当前位置:首页 » 服务存储 » 存储架构发展历史
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

存储架构发展历史

发布时间: 2022-05-29 06:06:05

A. 求芯片储存发展历史

也许是“飞芯”机器的金字招牌越打越响,再加上MD机器在竞争中逐渐没落,MP3市场日渐兴旺,人们纷纷把选择MP3的目光投到“高音质”的节骨眼上,而方案厂商也在此时大力研发和推出性能更强的产品。其中以SIGMATEL3520和飞利浦PNX0102芯片最为突出。

如果说Sigmatel 3420只是Sigmatel 3410的升级版,那么Sigmatel 3520就可以说是让Sigmatel家族的发展迈出了历史性的一大步。Sigmatel 3520不仅继承了3420的MP3硬件解码,而且更改进了以往Sigmatel 3410/1342中音表现一般、高音生硬的缺点,音质清澈,信噪比据说可以达到95dB;增加了对MP3硬件编码、FM收音和USB2。0等功能的支持;Sigmatel 3520比前代产品在处理速度上也有所提升,达到了75MHz(34xx系列为65MHz)。当年国内MP3厂商魅族推出了性价比极高的E2就使用了Sigmatel3520方案,并最终凭借不俗的音质表现、极高的实用性和性价比而大受欢迎。

与此同时,飞利浦也并没有放慢脚步,将主要应用于数字电视、Hi-Fi音响等专业领域PNX系列芯片引入便携随声听的世界。PNX010x系列解码芯片包括PNX0101、PNX0102和PNX0105。PNX0101和PNX0102主要应用于闪存MP3随身听,PNX0105则是针对采用微硬盘存储介质的多媒体播放器。PNX0101内嵌4Mbit的可编程FLASH,只支持USB1.1。因而所有采用PNX0101芯片MP3所配备的USB2.0接口,都是通过另外增加USB2.0控制芯片来实现的。而PNX0102则内嵌有8Mbit的可编程 FLASH,自身提供了对USB2.0的支持。PNX0105同样支持USB2.0,而且还支持GDMA和IDE(ATA/ATAPI/PC Card)等接口,但它没有内置可编程FLASH。

性能上,PNX系列都内含速度高达80-100MIPS的24位EPICS7B音频DSP,内置了一个16位立体声音频ADC和DAC。PNX0101和 PNX0102芯片采用了32位的主频为60MHzARM7核心的RISC处理器,支持图浏览。PNX0105则是主频高达140MHzARM9核心的RISC处理器,支持视频播放。

虽然PNX0101/0102芯片在性能和功能上都有不错的提高,但在音质上的进步却并不明显。总体而言,0101/0102芯片的音质与SAA7750芯片不分伯仲,甚至更有的用户认为0101/0102芯片的声音还不如7750。这样与其他在音质上有长足进步的芯片比较起来,“飞芯”和其他芯片的差距显得大大缩小。

在这个时期,魅族完全看准了MP3市场逐步壮大的第一步。不仅在中低端市场发布了ME、E2等一系列Sigmatel芯片的产品,打响了国产MP3普及的第一枪,更加在中端市场推出了与进口产品相抗衡的“飞芯”产品E3。这款使用PNX0102芯片的E3配合LifeVibes顶级专业音效,其声音表现在当时算是比较优秀的,再加上了16Mbit 高速RAM和8层PCB版,保证了机器整体的性能和品质。这一切,不仅最终使魅族E3成为了国产机器发展历程中不可或缺的一款经典,更为魅族带来了国产机器中史无前例的关注。

采用炬力ATJ2085的昂达VX909

正当Sigmatel和Philips各自的新方案在MP3全球市场上你争我夺,我国珠海的一家较有实力的集成电路公司炬力也在此时渐渐进入人们的视野。炬力当年采用LQFP64pin封装的ATJ2085芯片,由于集成度高,周边元器件极少,非常利于生产。而且这款支持USB2.0(FS)传输,MP3/WMA/WAV/WMV/ASF等格式媒体播放,支持MTV电影播放,支持JPG、GIF、BMP图片浏览功能的芯片尽管音质一般,FM效果也有待的提高,但其平易近人的价格,也足以使它十分受国内一些MP3厂商支持。

尽管炬力当年准备以ATJ2085、2087、2089三款方案分别从低中高端打入市场,但令它受到业界瞩目的并非由于其产品,而是由于它和Sigmatel之间的官司。2005年3月16日,SigmaTel于当地时间周二向美国国际贸易委员会(ITC)提起诉讼,要求禁止采用珠海炬力产品的商品出口到美国。两个月前,SigmaTel向美国德克萨斯州联邦法院提出诉讼,指控珠海炬力侵犯了该公司用于便携式MP3播放器的多项电源管理专利。而在后来ITC(美国联邦国际贸易委员会)法院珠海炬力不侵犯Sigmatel的专利的一个月后,珠海炬力又向深圳中级人民法院提起诉讼,指控SigmaTel公司的产品,包括STMP 3502、3503、3505、3506、3510和3520等等,侵犯了该公司拥有的一项数字音频处理技术专利。珠海炬力希望法院禁止设计、生产、销售和使用侵权集成电路以及包含SigmaTel侵权集成电路的设备,以终止SigmaTel在中国的侵权行为。一直到了2007年,这场历时长达两年的互告和口水战在长时间的讨价还价后,最终才以双方达成全面和解协议的戏剧性结局而告终。
在一轮纯音播放器的火拼过后,人们在MP3播放器身上投注了更多的期望。于是乎,我们迎来了彩屏,迎来了视频播放。

