① 分区存储管理中如何实现分区的保护
分区保护的目的是防止未经核准的用户访问分区,常用以下两种方式。
(1)上界/下界寄存器保护。上界寄存器中存放的是作业的装入地址,下界寄存器装入的是作业的结束地址,形成的物理地址必须满足如下条件:
上界寄存器<=物理地址<=下界寄存器
(2)基址/限长寄存器保护。基址寄存器中存放的是作业的装入地址,限长寄存器装入的是作业长度,形成的物理地址必须满足如下条件:
基址寄存器<=物理地址<基址寄存器+限长寄存器
② 分区存储管理中常用哪些分配策略
1、固定分区存储管理
其基本思想是将内存划分成若干固定大小的分区,每个分区中最多只能装入一个作业。当作业申请内存时,系统按一定的算法为其选择一个适当的分区,并装入内存运行。由于分区大小是事先固定的,因而可容纳作业的大小受到限制,而且当用户作业的地址空间小于分区的存储空间时,造成存储空间浪费。
一、空间的分配与回收
系统设置一张“分区分配表”来描述各分区的使用情况,登记的内容应包括:分区号、起始地址、长度和占用标志。其中占用标志为“0”时,表示目前该分区空闲;否则登记占用作业名(或作业号)。有了“分区分配表”,空间分配与回收工作是比较简单的。
二、地址转换和存储保护
固定分区管理可以采用静态重定位方式进行地址映射。
为了实现存储保护,处理器设置了一对“下限寄存器”和“上限寄存器”。当一个已经被装入主存储器的作业能够得到处理器运行时,进程调度应记录当前运行作业所在的分区号,且把该分区的下限地址和上限地址分别送入下限寄存器和上限寄存器中。处理器执行该作业的指令时必须核对其要访问的绝对地址是否越界。
三、多作业队列的固定分区管理
为避免小作业被分配到大的分区中造成空间的浪费,可采用多作业队列的方法。即系统按分区数设置多个作业队列,将作业按其大小排到不同的队列中,一个队列对应某一个分区,以提高内存利用率。
2、可变分区存储管理
可变分区存储管理不是预先将内存划分分区,而是在作业装入内存时建立分区,使分区的大小正好与作业要求的存储空间相等。这种处理方式使内存分配有较大的灵活性,也提高了内存利用率。但是随着对内存不断地分配、释放操作会引起存储碎片的产生。
一、空间的分配与回收
采用可变分区存储管理,系统中的分区个数与分区的大小都在不断地变化,系统利用“空闲区表”来管理内存中的空闲分区,其中登记空闲区的起始地址、长度和状态。当有作业要进入内存时,在“空闲区表”中查找状态为“未分配”且长度大于或等于作业的空闲分区分配给作业,并做适当调整;当一个作业运行完成时,应将该作业占用的空间作为空闲区归还给系统。
可以采用首先适应算法、最佳(优)适应算法和最坏适应算法三种分配策略之一进行内存分配。
二、地址转换和存储保护
可变分区存储管理一般采用动态重定位的方式,为实现地址重定位和存储保护,系统设置相应的硬件:基址/限长寄存器(或上界/下界寄存器)、加法器、比较线路等。
基址寄存器用来存放程序在内存的起始地址,限长寄存器用来存放程序的长度。处理机在执行时,用程序中的相对地址加上基址寄存器中的基地址,形成一个绝对地址,并将相对地址与限长寄存器进行计算比较,检查是否发生地址越界。
三、存储碎片与程序的移动
所谓碎片是指内存中出现的一些零散的小空闲区域。由于碎片都很小,无法再利用。如果内存中碎片很多,将会造成严重的存储资源浪费。解决碎片的方法是移动所有的占用区域,使所有的空闲区合并成一片连续区域,这一技术称为移动技术(紧凑技术)。移动技术除了可解决碎片问题还使内存中的作业进行扩充。显然,移动带来系统开销加大,并且当一个作业如果正与外设进行I/O时,该作业是无法移动的。
3、页式存储管理
基本原理
1.等分内存
页式存储管理将内存空间划分成等长的若干区域,每个区域的大小一般取2的整数幂,称为一个物理页面有时称为块。内存的所有物理页面从0开始编号,称作物理页号。
2.逻辑地址
系统将程序的逻辑空间按照同样大小也划分成若干页面,称为逻辑页面也称为页。程序的各个逻辑页面从0开始依次编号,称作逻辑页号或相对页号。每个页面内从0开始编址,称为页内地址。程序中的逻辑地址由两部分组成:
逻辑地址
页号p
页内地址 d
3.内存分配
系统可用一张“位示图”来登记内存中各块的分配情况,存储分配时以页面(块)为单位,并按程序的页数多少进行分配。相邻的页面在内存中不一定相邻,即分配给程序的内存块之间不一定连续。
对程序地址空间的分页是系统自动进行的,即对用户是透明的。由于页面尺寸为2的整数次幂,故相对地址中的高位部分即为页号,低位部分为页内地址。
