A. 主存储器和辅助存储器的区别是什么
1、易失性VS非易失性。
内存,例如随机存取内存(RAM),是具有易失性的。这意味着当系统断电时,数据就会丢失。与之相反,外部存储是非易失性的,因此即使没有电源,它也能保存数据。
2、性能和容量。
在大多数情况下,外存比内存的速度慢得多。而与外存不同的是,RAM直接通过更宽更快的总线连接到CPU。
3、存储时长区别
内存断电后不保留,外存能长期保留
4、访问权限区别:
CPU只能直接访问内存,外存的东西要先到内存CPU才能处理。
(1)主存储器访问扩展阅读
存储器的种类很多,按其用途可分为主存储器和辅助存储器,主存储器又称内存储器(简称内存),辅助存储器又称外存储器(简称外存)。
内存储器最突出的特点是存取速度快,但是容量小、价格贵;外存储器的特点是容量大、价格低,但是存取速度慢。内存储器用于存放那些立即要用的程序和数据;外存储器用于存放暂时不用的程序和数据。
内存储器和外存储器之间常常频繁地交换信息。外存通常是磁性介质或光盘,像硬盘,软盘,磁带,CD等,能长期保存信息,并且不依赖于电来保存信息,但是由机械部件带动,速度与CPU相比就显得慢的多。
B. 一般来说主存储器和外存储器的区别在于( )。
一般来说主存储器和外存储器的区别在于C、主存储器容量小、速度快、造价高,而外存储器容量大、速度慢、造价低。
存储器是许多存储单元的集合,按单元号顺序排列。每个单元由若干二进制位构成,以表示存储单元中存放的数值,这种结构和数组的结构非常相似,故在VHDL语言中,通常由数组描述存储器。
工作原理:
主存的工作方式是按存储单元的地址存放或读取各类信息,统称访问存储器。主存中汇集存储单元的载体称为存储体,存储体中每个单元能够存放一串二进制码表示的信息,该信息的总位数称为一个存储单元的字长。
存储单元的地址与存储在其中的信息是一一对应的,单元地址只有一个,固定不变,而存储在其中的信息是可以更换的。
C. 设某主存储器访问一次存储器的时间如下:传送地址1个时钟周期,读/写4个时钟周期,数据传送1个时钟周期
D. cpu访问主存储器的速度和访问cache的速度没有大的区别
有,并不是所有的数据cache 都比主存快,例如处理器引用某些地址时,先看cache里有没有,他有的化,就直接复制到哪里,速度就提高了,要是没有,一样跟主存一样速度。
主存储器(Main memory),简称主存。是计算机硬件的一个重要部件,其作用是存放指令和数据,并能由中央处理器(CPU)直接随机存取。现代计算机是为了提高性能,又能兼顾合理的造价,往往采用多级存储体系。即由存储容量小,存取速度高的高速缓冲存储器,存储容量和存取速度适中的主存储器是必不可少的。主存储器是按地址存放信息的,存取速度一般与地址无关。32位(比特)的地址最大能表达4GB的存储器地址。这对多数应用已经足够,但对于某些特大运算量的应用和特大型数据库已显得不够,从而对64位结构提出需求。
E. 设某主存储器访问一次存储器的时间如下
(1)单字宽主存,读写周期=1+4+1=6个时钟周期,16个字共需16*6=96个时钟周期
(2)4字宽主存一次可读写4字,16个字需要四次,但最后一次读出还需要增加3个时钟周期才能将数据送到CPU,总共需要6*4+3=27个周期
(3)4体交叉存储,每个体访问四次,最后再加上3个时钟传输数据,总共需要6*4+3=27个时钟周期
F. 主存储器是什么
主存储器英文全称是Main memory,也简称为主存。它是计算机硬件的一个非常重要的部件,它的作用是存放指令和数据,并且能由中央处理器直接随机存取。
主存储器是按地址存放信息的,存取速度一般与地址无关。
主存储器一般采用半导体存储器,它和辅助存储器相比下,具有容量小、读写速度快、价格高等特点。
(6)主存储器访问扩展阅读:
技术指标
1、容量
在一个存储器中容纳的存储单元总数通常称为该存储器的存储容量。存储容量用字数或字节数(B)来表示,如64K字,512KB,10MB。外存中为了表示更大的存储容量,采用MB,GB,TB等单位,存储容量这一概念反映了存储空间的大小。
2、时间
存储器访问时间或读∕写时间,是指从启动一次存储器操作到完成该操作所经历的时间。具体讲,从一次读操作命令发出到该操作完成,将数据读入数据缓冲寄存器为止所经历的时间,即为存储器存取时间。
3、周期
是指连续启动两次独立的存储器操作(如连续两次读操作)所需间隔的最小时间。通常,存储周期略大于存储时间,其时间单位为ns。
容量扩展
由于存储芯片的容量有限,主存储器往往要是由一定数量的芯片构成的位扩展:位扩展是指只在位数方面扩展(加大字长),而芯片的字数和存储器的字数。