Telechips是韩国一家着名的MP3芯片厂家,其解码芯片基于ARM架构,无论是性能还是音质都比较优秀,一经面世便获得一致好评,并且在韩国众多厂商的大力支持下成长迅速,是比较有潜力的解码芯片。但由于Telechip对外围电路设计要求比较高,因此在中国市场内的发展得比较低调。而随着彩屏和视频时代的来临,Telechip芯片也伴随着很多优秀的机器的推出而渐渐被人们所认识。其中除了使用了TCC770芯片的iAudio U3、三星K5,还有使用了TCC7801的iAudio D2和使用TCC8200的iRiver Clix2等。

既然提到了扩展能力强大的Telechip主控芯片,就不得不提“双核心架构”了。在与Telechip搭配当中最为人熟悉的就是英国的Wolfman音频芯片了。凭借着采用了TCC770+WM8750S的台电T29和采用了TCC8200+WM8978G的台电T39获得了巨大成功,使得国内众多玩家了解到了T芯的强劲性能,让众多的随身听爱好者感受到了欧胜Wolfman的纯净声音。这不仅为T39奠定了国产MP3音质王者的地位并延续至今,更让Wolfman音频芯片获得了更广阔的市场。

三星电子经过多年发展,已经成为了电子行业中少数掌握了多项基础元件研发及生产技术的龙头企业之一,而且三星也间接的成为了开创MP3产业的始作俑者,然而三星的芯片却一直并没有像它的名字一样来得强势。不过,随着魅族Miniplayer的推出,让人们亲自感受到了三星主控芯片的能耐。而为了延续“飞芯”传统,魅族在Miniplayer身上除了采用了三星基于ARM9TDMI内核主频达到200MHZ的SA58700X07,还进一步去掉了主控自带的Wolfson 8731音频处理器,而采用了飞利浦从UDA1380改进而来的380HN音频编码解码器。事实上,随着视频播放等多功能扩展,“飞芯”的优势早已日益淡化,Miniplayer也在后来改版的SL版本中,迎来了较受欢迎的欧胜WM8987音频芯片。不管如何,综合而言,Miniplayer的各方面设计也都依然是国产MP3的一座里程碑。

使用ADI BF533方案的歌美X750

随着视频需求在随身机器上的日益增长以及闪存芯片的日益普及,体积较大的AVI格式并不能于国内消费者的诉求,由此支持RMVB格式的呼声也日渐增长起来。就在这个时候,美国模拟器件公司(简称ADI)推出的BF533芯片使得RMVB直播取得革命性成果。时至今日,这款芯片依旧是很多厂商RMVB机型的主控芯片。基于Blackfin架构的BF533有主频500MHz和600MHz两种规格兼具了DSP的高速数据处理运算能力和CPU的系统管理能力,因此能够在信号处理和控制处理的过程中都能保证不俗的表现。

性能强大的爱可视605 wifi

与此同时,着名PMP厂商爱可视推出了爱可视605,并采用一向以高性能高规格着称的德州仪器(简称TI)方案,其主控芯片是TI的一款高端芯片——T1320。尽管TI方面一直没有公开芯片的相关参数,但从605的强劲表现看来,这款芯片的性能估计是目前PMP产品中无出其右的。当然,强悍的性能自然也就带来高昂的价格了。

首款RK27芯片播放器蓝魔RM970

不仅国外技术领先的厂商不断进行技术创新,而且国内较有实力的厂商也在技术上不断地作出努力。总部位于福建省福州市的瑞芯微是一家国内专注于数字音视频、移动多媒体芯片研究和开发的芯片设计企业。早在2006年,瑞芯微推出的RK2606A芯片就凭借着自身的低成本优势,让瑞芯微迅速成为国内MP3芯片市场上第一品牌。如今,瑞芯微的支持RMVB的解决方案是它最新的RK27方案,这一采用了DSP内核+ARM内核“双核联合”的方式,主控芯片频率为400MHz。它除了能够 支持包括RMVB在内的多种视频格式,它还提供了对于APE、FLAC等无损压缩音频格式以及MP3(8Kbps~384Kbps位速范围)、 WMA(32Kbps-320Kbps位速范围)的支持,另外,它可以搭载微软PlayFX音效。相比于之前的TI和ADI的解决方案,由于瑞芯微芯片的成本较低,一个瑞芯微的芯片成本一般只有ADI芯片的一半,因此,瑞芯微的终端产品价格要低廉很多,更加接近大众的消费能力。