3.5.2实现原理
1.页表
系统为每个进程建立一张页表,用于记录进程逻辑页面与内存物理页面之间的对应关系。地址空间有多少页,该页表里就登记多少行,且按逻辑页的顺序排列,形如:
逻辑页号
主存块号
0
B0
1
B1
2
B2
3
B3
2.地址映射过程
页式存储管理采用动态重定位,即在程序的执行过程中完成地址转换。处理器每执行一条指令,就将指令中的逻辑地址(p,d)取来从中得到逻辑页号(p),硬件机构按此页号查页表,得到内存的块号B’,便形成绝对地址(B’,d),处理器即按此地址访问主存。
3.页面的共享与保护
当多个不同进程中需要有相同页面信息时,可以在主存中只保留一个副本,只要让这些进程各自的有关项中指向内存同一块号即可。同时在页表中设置相应的“存取权限”,对不同进程的访问权限进行各种必要的限制。
4、段式存储管理
基本原理
1.逻辑地址空间
程序按逻辑上有完整意义的段来划分,称为逻辑段。例如主程序、子程序、数据等都可各成一段。将一个程序的所有逻辑段从0开始编号,称为段号。每一个逻辑段都是从0开始编址,称为段内地址。
2.逻辑地址
程序中的逻辑地址由段号和段内地址(s,d)两部分组成。
3.内存分配
系统不进行预先划分,而是以段为单位进行内存分配,为每一个逻辑段分配一个连续的内存区(物理段)。逻辑上连续的段在内存不一定连续存放。
3.6.2实现方法
1.段表
系统为每个进程建立一张段表,用于记录进程的逻辑段与内存物理段之间的对应关系,至少应包括逻辑段号、物理段首地址和该段长度三项内容。
2.建立空闲区表
系统中设立一张内存空闲区表,记录内存中空闲区域情况,用于段的分配和回收内存。
3.地址映射过程
段式存储管理采用动态重定位,处理器每执行一条指令,就将指令中的逻辑地址(s,d)取来从中得到逻辑段号(s),硬件机构按此段号查段表,得到该段在内存的首地址S’, 该段在内存的首地址S’加上段内地址d,便形成绝对地址(S’+d),处理器即按此地址访问主存。
5、段页式存储管理
页式存储管理的特征是等分内存,解决了碎片问题;段式存储管理的特征是逻辑分段,便于实现共享。为了保持页式和段式上的优点,结合两种存储管理方案,形成了段页式存储管理。
段页式存储管理的基本思想是:把内存划分为大小相等的页面;将程序按其逻辑关系划分为若干段;再按照页面的大小,把每一段划分成若干页面。程序的逻辑地址由三部分组成,形式如下:
逻辑地址
段号s
页号p
页内地址d
内存是以页为基本单位分配给每个程序的,在逻辑上相邻的页面内存不一定相邻。
系统为每个进程建立一张段表,为进程的每一段各建立一张页表。地址转换过程,要经过查段表、页表后才能得到最终的物理地址。
③ 如何安全的存储用户的密码
保护密码最好的的方式就是使用带盐的密码hash(salted password hashing).对密码进行hash操作是一件很简单的事情,但是很多人都犯了错。接下来我希望可以详细的阐述如何恰当的对密码进行hash,以及为什么要这样做。
重要提醒
如果你打算自己写一段代码来进行密码hash,那么赶紧停下吧。这样太容易犯错了。这个提醒适用于每一个人,不要自己写密码的hash算法 !关于保存密码的问题已经有了成熟的方案,那就是使用phpass或者本文提供的源码。
什么是hash
hash("hello") =
hash("hbllo") =
hash("waltz") =
Hash算法是一种单向的函数。它可以把任意数量的数据转换成固定长度的“指纹”,这个过程是不可逆的。而且只要输入发生改变,哪怕只有一个bit,输出的hash值也会有很大不同。这种特性恰好合适用来用来保存密码。因为我们希望使用一种不可逆的算法来加密保存的密码,同时又需要在用户登陆的时候验证密码是否正确。
在一个使用hash的账号系统中,用户注册和认证的大致流程如下:
1, 用户创建自己的账号
2, 用户密码经过hash操作之后存储在数据库中。没有任何明文的密码存储在服务器的硬盘上。
3, 用户登陆的时候,将用户输入的密码进行hash操作后与数据库里保存的密码hash值进行对比。
4, 如果hash值完全一样,则认为用户输入的密码是正确的。否则就认为用户输入了无效的密码。
5, 每次用户尝试登陆的时候就重复步骤3和步骤4。
在步骤4的时候不要告诉用户是账号还是密码错了。只需要显示一个通用的提示,比如账号或密码不正确就可以了。这样可以防止攻击者枚举有效的用户名。
