㈠ sram存储器的特点是什么
关于SRAM存储容量及基本特点。
半导体随机存储器芯片内集成有记忆功能的存储矩阵,译码驱动电路和读/写电路等等。
下面介绍几个重要的概念:
读写电路:包括读出放大器和写入电路,用来完成读/写操作。
地址线:单向输入,其位数与芯片的容量有关
片选线:确定哪个芯片被选中(用来选择芯片)
数据线:双向输入,其位数与芯片可读出或者写入的位数有关,也与芯片容量有关。
存储容量
通常我们将存储容量表示为:字数X位数,比如64KX8位,其含义为,以8位构成一个字,一共有64个字。这个概念要相当熟悉,后面理解题目很有用。
㈡ 存储器的分类及其各自的特点
存储器(Memory)是现代信息技术中用于保存信息的记忆设备。其概念很广,有很多层次,在数字系统中,只要能保存二进制数据的都可以是存储器;在集成电路中,一个没有实物形式的具有存储功能的电路也叫存储器,如RAM、FIFO等;在系统中,具有实物形式的存储设备也叫存储器,如内存条、TF卡等。计算机中全部信息,包括输入的原始数据、计算机程序、中间运行结果和最终运行结果都保存在存储器中。它根据控制器指定的位置存入和取出信息。有了存储器,计算机才有记忆功能,才能保证正常工作。计算机中的存储器按用途存储器可分为主存储器(内存)和辅助存储器(外存),也有分为外部存储器和内部存储器的分类方法。外存通常是磁性介质或光盘等,能长期保存信息。内存指主板上的存储部件,用来存放当前正在执行的数据和程序,但仅用于暂时存放程序和数据,关闭电源或断电,数据会丢失。
存储器的分类特点及其应用
在嵌入式系统中最常用的存储器类型分为三类:
1.随机存取的RAM;
2.只读的ROM;
3.介于两者之间的混合存储器
1.随机存储器(Random Access Memory,RAM)
RAM能够随时在任一地址读出或写入内容。 RAM的优点是读/写方便、使用灵活;
RAM的缺点是不能长期保存信息,一旦停电,所存信息就会丢失。 RAM用于二进制信息的临时存储或缓冲存储
2.只读存储器(Read-Only Memory,ROM)
ROM中存储的数据可以被任意读取,断电后,ROM中的数据仍保持不变,但不可以写入数据。
ROM在嵌入式系统中非常有用,常常用来存放系统软件(如ROM BIOS)、应用程序等不随时间改变的代码或数据。
ROM存储器按发展顺序可分为:掩膜ROM、可编程ROM(PROM)和可擦写可编程ROM(EPROM)。
3. 混合存储器
混合存储器既可以随意读写,又可以在断电后保持设备中的数据不变。混合存储设备可分为三种:
EEPROM NVRAM FLASH
(1)EEPROM
EEPROM是电可擦写可编程存储设备,与EPROM不同的是EEPROM是用电来实现数据的清除,而不是通过紫外线照射实现的。
EEPROM允许用户以字节为单位多次用电擦除和改写内容,而且可以直接在机内进行,不需要专用设备,方便灵活,常用作对数据、参数等经常修改又有掉电保护要求的数据存储器。
(2) NVRAM
NVRAM通常就是带有后备电池的SRAM。当电源接通的时候,NVRAM就像任何其他SRAM一样,但是当电源切断的时候,NVRAM从电池中获取足够的电力以保持其中现存的内容。
NVRAM在嵌入式系统中使用十分普遍,它最大的缺点是价格昂贵,因此,它的应用被限制于存储仅仅几百字节的系统关键信息。
(3)Flash
Flash(闪速存储器,简称闪存)是不需要Vpp电压信号的EEPROM,一个扇区的字节可以在瞬间(与单时钟周期比较是一个非常短的时间)擦除。
Flash比EEPROM优越的方面是,可以同时擦除许多字节,节省了每次写数据前擦除的时间,但一旦一个扇区被擦除,必须逐个字节地写进去,其写入时间很长。
存储器工作原理
这里只介绍动态存储器(DRAM)的工作原理。
工作原理
动态存储器每片只有一条输入数据线,而地址引脚只有8条。为了形成64K地址,必须在系统地址总线和芯片地址引线之间专门设计一个地址形成电路。使系统地址总线信号能分时地加到8个地址的引脚上,借助芯片内部的行锁存器、列锁存器和译码电路选定芯片内的存储单元,锁存信号也靠着外部地址电路产生。
当要从DRAM芯片中读出数据时,CPU首先将行地址加在A0-A7上,而后送出RAS锁存信号,该信号的下降沿将地址锁存在芯片内部。接着将列地址加到芯片的A0-A7上,再送CAS锁存信号,也是在信号的下降沿将列地址锁存在芯片内部。然后保持WE=1,则在CAS有效期间数据输出并保持。