在推出了一款ADI芯片的V2000之后,艾诺又推出了一款价格更实惠但功能不变的V2000SE

除了瑞芯微,君正华芯飞也可以说是国内微电子行业的另一匹黑马。华芯飞的RMVB解决方案与其他公司的解决方案略有不同。实际上,这一解决方案是由两家公司完成的,其主控芯片是由北京君正提供,而方案设计则是由华芯飞来完成。而这一解决方案也是目前解决方案中成本最低的方案。华芯飞的RMVB解决方案上,主要采用的主控芯片是由北京君正提供的JZ4740芯片。这一芯片是一款通用型32bit CPU,可以在WINCE或LINUX 操作系统上运行,而且功耗很低,在同等的资源下JZ4740功耗是其他主控芯片的50-70%。成本低、耗能低、性能较好,使得华芯飞在RMVB市场上占取到了一片属于自己的天空。

后话

芸芸十年间,我们从MPman F10走到如今的随身多媒体设备与掌上电脑的结合(COWON Q5W),在眼花缭乱的产品背后起着支撑作用的,正是微电子技术的蓬勃发展。国产厂商的进步我们有目共睹,但我们思维和技术与世界水平的差距同样不可忽视。十年岁月,机器之多难以概全,方案之繁更难以尽诉。希望,往后的日子里,科技的发展和市场的竞争,能为我们带来更大的惊喜,让我们的生活变得更加多姿多彩。

B. 什么是对象存储

什么是对象存储?

存储局域网(SAN)和网络附加存储(NAS)是我们比较熟悉的两种主流网络存储架构,而对象存储(Object-based Storage)是一种新的网络存储架构,基于对象存储技术的设备就是对象存储设备(Object-based Storage Device)简称OSD。

对象存储的发展历史:

1999年成立的全球网络存储工业协会(SNIA)的对象存储设备(Object Storage Device)工作组发布了ANSI的X3T10标准。

对象存储的优点:

总体上来讲,对象存储同兼具SAN高速直接访问磁盘特点及NAS的分布式共享特点。

SAN(Storage Area Network)结构

采用SCSI 块I/O的命令集,通过在磁盘或FC(Fiber Channel)级的数据访问提供高性能的随机I/O和数据吞吐率,它具有高带宽、低延迟的优势,在高性能计算中占有一席之地,如SGI的CXFS文件系统就是基于SAN实现高性能文件存储的,但是由于SAN系统的价格较高,且可扩展性较差,已不能满足成千上万个CPU规模的系统。

C. 数据结构的发展历史

数据结构(data structure)是带有结构特性的数据元素的集合,它研究的是数据的逻辑结构和数据的物理结构以及它们之间的相互关系,并对这种结构定义相适应的运算,设计出相应的算法,并确保经过这些运算以后所得到的新结构仍保持原来的结构类型。简而言之,数据结构是相互之间存在一种或多种特定关系的数据元素的集合,即带“结构”的数据元素的集合。“结构”就是指数据元素之间存在的关系,分为逻辑结构和存储结构。[2]
数据的逻辑结构和物理结构是数据结构的两个密切相关的方面,同一逻辑结构可以对应不同的存储结构。算法的设计取决于数据的逻辑结构,而算法的实现依赖于指定的存储结构。[2]
数据结构的研究内容是构造复杂软件系统的基础,它的核心技术是分解与抽象。通过分解可以划分出数据的3个层次;再通过抽象,舍弃数据元素的具体内容,就得到逻辑结构。类似地,通过分解将处理要求划分成各种功能,再通过抽象舍弃实现细节,就得到运算的定义。上述两个方面的结合可以将问题变换为数据结构。这是一个从具体(即具体问题)到抽象(即数据结构)的过程。然后,通过增加对实现细节的考虑进一步得到存储结构和实现运算,从而完成设计任务。这是一个从抽象(即数据结构)到具体(即具体实现)的过程。[3]
研究对象
数据的逻辑结构
指反映数据元素之间的逻辑关系的数据结构,其中的逻辑关系是指数据元素之间的前后间关系,而与他们在计算机中的存储位置无关。逻辑结构包括:[1]
1.集合:数据结构中的元素之间除了“同属一个集合” 的相互关系外,别无其他关系;[1]
2.线性结构:数据结构中的元素存在一对一的相互关系;[1]
3.树形结构:数据结构中的元素存在一对多的相互关系;[1]
4.图形结构:数据结构中的元素存在多对多的相互关系。[1]
数据的物理结构
指数据的逻辑结构在计算机存储空间的存放形式。[1]
数据的物理结构是数据结构在计算机中的表示(又称映像),它包括数据元素的机内表示和关系的机内表示。由于具体实现的方法有顺序、链接、索引、散列等多种,所以,一种数据结构可表示成一种或多种存储结构。[1]
数据元素的机内表示(映像方法): 用二进制位(bit)的位串表示数据元素。通常称这种位串为节点(node)。当数据元素有若干个数据项组成时,位串中与各个数据项对应的子位串称为数据域(data field)。因此,节点是数据元素的机内表示(或机内映像)。[1]
关系的机内表示(映像方法):数据元素之间的关系的机内表示可以分为顺序映像和非顺序映像,常用两种存储结构:顺序存储结构和链式存储结构。顺序映像借助元素在存储器中的相对位置来表示数据元素之间的逻辑关系。非顺序映像借助指示元素存储位置的指针(pointer)来表示数据元素之间的逻辑关系。[1]
数据存储结构
数据的逻辑结构在计算机存储空间中的存放形式称为数据的物理结构(也称为存储结构)。一般来说,一种数据结构的逻辑结构根据需要可以表示成多种存储结构,常用的存储结构有顺序存储、链式存储、索引存储和哈希存储等。[4]
数据的顺序存储结构的特点是:借助元素在存储器中的相对位置来表示数据元素之间的逻辑关系;非顺序存储的特点是:借助指示元素存储地址的指针表示数据元素之间的逻辑关系。[4]