还需要注意的是用来保护密码的hash函数跟数据结构课上见过的hash函数不完全一样。比如实现hash表的hash函数设计的目的是快速,但是不够安全。只有加密hash函数(cryptographic hash functions)可以用来进行密码的hash。这样的函数有SHA256, SHA512, RipeMD, WHIRLPOOL等。
一个常见的观念就是密码经过hash之后存储就安全了。这显然是不正确的。有很多方式可以快速的从hash恢复明文的密码。还记得那些md5破解网站吧,只需要提交一个hash,不到一秒钟就能知道结果。显然,单纯的对密码进行hash还是远远达不到我们的安全需求。下一部分先讨论一下破解密码hash,获取明文常见的手段。
如何破解hash
字典和暴力破解攻击(Dictionary and Brute Force Attacks)
最常见的破解hash手段就是猜测密码。然后对每一个可能的密码进行hash,对比需要破解的hash和猜测的密码hash值,如果两个值一样,那么之前猜测的密码就是正确的密码明文。猜测密码攻击常用的方式就是字典攻击和暴力攻击。
Dictionary Attack
Trying apple : failed
Trying blueberry : failed
Trying justinbeiber : failed
...
Trying letmein : failed
Trying s3cr3t : success!
字典攻击是将常用的密码,单词,短语和其他可能用来做密码的字符串放到一个文件中,然后对文件中的每一个词进行hash,将这些hash与需要破解的密码hash比较。这种方式的成功率取决于密码字典的大小以及字典的是否合适。
Brute Force Attack
Trying aaaa : failed
Trying aaab : failed
Trying aaac : failed
...
Trying acdb : failed
Trying acdc : success!
暴力攻击就是对于给定的密码长度,尝试每一种可能的字符组合。这种方式需要花费大量的计算机时间。但是理论上只要时间足够,最后密码一定能够破解出来。只是如果密码太长,破解花费的时间就会大到无法承受。
目前没有方式可以阻止字典攻击和暴力攻击。只能想办法让它们变的低效。如果你的密码hash系统设计的是安全的,那么破解hash唯一的方式就是进行字典或者暴力攻击了。
查表破解(Lookup Tables)
对于特定的hash类型,如果需要破解大量hash的话,查表是一种非常有效而且快速的方式。它的理念就是预先计算(pre-compute)出密码字典中每一个密码的hash。然后把hash和对应的密码保存在一个表里。一个设计良好的查询表结构,即使存储了数十亿个hash,每秒钟仍然可以查询成百上千个hash。
如果你想感受下查表破解hash的话可以尝试一下在CraskStation上破解下下面的sha256 hash。
反向查表破解(Reverse Lookup Tables)
Searching for hash(apple) in users' hash list... : Matches [alice3, 0bob0, charles8]
Searching for hash(blueberry) in users' hash list... : Matches [usr10101, timmy, john91]
Searching for hash(letmein) in users' hash list... : Matches [wilson10, dragonslayerX, joe1984]
Searching for hash(s3cr3t) in users' hash list... : Matches [bruce19, knuth1337, john87]
Searching for hash(z@29hjja) in users' hash list... : No users used this password
这种方式可以让攻击者不预先计算一个查询表的情况下同时对大量hash进行字典和暴力破解攻击。
首先,攻击者会根据获取到的数据库数据制作一个用户名和对应的hash表。然后将常见的字典密码进行hash之后,跟这个表的hash进行对比,就可以知道用哪些用户使用了这个密码。这种攻击方式很有效果,因为通常情况下很多用户都会有使用相同的密码。