位扩展的连接方式是将各存储芯片的地址线、片选线和读写线相应地并联起来,而将各芯片的数据线单独列出字扩展。字扩展是指仅在字数方面扩展,而位数不变。
字扩展将芯片的地址线、数据线、读写控制线并联,而片选信号来区分各个芯片字和位同时扩展:当构成一个容量较大的容器时,往往需要在字数方向和位数方向上同时扩展。
产品分类
1、RAM是构成内存的主要部分,其内容可以根据需要随时按地址读出或写入,以某种电触发器的状态存储,断电后信息无法保存,用于暂存数据,又可分为DRAM和SRAM两种。
RAM一般使用动态半导体存储器件(DRAM)。因为CPU工作的速度比RAM的读写速度快,所以CPU读写RAM时需要花费时间等待,这样就使CPU的工作速度下降。人们为了提高CPU读写程序和数据的速度,在RAM和CPU之间增加了高速缓存(Cache)部件。
2、ROM是只读存储器,出厂时其内容由厂家用掩膜技术写好,只可读出,但无法改写。信息已固化在存储器中,一般用于存放系统程序BIOS和用于微程序控制。
3、PROM是可编程ROM,只能进行一次写入操作(与ROM相同),但是可以在出厂后,由用户使用特殊电子设备进行写入。
4、EPROM是可擦除的PROM,可以读出,也可以写入。但是在一次写操作之前必须用紫外线照射,以擦除所有信息,然后再用EPROM编程器写入,可以写多次。
5、EEPROM是电可擦除PROM,与EPROM相似,可以读出也可写入,而且在写操作之前,不需要把以前内容先擦去,能够直接对寻址的字节或块进行修改。
参考资料来源:网络-主储存器
G. CPU能不能直接访问内存储器
CPU可以直接访问内存储器。
内存储器是与CPU进行沟通的桥梁,用于暂时存放CPU中的运算数据,以及与硬盘等外部存储器交换的数据。
只要计算机在运行中,CPU就会把需要运算的数据调到内存中进行运算,当运算完成后CPU再将结果传送出来,内存的运行也决定了计算机的稳定运行。
(7)主存储器访问扩展阅读:
CPU的主要功能:
1、处理指令
这是指控制程序中指令的执行顺序。程序中的各指令之间是有严格顺序的,必须严格按程序规定的顺序执行,才能保证计算机系统工作的正确性。
2、执行操作
一条指令的功能往往是由计算机中的部件执行一系列的操作来实现的。CPU要根据指令的功能,产生相应的操作控制信号,发给相应的部件,从而控制这些部件按指令的要求进行动作。
3、控制时间
时间控制就是对各种操作实施时间上的定时。在一条指令的执行过程中,在什么时间做什么操作均应受到严格的控制。只有这样,计算机才能有条不紊地工作。
4、处理数据
即对数据进行算术运算和逻辑运算,或进行其他的信息处理。其功能主要是解释计算机指令以及处理计算机软件中的数据, 并执行指令。
参考资料来源:网络-CPU
网络-内存储器
H. 在使用pentium4作为cpu的pc机中,cpu访问主存储器是通过什么进行的
CPU通过三条总线啦:地址总线,数据总线,系统控制总线。
I. 主存储器可以和什么直接交换信息
主存储器可以和CPU直接交换信息。
主存储器(Mainmemory)简称主存。是计算机硬件的一个重要部件,其作用是存放指令和数据,并能由中央处理器(CPU)直接随机存取。
现代计算机是为了提高性能,又能兼顾合理的造价,往往采用多级存储体系。即由存储容量小,存取速度高的高速缓冲存储器,存储容量和存取速度适中的主存储器是必不可少的。
主存储器是按地址存放信息的,存取速度一般与地址无关。32位(比特)的地址最大能表达4GB的存储器地址。这对多数应用已经足够,但对于某些特大运算量的应用和特大型数据库已显得不够,从而对64位结构提出需求。从70年代起,主存储器已逐步采用大规模集成电路构成。
CPU包括运算逻辑部件、寄存器部件和控制部件等,英文Logic components;运算逻辑部件,可以执行定点或浮点算术运算操作、移位操作以及逻辑操作,也可执行地址运算和转换。
寄存器部件,包括通用寄存器、专用寄存器和控制寄存器。
通用寄存器又可分定点数和浮点数两类,它们用来保存指令执行过程中临时存放的寄存器操作数和中间(或最终)的操作结果。
通用寄存器是中央处理器的重要组成部分,大多数指令都要访问到通用寄存器。通用寄存器的宽度决定计算机内部的数据通路宽度,其端口数目往往可影响内部操作的并行性。
专用寄存器是为了执行一些特殊操作所需用的寄存器。
控制寄存器(CR0~CR3)用于控制和确定处理器的操作模式以及当前执行任务的特性。CR0中含有控制处理器操作模式和状态的系统控制标志。
CR1保留不用;CR2含有导致页错误的线性地址;CR3中含有页目录表物理内存基地址,因此该寄存器也被称为页目录基地址寄存器PDBR(Page-Directory Base address Register)。