D. 云存储架构分哪些层次,各自实现了什么功能

(1)存储层
云存储系统对外提供多种不同的存储服务,各种服务的数据统一存放在云存储系统中,形成一个海量数据池。从大多数网络服务后台数据组织方式来看,传统基于单服务器的数据组织难以满足广域网多用户条件下的吞吐性能和存储容量需求;基于P2P架构的数据组织需要庞大的节点数量和复杂编码算法保证数据可靠性。相比而言,基于多存储服务器的数据组织方法能够更好满足在线存储服务的应用需求,在用户规模较大时,构建分布式数据中心能够为不同地理区域的用户提供更好的服务质量。
云存储的存储层将不同类型的存储设备互连起来,实现海量数据的统一管理,同时实现对存储设备的集中管理、状态监控以及容量的动态扩展,实质是一种面向服务的分布式存储系统。
(2)基础管理层
云存储系统架构中的基础管理层为上层提供不同服务间公共管理的统一视图。通过设计统一的用户管理、安全管理、副本管理及策略管理等公共数据管理功能,将底层存储与上层应用无缝衔接起来,实现多存储设备之间的协同工作,以更好的性能对外提供多种服务。
(3)应用接口层
应用接口层是云存储平台中可以灵活扩展的、直接面向用户的部分。根据用户需求,可以开发出不同的应用接口,提供相应的服务。比如数据存储服务、空间租赁服务、公共资源服务、多用户数据共享服务、数据备份服务等。
(4)访问层
通过访问层,任何一个授权用户都可以在任何地方,使用一台联网的终端设备,按照标准的公用应用接口来登录云存储平台,享受云存储服务。
2云存储技术的优势
作为新兴的存储技术,与传统的购买存储设备和部署存储软件相比,云存储方式存在以下优点:
(1)成本低、见效快
传统的购买存储设备或软件定制方式下,企业根据信息化管理的需求,一次性投入大量资金购置硬件设备、搭建平台。软件开发则经过漫长的可行性分析、需求调研、软件设计、编码、测试这一过程。往往在软件开发完成以后,业务需求发生变化,不得不对软件进行返工,不仅影响质量,提高成本,更是延误了企业信息化进程,同时造成了企业之间的低水平重复投资以及企业内部周期性、高成本的技术升级。在云存储方式下,企业除了配置必要的终端设备接收存储服务外,不需要投入额外的资金来搭建平台。企业只需按用户数分期租用服务,规避了一次性投资的风险,降低了使用成本,而且对于选定的服务,可以立即投入使用,既方便又快捷。
(2)易于管理
传统方式下,企业需要配备专业的IT人员进行系统的维护,由此带来技术和资金成本。云存储模式下,维护工作以及系统的更新升级都由云存储服务提供商完成,企业能够以最低的成本享受到最新最专业的服务。
(3)方式灵活
传统的购买和定制模式下,一旦完成资金的一次性投入,系统无法在后续使用中动态调整。随着设备的更新换代,落后的硬件平台难以处置;随着业务需求的不断变化,软件需要不断地更新升级甚至重构来与之相适应,导致维护成本高昂,很容易发展到不可控的程度。而云存储方式一般按照客户数、使用时间、服务项目进行收费。企业可以根据业务需求变化、人员增减、资金承受能力,随时调整其租用服务方式,真正做到“按需使用”。
3云存储技术趋势
随着宽带网络的发展,集群技术、网格技术和分布式文件系统的拓展,CDN内容分发、P2P、数据压缩技术的广泛运用,以及存储虚拟化技术的完善,云存储在技术上已经趋于成熟,以“用户创造内容”和“分享”为精神的Web2.0推动了全网域用户对在线服务的认知

E. 存储器的层次结构层次结构发展历程什么原因导致存储器发展

SRAM一般用来作为计算机中的高速缓冲存储器(Cache)。 DRAM是动态随机存储器(...SDRAM的读写周期为10至15ns。 SDRAM基于双存储体结构,内含两个交错的存储...