彩虹表 (Rainbow Tables)
彩虹表是一种使用空间换取时间的技术。跟查表破解很相似。只是它牺牲了一些破解时间来达到更小的存储空间的目的。因为彩虹表使用的存储空间更小,所以单位空间就可以存储更多的hash。彩虹表已经能够破解8位长度的任意md5hash。彩虹表具体的原理可以参考http://www.project-rainbowcrack.com/
下一章节我们会讨论一种叫做“盐”(salting)的技术。通过这种技术可以让查表和彩虹表的方式无法破解hash。
加盐(Adding Salt)
hash("hello") =
hash("hello" + "QxLUF1bgIAdeQX") =
hash("hello" + "bv5PehSMfV11Cd") =
hash("hello" + "YYLmfY6IehjZMQ") =
查表和彩虹表的方式之所以有效是因为每一个密码的都是通过同样的方式来进行hash的。如果两个用户使用了同样的密码,那么一定他们的密码hash也一定相同。我们可以通过让每一个hash随机化,同一个密码hash两次,得到的不同的hash来避免这种攻击。
具体的操作就是给密码加一个随即的前缀或者后缀,然后再进行hash。这个随即的后缀或者前缀成为“盐”。正如上面给出的例子一样,通过加盐,相同的密码每次hash都是完全不一样的字符串了。检查用户输入的密码是否正确的时候,我们也还需要这个盐,所以盐一般都是跟hash一起保存在数据库里,或者作为hash字符串的一部分。
盐不需要保密,只要盐是随机的话,查表,彩虹表都会失效。因为攻击者无法事先知道盐是什么,也就没有办法预先计算出查询表和彩虹表。如果每个用户都是使用了不同的盐,那么反向查表攻击也没法成功。
下一节,我们会介绍一些盐的常见的错误实现。
错误的方式:短的盐和盐的复用
最常见的错误实现就是一个盐在多个hash中使用或者使用的盐很短。
盐的复用(Salt Reuse)
不管是将盐硬编码在程序里还是随机一次生成的,在每一个密码hash里使用相同的盐会使这种防御方法失效。因为相同的密码hash两次得到的结果还是相同的。攻击者就可以使用反向查表的方式进行字典和暴力攻击。只要在对字典中每一个密码进行hash之前加上这个固定的盐就可以了。如果是流行的程序的使用了硬编码的盐,那么也可能出现针对这种程序的这个盐的查询表和彩虹表,从而实现快速破解hash。
用户每次创建或者修改密码一定要使用一个新的随机的盐
短的盐
如果盐的位数太短的话,攻击者也可以预先制作针对所有可能的盐的查询表。比如,3位ASCII字符的盐,一共有95x95x95 = 857,375种可能性。看起来好像很多。假如每一个盐制作一个1MB的包含常见密码的查询表,857,375个盐才是837GB。现在买个1TB的硬盘都只要几百块而已。
基于同样的理由,千万不要用用户名做为盐。虽然对于每一个用户来说用户名可能是不同的,但是用户名是可预测的,并不是完全随机的。攻击者完全可以用常见的用户名作为盐来制作查询表和彩虹表破解hash。
根据一些经验得出来的规则就是盐的大小要跟hash函数的输出一致。比如,SHA256的输出是256bits(32bytes),盐的长度也应该是32个字节的随机数据。
错误的方式:双重hash和古怪的hash函数
这一节讨论另外一个常见的hash密码的误解:古怪的hash算法组合。人们可能解决的将不同的hash函数组合在一起用可以让数据更安全。但实际上,这种方式带来的效果很微小。反而可能带来一些互通性的问题,甚至有时候会让hash更加的不安全。本文一开始就提到过,永远不要尝试自己写hash算法,要使用专家们设计的标准算法。有些人会觉得通过使用多个hash函数可以降低计算hash的速度,从而增加破解的难度。通过减慢hash计算速度来防御攻击有更好的方法,这个下文会详细介绍。
下面是一些网上找到的古怪的hash函数组合的样例。
md5(sha1(password))
md5(md5(salt) + md5(password))
sha1(sha1(password))
sha1(str_rot13(password + salt))
md5(sha1(md5(md5(password) + sha1(password)) + md5(password)))
不要使用他们!