当需要把数据写入芯片时,行列地址先后将RAS和CAS锁存在芯片内部,然后,WE有效,加上要写入的数据,则将该数据写入选中的存贮单元。
存储器芯片
由于电容不可能长期保持电荷不变,必须定时对动态存储电路的各存储单元执行重读操作,以保持电荷稳定,这个过程称为动态存储器刷新。PC/XT机中DRAM的刷新是利用DMA实现的。首先应用可编程定时器8253的计数器1,每隔1⒌12μs产生一次DMA请求,该请求加在DMA控制器的0通道上。当DMA控制器0通道的请求得到响应时,DMA控制器送出到刷新地址信号,对动态存储器执行读操作,每读一次刷新一行。
㈢ 存储器分类及各自特点有哪些
存储器分类依据不同的特性有多种分类方法。
(1)按工作性质/存取方式分类
•随机存取存储器 (RAM) -每个单元读写时间一样,且与各单元所在位置无关。如:内存。
•顺序存取存储器 (SAM) -数据按顺序从存储载体的始端读出或写入,因而存取时间的长短与信息所在位置有关。例如:磁带。
•直接存取存储器 (DAM) -直接定位到读写数据块,在读写数据块时按顺序进行。如磁盘。
•相联存储器 -按内容检索到存储位置进行读写。例如:快表。
(2)按存储介质分类
半导体存储器:双极型,静态MOS型,动态MOS型
磁表面存储器:磁盘、磁带
光存储器:CD,CD-ROM,DVD
(3)按信息的可更改性分类
读写存储器:可读可写
只读存储器:只能读不能写
(4)按断电后信息的可保存性分类
非易失(不挥发)性存储器:信息可一直保留, 不需电源维持。
易失(挥发)性存储器
(5)按功能/容量/速度/所在位置分类
•寄存器 -封装在CPU内,用于存放当前正在执行的指令和使用的数据 -用触发器实现,速度快,容量小(几~几十个)
•高速缓存-位于CPU内部或附近,用来存放当前要执行的局部程序段和数据 -用SRAM实现,速度可与CPU匹配,容量小(几MB)
•内存储器 -位于CPU之外,用来存放已被启动的程序及所用的数据 -用DRAM实现,速度较快,容量较大(几GB)
•外存储器-位于主机之外,用来存放暂不运行的程序、数据或存档文件 -用磁表面或光存储器实现,容量大而速度慢
㈣ 简述Cache、ROM、RAM的特点。
Cache:在CPU与主存储器之间设置的一个一级或两级高速小容量存储器,其信息是随着计算机的断电自然丢失。
只读存储器ROM:只能从存储器中读数据,而不能往里写信息,计算机断电后数据仍然存在。
随机读写存储器RAM:既可以从存储器中读数据,也可以往存储器中写信息,用于存放运行程序所需的命令、程序和数据等,计算机断电后信息自然丢失。
(4)特殊存储器的特点扩展阅读:
ROM所存数据通常是装入整机前写入的,整机工作过程中只能读出,不像随机存储器能快速方便地改写存储内容。ROM所存数据稳定 ,断电后所存数据也不会改变,并且结构较简单,使用方便,因而常用于存储各种固定程序和数据。
当RAM处于正常工作时,可以从RAM中读出数据,也可以往RAM中写入数据。与ROM相比较,RAM的优点是读/写方便、使用灵活,特别适用于经常快速更换数据的场合。
随机存取存储器对环境的静电荷非常敏感。静电会干扰存储器内电容器的电荷,引致数据流失,甚至烧坏电路。故此触碰随机存取存储器前,应先用手触摸金属接地。
㈤ 半导体存储器有几类,分别有什么特点
1、随机存储器
对于任意一个地址,以相同速度高速地、随机地读出和写入数据的存储器(写入速度和读出速度可以不同)。存储单元的内部结构一般是组成二维方矩阵形式,即一位一个地址的形式(如64k×1位)。但有时也有编排成便于多位输出的形式(如8k×8位)。
特点:这种存储器的特点是单元器件数量少,集成度高,应用最为广泛(见金属-氧化物-半导体动态随机存储器)。
2、只读存储器
用来存储长期固定的数据或信息,如各种函数表、字符和固定程序等。其单元只有一个二极管或三极管。一般规定,当器件接通时为“1”,断开时为“0”,反之亦可。若在设计只读存储器掩模版时,就将数据编写在掩模版图形中,光刻时便转移到硅芯片上。
特点:其优点是适合于大量生产。但是,整机在调试阶段,往往需要修改只读存储器的内容,比较费时、费事,很不灵活(见半导体只读存储器)。
3、串行存储器
它的单元排列成一维结构,犹如磁带。首尾部分的读取时间相隔很长,因为要按顺序通过整条磁带。半导体串行存储器中单元也是一维排列,数据按每列顺序读取,如移位寄存器和电荷耦合存储器等。