F. 常用的存储架构有

顺序存储方法它是把逻辑上相邻的结点存储在物理位置相邻的存储单元里,结点间的逻辑关系由存储单元的邻接关系来体现,由此得到的存储表示称为顺序存储结构。顺序存储结构是一种最基本的存储表示方法,通常借助于程序设计语言中的数组来实现。
链接存储方法它不要求逻辑上相邻的结点在物理位置上亦相邻,结点间的逻辑关系是由附加的指针字段表示的。由此得到的存储表示称为链式存储结构,链式存储结构通常借助于程序设计语言中的指针类型来实现。
顺序存储和链接存储的基本原理
顺序存储和链接存储是数据的两种最基本的存储结构。
在顺序存储中,每个存储空间含有所存元素本身的信息,元素之间的逻辑关系是通过数组下标位置简单计算出来的线性表的顺序存储,若一个元素存储在对应数组中的下标位置为i,则它的前驱元素在对应数组中的下标位置为i-1,它的后继元素在对应数组中的下标位置为i+1。在链式存储结构中,存储结点不仅含有所存元素本身的信息,而且含有元素之间逻辑关系的信息。
数据的链式存储结构可用链接表来表示。
其中data表示值域,用来存储节点的数值部分。Pl,p2,…,Pill(1n≥1)均为指针域,每个指针域为其对应的后继元素或前驱元素所在结点(以后简称为后继结点或前驱结点)的存储位置。通过结点的指针域(又称为链域)可以访问到对应的后继结点或前驱结点,若一个结点中的某个指针域不需要指向其他结点,则令它的值为空(NULL)。
在数据的顺序存储中,由于每个元素的存储位置都可以通过简单计算得到,所以访问元素的时间都相同;而在数据的链接存储中,由于每个元素的存储位置保存在它的前驱或后继结点中,所以只有当访问到其前驱结点或后继结点后才能够按指针访问到,访问任一元素的时间与该元素结点在链式存储结构中的位置有关。
储存器方面的储存结构
储存系统的层次结构为了解决存储器速度与价格之间的矛盾,出现了存储器的层次结构。
程序的局部性原理
在某一段时间内,CPU频繁访问某一局部的存储器区域,而对此范围外的地址则较少访问的现象就是
程序的局部性原理。层次结构是基于程序的局部性原理的。对大量典型程序运行情况的统计分析得出的结论是:CPU对某些地址的访问在短时间间隔内出现集中分布的倾向。这有利于对存储器实现层次结构。
多级存储体系的组成
目前,大多采用三级存储结构。
即:Cache-主存-辅存,如下图:
3、多级存储系统的性能

考虑由Cache和主存构成的两级存储系统,其性能主要取决于Cache和贮存的存取周期以及访问它们的
次数。(存取周期为: Tc,Tm ;访问次数为: Nc,Nm)
(1)Cache的命中率 H= Nc / (Nc+Nm)

(2)CPU访存的平均时间 Ta= H * Tc+ (1-H) Tm
Cache-主存系统的效率
e= Tc / Ta
=1/H+(1-H)Tm/Tc
根据统计分析:Cache的命中率可以达到90%~98%
当Cache的容量为:32KB时,命中率为86%
64KB时,命中率为92%
128KB时,命中率为95%
256KB时,命中率为98%

G. 大数据时代下的三种存储架构

大数据时代下的三种存储架构_数据分析师考试

大数据时代,移动互联、社交网络、数据分析、云服务等应用的迅速普及,对数据中心提出革命性的需求,存储基础架构已经成为IT核心之一。政府、军队军工、科研院所、航空航天、大型商业连锁、医疗、金融、新媒体、广电等各个领域新兴应用层出不穷。数据的价值日益凸显,数据已经成为不可或缺的资产。作为数据载体和驱动力量,存储系统成为大数据基础架构中最为关键的核心。

传统的数据中心无论是在性能、效率,还是在投资收益、安全,已经远远不能满足新兴应用的需求,数据中心业务急需新型大数据处理中心来支撑。除了传统的高可靠、高冗余、绿色节能之外,新型的大数据中心还需具备虚拟化、模块化、弹性扩展、自动化等一系列特征,才能满足具备大数据特征的应用需求。这些史无前例的需求,让存储系统的架构和功能都发生了前所未有的变化。

基于大数据应用需求,“应用定义存储”概念被提出。存储系统作为数据中心最核心的数据基础,不再仅是传统分散的、单一的底层设备。除了要具备高性能、高安全、高可靠等特征之外,还要有虚拟化、并行分布、自动分层、弹性扩展、异构资源整合、全局缓存加速等多方面的特点,才能满足具备大数据特征的业务应用需求。

尤其在云安防概念被热炒的时代,随着高清技术的普及,720P、1080P随处可见,智能和高清的双向需求、动辄500W、800W甚至上千万更高分辨率的摄像机面市,大数据对存储设备的容量、读写性能、可靠性、扩展性等都提出了更高的要求,需要充分考虑功能集成度、数据安全性、数据稳定性,系统可扩展性、性能及成本各方面因素。

目前市场上的存储架构如下:

(1)基于嵌入式架构的存储系统

节点NVR架构主要面向小型高清监控系统,高清前端数量一般在几十路以内。系统建设中没有大型的存储监控中心机房,存储容量相对较小,用户体验度、系统功能集成度要求较高。在市场应用层面,超市、店铺、小型企业、政法行业中基本管理单元等应用较为广泛。

(2)基于X86架构的存储系统

平台SAN架构主要面向中大型高清监控系统,前端路数成百上千甚至上万。一般多采用IPSAN或FCSAN搭建高清视频存储系统。作为监控平台的重要组成部分,前端监控数据通过录像存储管理模块存储到SAN中。