注意:这部分的内容其实是存在争议的!我收到过大量邮件说组合hash函数是有意义的。因为如果攻击者不知道我们用了哪个函数,就不可能事先计算出彩虹表,并且组合hash函数需要更多的计算时间。
攻击者如果不知道hash算法的话自然是无法破解hash的。但是考虑到Kerckhoffs’s principle,攻击者通常都是能够接触到源码的(尤其是免费软件和开源软件)。通过一些目标系统的密码–hash对应关系来逆向出算法也不是非常困难。
如果你想使用一个标准的”古怪”的hash函数,比如HMAC,是可以的。但是如果你的目的是想减慢hash的计算速度,那么可以读一下后面讨论的慢速hash函数部分。基于上面讨论的因素,最好的做法是使用标准的经过严格测试的hash算法。
hash碰撞(Hash Collisions)
因为hash函数是将任意数量的数据映射成一个固定长度的字符串,所以一定存在不同的输入经过hash之后变成相同的字符串的情况。加密hash函数(Cryptographic hash function)在设计的时候希望使这种碰撞攻击实现起来成本难以置信的高。但时不时的就有密码学家发现快速实现hash碰撞的方法。最近的一个例子就是MD5,它的碰撞攻击已经实现了。
碰撞攻击是找到另外一个跟原密码不一样,但是具有相同hash的字符串。但是,即使在相对弱的hash算法,比如MD5,要实现碰撞攻击也需要大量的算力(computing power),所以在实际使用中偶然出现hash碰撞的情况几乎不太可能。一个使用加盐MD5的密码hash在实际使用中跟使用其他算法比如SHA256一样安全。不过如果可以的话,使用更安全的hash函数,比如SHA256, SHA512, RipeMD, WHIRLPOOL等是更好的选择。
正确的方式:如何恰当的进行hash
这部分会详细讨论如何恰当的进行密码hash。第一个章节是最基础的,这章节的内容是必须的。后面一个章节是阐述如何继续增强安全性,让hash破解变得异常困难。
基础:使用加盐hash
我们已经知道恶意黑客可以通过查表和彩虹表的方式快速的获得hash对应的明文密码,我们也知道了通过使用随机的盐可以解决这个问题。但是我们怎么生成盐,怎么在hash的过程中使用盐呢?
盐要使用密码学上可靠安全的伪随机数生成器(Cryptographically Secure Pseudo-Random Number Generator (CSPRNG))来产生。CSPRNG跟普通的伪随机数生成器比如C语言中的rand(),有很大不同。正如它的名字说明的那样,CSPRNG提供一个高标准的随机数,是完全无法预测的。我们不希望我们的盐能够被预测到,所以一定要使用CSPRNG。
④ 采用虚拟存储器的目的是什么如何实现虚拟存储器系统
为了给用户提供更大的随机存取空间而采用的一种存储技术。它将内存与外存结合使用,好像有一个容量极大的内存储器,工作速度接近于主存,每位成本又与辅存相近,在整机形成多层次存储系统。 虚拟存储器源出于英国ATLAS计算机的一级存储器概念。这种系统的主存为16千字的磁芯存储器,但中央处理器可用20位逻辑地址对主存寻址。到1970年,美国RCA公司研究成功虚拟存储器系统。IBM公司于1972年在IBM370系统上全面采用了虚拟存储技术。虚拟存储器已成为计算机系统中非常重要的部分。 虚拟存储器是由硬件和操作系统自动实现存储信息调度和管理的。它的工作过程包括6个步骤:①中央处理器访问主存的逻辑地址分解成组号a和组内地址b,并对组号a进行地址变换,即将逻辑组号a作为索引,查地址变换表,以确定该组信息是否 存放在主存内。②如该组号已在主存内,则转而执行④;如果该组号不在主存内,则检查主存中是否有空闲区,如果没有,便将某个暂时不用的组调出送往辅存,以便将这组信息调入主存。③从辅存读出所要的组,并送到主存空闲区,然后将那个空闲的物理组号a和逻辑组号a登录在地址变换表中。④从地址变换表读出与逻辑组号a对应的物理组号a。⑤从物理组号a和组内字节地址b得到物理地址。⑥根据物理地址从主存中存取必要的信息。 调度方式有分页式、段式、段页式3种。页式调度是将逻辑和物理地址空间都分成固定大小的页。主存按页顺序编号,而每个独立编址的程序空间有自己的页号顺序,通过调度辅存中程序的各页可以离散装入主存中不同的页面位置,并可据表一一对应检索。页式调度的优点是页内零头小,页表对程序员来说是透明的,地址变换快,调入操作简单;缺点是各页不是程序的独立模块,不便于实现程序和数据的保护。