种传统的无线视频监控方式,由模拟视频发射机及云台控制信号发射机组成。属于一对一通讯。
电力载波方案
电力载波视频监控系统主要采用电力载波技术,网络摄像机IP 信号通过电力载波传输到接收端。在接收端电脑上通过软件解码监控图像。普通电力载波传输的有效距离在120~140米。该解决方案适合于大楼,别墅区域等无线监控。
远程系统
远程监控系统由监控前端子系统、图像传输子系统、中心控制子系统、远程图像用户系统四部分组成。该图像远程监控系统是一套完全基于网络,采用B/S结构设计的数字视频远程监控系统,是目前业内远程监控系统的最高水平。
远程监控前端子系统由网络摄像机或普通摄像机和解码器组成。网络摄像机可以直接将图像转换为IP信号,可以不需要传输部分中的MPEG4/IP转换器。按现场的需要可以在前端安装红外摄像机和报警设备,以满足特殊的实验需要。图像传输子系统由MPEG4/IP转换器和校园宽带组成,也可以使用ADSL等设备与INTERNET直接连接。MPEG4/IP转换器及将普通摄像机接收到的图像转换成IP数据包,利用各种网络传输给服务器。这样可以利用现有的校园宽带网而不用铺设视频电缆,同时也可以使图像的传送不受距离的限制。
远程监控中心控制子系统由数字视频监控服务软件和PC服务器组成,提供视频图像的远程发布和用户管理功能。桌面控制系统由用户计算机组成,无需安装任何软件,只要使用浏览器并输入相应的用户名和密码就可以访问系统的各种功能。
远程监控系统的性能及特点
图像格式及网络流量:本系统采用MPEG4编码,分辨率为在最高704×576(PAL)25帧/秒,可提供从28.8kbps的Modem到3Mbps高质量的各种质量的视频图像。控制功能:远程监控系统可对镜头进行光圈、焦距、景深距离的控制等操作。对云台可做全方位控制。系统可以对云台的上下左右的转动进行全方位的远程控制。
可扩展性:系统采用B/S方式,三层结构分布式设计,可以方便地通过部署多个视频服务器增加系统支持的监控点的数量,来对系统进行扩容。
可用性:实验室网络视频监控系统采用“B/S结构”,客户端界面运行于Web浏览器,用户可以方便地从远程登录系统,并使用系统的所有功能。合理的系统划分,优化的功能布局,全中文操作界面,监控画面灵活的鼠标控制,这一切为用户提供强大的系统功能。
互操作性:系统提供标准的开发接口。
⑺ 无线监控怎么保存资料的
无线监控通过无线通讯手段传送到无线监控中心,并且自动形成视频数据库保存资料。
在无线监控系统中,无线监控中心需要实时得到被监控点的视频信息,并且该视频信息必须是连续、清晰的。在无线监控点,通常使用摄像头对现场情况进行实时采集,摄像头通过视频无线传输设备相连,并通过由无线电波将数据信号发送到监控中心。
系统功能强大、利用灵活、全数字化录像方便于保存和检索。根据监控中心存储空间的大小、图像采集的尺寸、质量和频率,可记录长达几小时到几个月的录像数据。用户可对记录下来的录像数据进行播放、定位及快放、慢放等操作。
(7)监控中心存储设计扩展阅读
在室外布置无线监控系统,最大的优势就是没有什么大的建筑物阻挡,因此,不用过多考虑无线信号的穿墙问题,并且室外无线监控系统中的无线网络摄像机一般都比较分散,但也要考虑一些外来信号的干扰问题。
外无线监控系统的组建要根据无线网络摄像机与监控中心的距离来确定,如果它们之间的距离没有超过400米(理论值),可以直接通过监控中心的无线AP就能接收到监控信号。
如果无线网络摄像机与监控中心之间的距离在1公里以内,可在靠近无线网络摄像机的地方增加无线AP,那么就要考虑采用无线网桥来实现数据传输采用无线网桥组建无线监控系统,在理论上最远能监控到50公里距离的场景。如果监控距离需要更远,可采用中继方式,将两个无线网桥以背靠背的形式安置,使无线信号传 输距离得到延伸。
室内无线监控系统与室外无线监控系统有所不同,室内无线监控系统中的无线网络摄像机分布比较密集,分布点比较多,并且有墙的阻挡,即使布置无线AP,其信号覆盖距离也不会太远。所以,室内无线监控系统在极小的空间内会布置比较多的无线AP。
特别是在一些酒店宾馆中,由于采用楼层设计,要实现无线监控就需要在每一层楼布置1到2个无线AP才能将信号覆盖到整个大楼。一个无线AP的信号基本上能够覆盖普通大楼中一层楼的每一个角落。