此种架构接入高清前端路数相对节点NVR有了较高提升,具备快捷便利的可扩展性,技术成熟。对于IPSAN而言,虽然在ISCSI环节数据并发读写传输速率有所消耗,但其凭借扩展性良好、硬件平台通用、海量数据可充分共享等优点,仍然得到很多客户的青睐。FCSAN在行业用户、封闭存储系统中应用较多,比如县级或地级市高清监控项目,大数据量的并发读写对千兆网络交换提出了较大的挑战,但应用FCSAN构建相对独立的存储子系统,可以有效解决上述问题。

面对视频监控系统大文件、随机读写的特点,平台SAN架构系统不同存储单元之间的数据共享冗余方面还有待提高;从高性能服务器转发视频数据到存储空间的策略,从系统架构而言也增加了隐患故障点、ISCSI带宽瓶颈导致无法充分利用硬件数据并发性能、接入前端数据较少。上述问题催生了平台NVR架构解决方案。

该方案在系统架构上省去了存储服务器,消除了上文提到的性能瓶颈和单点故障隐患。大幅度提高存储系统的写入和检索速度;同时也彻底消除了传统文件系统由于供电和网络的不稳定带来的文件系统损坏等问题。

平台NVR中存储的数据可同时供多个客户端随时查询,点播,当用户需要查看多个已保存的视频监控数据时,可通过授权的视频监控客户端直接查询并点播相应位置的视频监控数据进行历史图像的查看。由于数据管理服务器具有监控系统所有监控点的录像文件的索引,因此通过平台CMS授权,视频监控客户端可以查询并点播整个监控系统上所有监控点的数据,这个过程对用户而言也是透明的。

(3)基于云技术的存储方案

当前,安防行业可谓“云”山“物”罩。随着视频监控的高清化和网络化,存储和管理的视频数据量已有海量之势,云存储技术是突破IP高清监控存储瓶颈的重要手段。云存储作为一种服务,在未来安防监控行业有着客观的应用前景。

与传统存储设备不同,云存储不仅是一个硬件,而是一个由网络设备、存储设备、服务器、软件、接入网络、用户访问接口以及客户端程序等多个部分构成的复杂系统。该系统以存储设备为核心,通过应用层软件对外提供数据存储和业务服务。

一般分为存储层、基础管理层、应用接口层以及访问层。存储层是云存储系统的基础,由存储设备(满足FC协议、iSCSI协议、NAS协议等)构成。基础管理层是云存储系统的核心,其担负着存储设备间协同工作,数据加密,分发以及容灾备份等工作。应用接口层是系统中根据用户需求来开发的部分,根据不同的业务类型,可以开发出不同的应用服务接口。访问层指授权用户通过应用接口来登录、享受云服务。其主要优势在于:硬件冗余、节能环保、系统升级不会影响存储服务、海量并行扩容、强大的负载均衡功能、统一管理、统一向外提供服务,管理效率高,云存储系统从系统架构、文件结构、高速缓存等方面入手,针对监控应用进行了优化设计。数据传输可采用流方式,底层采用突破传统文件系统限制的流媒体数据结构,大幅提高了系统性能。

高清监控存储是一种大码流多并发写为主的存储应用,对性能、并发性和稳定性等方面有很高的要求。该存储解决方案采用独特的大缓存顺序化算法,把多路随机并发访问变为顺序访问,解决了硬盘磁头因频繁寻道而导致的性能迅速下降和硬盘寿命缩短的问题。

针对系统中会产生PB级海量监控数据,存储设备的数量达数十台上百台,因此管理方式的科学高效显得十分重要。云存储可提供基于集群管理技术的多设备集中管理工具,具有设备集中监控、集群管理、系统软硬件运行状态的监控、主动报警,图像化系统检测等功能。在海量视频存储检索应用中,检索性能尤为重要。传统文件系统中,文件检索采用的是“目录-》子目录-》文件-》定位”的检索步骤,在海量数据的高清视频监控,目录和文件数量十分可观,这种检索模式的效率就会大打折扣。采用序号文件定位可以有效解决该问题。

云存储可以提供非常高的的系统冗余和安全性。当在线存储系统出现故障后,热备机可以立即接替服务,当故障恢复时,服务和数据回迁;若故障机数据需要调用,可以将故障机的磁盘插入到冷备机中,实现所有数据的立即可用。

对于高清监控系统,随着监控前端的增加和存储时间的延长,扩展能力十分重要。市场中已有友商可提供单纯针对容量的扩展柜扩展模式和性能容量同步线性扩展的堆叠扩展模式。

云存储系统除上述优点之外,在平台对接整合、业务流程梳理、视频数据智能分析深度挖掘及成本方面都将面临挑战。承建大型系统、构建云存储的商业模式也亟待创新。受限于宽带网络、web2.0技术、应用存储技术、文件系统、P2P、数据压缩、CDN技术、虚拟化技术等的发展,未来云存储还有很长的路要走。