段式调度是按程序的逻辑结构划分地址空间,段的长度是随意的,并且允许伸长,它的优点是消除了内存零头,易于实现存储保护,便于程序动态装配;缺点是调入操作复杂。将这两种方法结合起来便构成段页式调度。在段页式调度中把物理空间分成页,程序按模块分段,每个段再分成与物理空间页同样小的页面。段页式调度综合了段式和页式的优点。其缺点是增加了硬件成本,软件也较复杂。大型通用计算机系统多数采用段页式调度。 虚拟存储器地址变换基本上有3种形虚拟存储器工作过程式:全联想变换、直接变换和组联想变换。任何逻辑空间页面能够变换到物理空间任何页面位置的方式称为全联想变换。每个逻辑空间页面只能变换到物理空间一个特定页面的方式称为直接变换。组联想变换是指各组之间是直接变换,而组内各页间则是全联想变换。 替换规则用来确定替换主存中哪一部分,以便腾空部分主存,存放来自辅存要调入的那部分内容。常见的替换算法有4种。①随机算法:用软件或硬件随机数产生器确定替换的页面。②先进先出:先调入主存的页面先替换。③近期最少使用算法:替换最长时间不用的页面。④最优算法:替换最长时间以后才使用的页面。这是理想化的算法,只能作为衡量其他各种算法优劣的标准。 虚拟存储器的效率是系统性能评价的重要内容,它与主存容量、页面大小、命中率,程序局部性和替换算法等因素有关。
采纳哦
⑤ 为什么要进行存储保护
存贮保护,是指给外置的存储设备加个保护程序,写不进去数据,也删不掉数据。当多个用户共享主存时,为使系统能正常工作,应防止由于一个用户程序出错而破坏其它用户的程序和系统软件,还要防止一个用户程序不合法的访问不是分给它的主存区域。为此,系统提供存储保护。
通常采用的方法是:存储区域保护和访问方式保护。
⑥ 如何安全的存储用户密码
大多数的web开发者都会遇到设计用户账号系统的需求。账号系统最重要的一个方面就是如何保护用户的密码。一些大公司的用户数据库泄露事件也时有发生,所以我们必须采取一些措施来保护用户的密码,即使网站被攻破的情况下也不会造成较大的危害。如果你还在存储用户密码的MD5,那可真的有点弱了。
保护密码最好的的方式就是使用带盐的密码hash(salted password hashing).对密码进行hash操作是一件很简单的事情,但是很多人都犯了错。接下来我希望可以详细的阐述如何恰当的对密码进行hash,以及为什么要这样做。
重要提醒
如果你打算自己写一段代码来进行密码hash,那么赶紧停下吧。这样太容易犯错了。这个提醒适用于每一个人,不要自己写密码的hash算法 !关于保存密码的问题已经有了成熟的方案,那就是使用phpass或者本文提供的源码。
什么是hash
hash("hello") =
hash("hbllo") =
hash("waltz") =
Hash算法是一种单向的函数。它可以把任意数量的数据转换成固定长度的“指纹”,这个过程是不可逆的。而且只要输入发生改变,哪怕只有一个bit,输出的hash值也会有很大不同。这种特性恰好合适用来用来保存密码。因为我们希望使用一种不可逆的算法来加密保存的密码,同时又需要在用户登陆的时候验证密码是否正确。
在一个使用hash的账号系统中,用户注册和认证的大致流程如下:
1, 用户创建自己的账号
2, 用户密码经过hash操作之后存储在数据库中。没有任何明文的密码存储在服务器的硬盘上。
3, 用户登陆的时候,将用户输入的密码进行hash操作后与数据库里保存的密码hash值进行对比。
4, 如果hash值完全一样,则认为用户输入的密码是正确的。否则就认为用户输入了无效的密码。
5, 每次用户尝试登陆的时候就重复步骤3和步骤4。
在步骤4的时候不要告诉用户是账号还是密码错了。只需要显示一个通用的提示,比如账号或密码不正确就可以了。这样可以防止攻击者枚举有效的用户名。
还需要注意的是用来保护密码的hash函数跟数据结构课上见过的hash函数不完全一样。比如实现hash表的hash函数设计的目的是快速,但是不够安全。只有加密hash函数(cryptographic hash functions)可以用来进行密码的hash。这样的函数有SHA256, SHA512, RipeMD, WHIRLPOOL等。
一个常见的观念就是密码经过hash之后存储就安全了。这显然是不正确的。有很多方式可以快速的从hash恢复明文的密码。还记得那些md5破解网站吧,只需要提交一个hash,不到一秒钟就能知道结果。显然,单纯的对密码进行hash还是远远达不到我们的安全需求...