特点:砷化镓半导体存储器如1024位静态随机存储器的读取时间已达2毫秒,预计在超高速领域将有所发展。
(5)特殊存储器的特点扩展阅读:
半导体存储器优点
1、存储单元阵列和主要外围逻辑电路制作在同一个硅芯片上,输出和输入电平可以做到同片外的电路兼容和匹配。这可使计算机的运算和控制与存储两大部分之间的接口大为简化。
2、数据的存入和读取速度比磁性存储器约快三个数量级,可大大提高计算机运算速度。
3、利用大容量半导体存储器使存储体的体积和成本大大缩小和下降。
㈥ 西门子S7-200特殊存储器SM0.0、SM0.1、MS0.4、SM0.5是什么意思
西门子S7-200系列PLC中。SM0.0是PLC运行时一直为ON的特殊存储器。M0.1是PLC运行时的第一个扫描周期为ON,其余时候为OFF的特殊存储器,一般用于程序初始化。SM0.4是时钟脉冲,该脉冲在1分钟周期内OFF,30s,ON,30s的特殊存储器。SM0.5也是时钟脉冲,该脉冲在1s周期内OFF,0.5s,ON,0.5s的特殊存储器。
望采纳。。。。。。
㈦ ram存储器的特点是什么
FPM RAM 快速页模式随机存储器 这里的所谓“页”,指的是DRAM芯片中存储阵列上的2048位片断。FPM RAM是最早的随机存储器,在过去一直是主流PC机的标准配置,以前我们在谈论内存速度时所说的“杠7”,“杠6”,指的即是其存取时间为70ns,60ns。60ns的FPM RAM可用于总线速度为66MHz(兆赫兹)的奔腾系统(CPU主频为100,133,166和200MHz)。 快速页模式的内存常用于视频卡,通常我们也叫它“DRAM”。其中一种经过特殊设计的内存的存取时间仅为48ns,这时我们就叫它VRAM。这种经过特殊设计的内存具有“双口”,其中一个端口可直接被CPU存取,而另一个端口可独立地被RAM“直接存取通道”存取,这样存储器的“直接存取通道”不必等待CPU完成存取就可同时工作,从而比一般的DRAM要快些。
满意请采纳
㈧ 列举五个特殊功能寄存器说说它们的特点
常用的特殊功能寄存器有:ACC、B、PSW、DPTR(DPH、DPL)、SP等。
ACC:累加器,常常用A表示。它是一个非常重要寄存器,在运算器做运算时其中一个数一定是在ACC中,所有的运算类指令都离不开它。
B:一个常用的寄存器。在做乘、除法时放乘数或除数。
PSW:程序状态字。PSW也称为标志寄存器,里面放了CPU工作时的很多状态,借此,我们能了解CPU的当前状态,并作出对应的处理。
DPTR(DPH、DPL):数据指针。能用它来访问外部数据存储器中的任一单元,也能作为通用寄存器来用。16位,由两个8位寄存器DPH、DPL组成。主要用于存放一个16位地址,作为访问外部存储器(外RAM和ROM)的地址指针。
SP:堆栈指针。专用于指出堆栈顶部数据的地址。
(8)特殊存储器的特点扩展阅读
特殊功能寄存器是80C51单片机中各功能部件对应的寄存器,用于存放相应功能部件的控制命令,状态或数据。
它是80C51单片机中最具有特色的部分,几乎所有80C51系列功能的增加和扩展都是通过增加特殊功能寄存器来达到目的的。英文缩写为SFR,是Special Function Register(特殊功能寄存器)的缩写。
㈨ 什么是闪速存储器它有哪些特点
闪速存储器的特点 闪速存储器(Flash Memory)是一类非易失性存储器NVM(Non-Volatile Memory)即使在供电电源关闭后仍能保持片内信息;而诸如DRAM、SRAM这类易失性存储器,当供电电源关闭时片内信息随即丢失。 Flash Memory集其它类非易失性存储器的特点:与EPROM相比较,闪速存储器具有明显的优势——在系统电可擦除和可重复编程,而不需要特殊的高电压(某些第一代闪速存储器也要求高电压来完成擦除和/或编程操作);与EEPROM相比较,闪速存储器具有成本低、密度大的特点。
㈩ 单片机存储器分为哪几类各有哪些特点和用途
大的方面分为两个:RAM和ROM。RAM用于存储一些变量相当于草稿纸,ROM用于存储程序。
RAM分为:内部RAM和外部扩展RAM
内部RAM又包括:
R0~R7工作寄存器(共4个工作区)地址00~1FH
位寄存器,地址20~2FH
用户寄存器30~7FH(有的是30~FFH)
特殊功能寄存器80~FFH