以上是小编为大家分享的关于大数据时代下的三种存储架构的相关内容,更多信息可以关注环球青藤分享更多干货

H. 电脑硬盘的发展简史

从第一块硬盘RAMAC的产生到单碟容量高达666.7GB的硬盘,硬盘经历了以下几代的发展历史:
1956年,IBM的IBM 350 RAMAC是现代硬盘的雏形,它相当于两个冰箱的体积,不过其存储容量只有5MB。
1973年IBM 3340问世,他拥有“温彻斯特”这个绰号,来源于他两个30MB的存储单元,恰是当时出名的“温彻斯特来福枪”的口径和填弹量。至此,硬盘的基本架构被确立。
1980年,两位前IBM员工创立的公司开发出5.25英寸规格的5MB硬盘,这是首款面向台式机的产品,而该公司正是希捷(SEAGATE)公司。
80年代末,IBM公司推出MR(Magneto Resistive磁阻)技术令磁头灵敏度大大提升,使盘片的存储密度较之前的20Mbpsi(bit/每平方英寸)提高了数十倍,该技术为硬盘容量的巨大提升奠定了基础。1991年,IBM应用该技术推出了首款3.5英寸的1GB硬盘
1970年到1991年,硬盘盘片的存储密度以每年25%~30%的速度增长;从1991年开始增长到60%~80%;至今,速度提升到100%甚至是200%,从1997年开始的惊人速度提升得益于IBM的GMR(Giant Magneto Resistive,巨磁阻)技术,它使磁头灵敏度进一步提升,进而提高了存储密度
1989年 世界上第一款固态硬盘出现
1995年,为了配合Intel的LX芯片组,昆腾(Quantum)与Intel携手发布UDMA33接口——EIDE标准将原来接口数据传输率从16.6MB/s提升到了33MB/s 同年。希捷开发出液态轴承(FDB,Fluid Dynamic Bearing)马达。所谓的FDB就是指将陀螺仪上的技术引进到硬盘生产中,用厚度相当于头发直径十分之一的油膜取代金属轴承,减轻了硬盘噪音与发热量
1996年,希捷收购康诺(Conner Peripherals)
1998年2月,UDMA 66规格面世
2000年10月,迈拓(Maxtor)收购昆腾
2003年1月,日立宣布完成20.5亿美元的收购IBM硬盘事业部计划,并成立日立环球存储科技公司(Hitachi Global Storage Technologies, Hitachi GST)
2005年日立环储和希捷都宣布了将开始大量采用磁盘垂直写入技术(perpendicular recording),该原理是将平行于盘片的磁场方向改变为垂直(90度),更充分地利用的存储空间
2005年12月21日, 硬盘制造商希捷宣布收购迈拓(Maxtor)
2007年1月,日立环球存储科技宣布将会发售全球首只1Terabyte的硬盘,比原先的预定时间迟了一年多。硬盘的售价为399美元,平均每美分可以购得27.5MB硬盘空间。
2007年11月,Maxtor硬盘出厂的预先格式化的硬盘,被发现已植入会盗取在线游戏的帐号与密码的木马

I. 存储的架构有哪些

目前市场上的存储架构如下:
(1)基于嵌入式架构的存储系统
节点NVR架构主要面向小型高清监控系统,高清前端数量一般在几十路以内。系统建设中没有大型的存储监控中心机房,存储容量相对较小,用户体验度、系统功能集成度要求较高。在市场应用层面,超市、店铺、小型企业、政法行业中基本管理单元等应用较为广泛。
(2)基于X86架构的存储系统
平台SAN架构主要面向中大型高清监控系统,前端路数成百上千甚至上万。一般多采用IPSAN或FCSAN搭建高清视频存储系统。作为监控平台的重要组成部分,前端监控数据通过录像存储管理模块存储到SAN中。
此种架构接入高清前端路数相对节点NVR有了较高提升,具备快捷便利的可扩展性,技术成熟。对于IPSAN而言,虽然在ISCSI环节数据并发读写传输速率有所消耗,但其凭借扩展性良好、硬件平台通用、海量数据可充分共享等优点,仍然得到很多客户的青睐。FCSAN在行业用户、封闭存储系统中应用较多,比如县级或地级市高清监控项目,大数据量的并发读写对千兆网络交换提出了较大的挑战,但应用FCSAN构建相对独立的存储子系统,可以有效解决上述问题。
(3)基于云技术的存储方案
当前,安防行业可谓“云”山“物”罩。随着视频监控的高清化和网络化,存储和管理的视频数据量已有海量之势,云存储技术是突破IP高清监控存储瓶颈的重要手段。云存储作为一种服务,在未来安防监控行业有着客观的应用前景。
与传统存储设备不同,云存储不仅是一个硬件,而是一个由网络设备、存储设备、服务器、软件、接入网络、用户访问接口以及客户端程序等多个部分构成的复杂系统。该系统以存储设备为核心,通过应用层软件对外提供数据存储和业务服务。