以上是下面链接文章里的片段
具体请查看这个链接里的文章:
http://www.freebuf.com/articles/web/28527.html
满意望采纳~
⑦ 如何保障SAN安全 在交换机上实现存储安全
FC、IP网络的安全性
不论是光纤通道还是IP网络,主要的潜在威胁来自非授权访问,特别是管理接口。例如,一旦获得和存储区域网络(SAN)相连接服务器管理员的权限,欺诈进入就可以得逞。这样入侵者可以访问任何一个和SAN连接的系统。因此,无论使用的是哪一种存储网络,应该认识到应用充分的权限控制、授权访问、签名认证的策略对防止出现安全漏洞是至关重要的。
测错攻击在IP网络中也比在光纤通道的SAN中易于实现。针对这类攻击,一般是采用更为复杂的加密算法。
尽管DoS似乎很少发生,但是这并不意味着不可能。然而如果要在光纤通道SAN上实现DoS攻击,则不是一般的黑客软件所能实现的,因为它往往需要更为专业的安全知识。
实现SAN数据安全方法
保证SAN数据安全的两个基本安全机制是分区制zoning和逻辑单元值(Logical Unit Number)掩码。
分区制是一种分区方法。通过该方法,一定的存储资源只对于那些通过授权的用户和部门是可见的。一个分区可以由多个服务器、存储设备、子系统、交换机、HBA和其它计算机组成。只有处于同一个分区的成员才可以互相通讯。
分区制往往在交换级来实现。根据实现方式,可以分为两种模式,一为硬分区,一为软分区。硬分区是指根据交换端口来制定分区策略。所有试图通过未授权端口进行的通讯均是被禁止的。由于硬分区是在系统电路里来实现,并在系统路由表中执行,因此,较之软分区,具有更好的安全性。
在光纤通道网络中,软分区是基于广域命名机制的(WWN)的。WWN是分配给网络中光纤设备的唯一识别码。由于软分区是通过软件来保证在不同的分区中不会出现相同的WWNs,因此,软分区技术比硬分区具有更好的灵活性,特别是在网络配置经常变化的应用中具有很好的可管理性。
有些交换机具有端口绑定功能,从而可以限制网络设备只能和通过预定义的交换端口进行通讯。利用这种技术,可以实现对存储池的访问限制,从而保护SAN免受非授权用户的访问。
另一种被广泛采用的技术是LUN掩码。一个LUN就是对目标设备(如磁带和磁盘阵列)内逻辑单元的SCSI识别标志。在光纤通道领域,LUN是基于系统的WWN实现的。
LUN掩码技术是将LUN分配给主机服务器,这些服务器只能看到分配给它们的LUN。如果有许多服务器试图访问特定的设备,那么网络管理者可以设定特定的LUN或LUN组可以访问,从而可以拒绝其它服务器的访问,起到保护数据安全的目的。不仅在主机上,而且在HBA、存储控制器、磁盘阵列、交换机上也可以实现各种形式的LUN屏蔽技术。
如果能够将分区制和LUN技术与其它的安全机制共同运用到网络及其设备上的话,对网络安全数据安全将是非常有效的。
业界对存储安全的做法
尽管目前对于在哪一级设备应用存储安全控制是最优的还没有一个明确的结论,例如,IPSec能够在ASIC、VPN设备、家电和软件上实现,但目前已有很多商家在他们的数据存储产品中实现了加密和安全认证功能。
IPSec对于其它基于IP协议的安全问题,比如互联网小型计算机接口(iSCSI)、IP上的光纤通道 (FCIP)和互联网上的光线通道 (IFCP)等,也能起到一定的的作用。
通常使用的安全认证、授权访问和加密机制包括轻量级的路径访问协议Lightweight Directory Access Protocol (LDAP)、远程认证拨入用户服务(RADIUS), 增强的终端访问控制器访问控制系统(TACACS+)、Kerberos、 Triple DES、高级加密标准(AES)、安全套接层 (SSL)和安全Shell(SSH)。
尽管SAN和NAS的安全机制有诸多相似之处,其实它们之间也是有区别的。很多NAS系统不仅支持SSH、SSL、Kerberos、RADIUS和LDAP安全机制,同时也支持访问控制列表(ACL)以及多级许可。这里面有一个很重要的因素是文件锁定,有很多产品商家和系统通过不同的方式来实现这一技术。例如,微软采用的为硬锁定,而基于 Unix的系统采用的是相对较为松弛的建议级锁定。由此可以看到,如果在Windows-Unix混合环境下,将会带来一定的问题。
呼唤存储安全标准化
SAN安全的实现基础在交换机这一层。因此,存储交换机的标准对网络产品制造商的技术提供方式的影响是至关重要的。
存储安全标准化进程目前还处于萌芽阶段。ANSI成立了T11光纤通信安全协议(FC-SP)工作组来设计存储网络基础设施安全标准的框架。目前已经提交了多个协议草案,包括FCSec协议,它实现了IPSec和光纤通讯的一体化;同时提交的还有针对光纤通讯的挑战握手认证协议(CHAP)的一个版本;交换联结认证协议(SLAP)使用了数字认证使得多个交换机能够互相认证;光纤通信认证协议(FCAP)是SLAP的一个扩展协议。IEEE的存储安全工作组正在准备制定一个有关将加密算法和方法标准化的议案。
存储网络工业协会(SNIA)于2002年建立了存储安全工业论坛(SSIF),但是由于不同的产品商支持不同的协议,因此实现协议间的互操作性还有很长一段路要走。
关注存储交换安全
大家都已经注意到了为了保证存储安全,应该在存储交换机和企业网络中的其它交换机上应用相同的安全预警机制,因此,对于存储交换机也应有一些特殊的要求。
存储交换安全最重要的一个方面是保护光纤管理接口,如果管理控制台没有很好的安全措施,则一个非授权用户有可能有意或无意地入侵系统或改变系统配置。有一种分布锁管理器可以防止这类事情发生。用户需要输入ID和加密密码才能够访问交换机光纤的管理界面。为了将SAN设备的管理端口通过安全认证机制保护起来,最好是将SAN配置管理工作集中化,并且对管理控制台和交换机之间的通讯进行加密。另外一个方面,在将交换机接入到光纤网络之前,也应该通过ACL和 PKI机制实现授权访问和安全认证。因此,交换机间链接应当建立在严密的安全防范措施下。
⑧ Windows 7 中如何安全保存用户名与密码,从哪些方面实现其安全保护
原则方法1、原则上登录密码设置要不同
1、很多人为了图省事和方便,各种账户注册的登录密码设置为一个密码。
这就加大了密码丢失的风险。
因为有些注册用户名是使用手机号、邮箱注册的,这些很容易获取。
一个被盗,接连被盗的风险就大了。
原则方法2、一个密码在唯一对应的地方登陆
1、什么意思呢?说的就是如果你使用的qq密码,那么你可以再腾讯的各种平台上登陆。但是如果跳到不是腾讯的另一方去了,那么你就该停止输入登陆密码了。
这个需要自己判断是不是另一方。
如果非要登陆的,可以登陆qq,然后使用快捷登陆,这个一般网站都开辟了这样的功能。
原则方法3、定期修改密码
1、不管多长多复杂的密码,一旦留下痕迹,被人破解了后果会很严重。尤其是涉及到财产安全的。
定期修改密码可以起到保护的作用,这就是为什么会有动态密码的出现。
方法原则4、开通登陆提示和保护
1、很多应用都开通了登陆提示,具体状况形式多样。
例如:有的是以登陆地点是否显示异常来体现。
有的是以开启设备锁来体现,比如在电脑登陆账户时必须通过手机确认。
方法原则5、用户名注册尽量用自定义字符
1、用户名注册的时候,很多可以使用邮箱、手机号,避开这些容易被获取的用户名,即使别人知道密码,不知道用户名也无法登陆。
至于邮箱手机什么的可以使用绑定功能,用于找回密码使用。
原则方法6、密码存放尽量不要存在设备上,改用纸质收藏
很多人习惯将很多的用户米及其对应的密码记录在手机便签、电脑桌面、记事本等处图方便。
殊不知万一设备被盗或者丢失,连同很多账户也跟着丢失了。
所以如果要记的密码很多,做好使用纸质的保存,然后存放好,以便遗忘时候拿出来看。
其他
1、以上就是小编想到的保护密码安全的方法,大家有更精辟更好更简单的方法欢迎给予评论。帮助大家共同拥有一个和谐安全的互联网上网体验,欢迎分享。
⑨ 存储系统的存储保护
近代计算机系统资源为一同执行的多个用户程序所共享。就主存来说,它同时存有多个用户的程序和系统软件。为使系统正常工作,必须防止由于一个用户程序出错而破坏同时存在主存内的系统软件或其他用户的程序,还须防止一个用户程序不合法地访问并非分配给它的主存区域。因此,存储保护是多道程序和多处理机系统必不可少的部分。
主存保护是存储保护的重要环节。主存保护一般有存储区域保护和访问方式保护。存储区域保护可采用界限寄存器方式,由系统软件经特权指令给定上、下界寄存器内容,从而划定每个用户程序的区域,禁止越界访问。
界限寄存器方式只适用于每个用户程序占用一个或几个连续的主存区域,而对于虚拟存储器系统,由于一个用户的各页离散地分布于主存内,就需要采用键式保护和环状保护等方式。键式保护是由操作系统为每个存储页面规定存储键,存取存储器操作带有访问键,当两键符合时才允许执行存取操作,从而保护别的程序区域不被侵犯,环状保护是把系统程序和用户程序按重要性分层,称为环,对每个环都规定访问它的级别,违反规定的存取操作是非法的,以此实现对正在执行的程序的保护。