J. 利用计算机管理数据技术的发展历史划分哪三阶段

数据管理技术的发展可以大体归为三个阶段:人工管理、文件系统和数据库管理系统。

一、人工管理

这一阶段(20世纪50年代中期以前),计算机主要用于科学计算。外部存储器只有磁带、卡片和纸带等还没有磁盘等直接存取存储设备。软件只有汇编语言,尚无数据管理方面的软件。数据处理方式基本是批处理。这个阶段有如下几个特点:

计算机系统不提供对用户数据的管理功能。用户编制程序时,必须全面考虑好相关的数据,包括数据的定义、存储结构以及存取方法等。程序和数据是一个不可分割的整体。数据脱离了程序就无任何存在的价值,数据无独立性。

数据不能共享。不同的程序均有各自的数据,这些数据对不同的程序通常是不相同的,不可共享;即使不同的程序使用了相同的一组数据,这些数据也不能共享,程序中仍然需要各自加人这组数据,谁也不能省略。基于这种数据的不可共享性,必然导致程序与程序之间存在大量的重复数据,浪费了存储空间。

不单独保存数据。基于数据与程序是一个整体,数据只为本程序所使用,数据只有与相应的程序一起保存才有价值,否则就毫无用处。所以,所有程序的数据均不单独保存。

二、文件系统

在这一阶段(20世纪50年代后期至60年代中期)计算机不仅用于科学计算,还利用在信息管理方面。随着数据量的增加,数据的存储、检索和维护问题成为紧迫的需要,数据结构和数据管理技术迅速发展起来。此时,外部存储器已有磁盘、磁鼓等直接存取的存储设备。软件领域出现了操作系统和高级软件。操作系统中的文件系统是专门管理外存的数据管理软件,文件是操作系统管理的重要资源之一。数据处理方式有批处理,也有联机实时处理。这个阶段有如下几个特点:

数据以“文件”形式可长期保存在外部存储器的磁盘上。由于计算机的应用转向信息管理,因此对文件要进行大量的查询、修改和插人等操作。

数据的逻辑结构与物理结构有了区别,但比较简单。程序与数据之间具有“设备独立性”,即程序只需用文件名就可与数据打交道,不必关心数据的物理位置。由操作系统的文件系统提供存取方法(读/写)。

文件组织已多样化。有索引文件、链接文件和直接存取文件等。但文件之间相互独立、缺乏联系。数据之间的联系要通过程序去构造。

数据不再属于某个特定的程序,可以重复使用,即数据面向应用。但是文件结构的设计仍然是基于特定的用途,程序基于特定的物理结构和存取方法,因此程序与数据结构之间的依赖关系并未根本改变。

对数据的操作以记录为单位。这是由于文件中只存储数据,不存储文件记录的结构描述信息。文件的建立、存取、查询、插人、删除、修改等所有操作,都要用程序来实现。

随着数据管理规模的扩大,数据量急剧增加,文件系统显露出一些缺陷:

数据冗余。由于文件之间缺乏联系,造成每个应用程序都有对应的文件,有可能同样的数据在多个文件中重复存储。
不一致性。这往往是由数据冗余造成的,在进行更新操作时,稍不谨慎,就可能使同样的数据在不同的文件中不一样。
数据联系弱。这是由于文件之间相互独立,缺乏联系造成的。

文件系统阶段是数据管理技术发展中的一个重要阶段。在这一阶段中,得到充分发展的数据结构和算法丰富了计算机科学,为数据管理技术的进一步发展打下了基础,现在仍是计算机软件科学的重要基础。

三、数据库管理系统

这一阶段(60年代后期),数据管理技术进入数据库系统阶段。数据库系统克服了文件系统的缺陷,提供了对数据更高级、更有效的管理。这个阶段的程序和数据的联系通过数据库管理系统来实现(DBMS),见图1.1.14所示。

概括起来,数据库系统阶段的数据管理具有以下特点:

采用数据模型表示复杂的数据结构。数据模型不仅描述数据本身的特征,还要描述数据之间的联系,这种联系通过存取路径实现。通过所有存取路径表示自然的数据联系是数据库与传统文件的根本区别。这样,数据不再面向特定的某个或多个应用,而是面向整个应用系统。数据冗余明显减少,实现了数据共享。

有较高的数据独立性。数据的逻辑结构与物理结构之间的差别可以很大。用户以简单的逻辑结构操作数据而无需考虑数据的物理结构。数据库的结构分成用户的局部逻辑结构、数据库的整体逻辑结构和物理结构三级。用户(应用程序或终端用户)的数据和外存中的数据之间转换由数据库管理系统实现。

数据库系统为用户提供了方便的用户接口。用户可以使用查询语言或终端命令操作数据库,也可以用程序方式(如用C一类高级语言和数据库语言联合编制的程序)操作数据库。

数据库系统提供了数据控制功能。例如,1。数据库的并发控制:对程序的并发操作加以控制,防止数据库被破坏,杜绝提供给用户不正确的数据;2。数据库的恢复:在数据库被破坏或数据不可靠时,系统有能力把数据库恢复到最近某个正确状态;3。数据完整性:保证数据库中数据始终是正确的;4。数据安全性:保证数据的安全,防止数据的丢失、破坏。

增加了系统的灵活性。对数据的操作不一定以记录为单位,可以以数据项为单位。