❶ 大端和小端存储法是什么两者有什么区别
小端:较高的有效字节存放在较高的的存储器地址,较低的有效字节存放在较低的存储器地址。
大端:较高的有效字节存放在较低的存储器地址,较低的有效字节存放在较高的存储器地址。
大端模式就是低位存放在高地址上。高位存放在地址上。
小端模式就是地位存放在低地址上。高位存放在高地址上。
例如,16bit宽的数0x1234在Little-endian模式CPU内存中的存放方式(假设从地址0x4000开始存放)为:
内存地址 0x4000 0x4001
存放内容 0x34 0x12
而在Big-endian模式CPU内存中的存放方式则为:
内存地址 0x4000 0x4001
存放内容 0x12 0x34
❷ ARM里的大端格式和小端格式分别是什么意思呀
所谓的大端模式,是指数据的高位,保存在内存的低地址中,而数据的低位,保存在内存的高地址中,这样的存储模式有点儿类似于把数据当作字符串顺序处理:地址由小向大增加,而数据从高位往低位放
所谓的小端模式,是指数据的高位保存在内存的高地址中,而数 据的低位保存在内存的低地址中,这种存储模式将地址的高低和数据位权有效地结合起来,高地址部分权值高,低地址部分权值低,和我们的逻辑方法一致。
结合先前大那个答案中的例子 应该就可以看懂了
❸ 如何判断一个系统的存储方式是大端还是小端
采用大小模式对数据进行存放的主要区别在于在存放的字节顺序,大端方式将高位存放在低地址,小端方式将低位存放在高地址。采用大端方式进行数据存放符合人类的正常思维,而采用小端方式进行数据存放利于计算机处理。到目前为止,采用大端或者小端进行数据存放,其孰优孰劣也没有定论。
❹ 大端存储法还是小端存储法对存储数据有什么要求与影响
大端排序的好处是接收数据的程序可以优先得到数据的最高位,以便快速反应。
比如我有一个控制温度的上位机程序,该程序接收大端方式编码的温度信号0x00fe,对比原来的温度值,假设是0x0135。那么在接受第一个字节0x00的时候,上位机就可以判断温度比原来下降了,可以立即发出指令打开加热器。而对于小端排序的方式,上位机只有在接收到完整的两个字节的时候才能做出反应。如果采用串行通信,用只对信号的每一个字节单独校验的话,波特率为9600时,大端编码下,上位机的响应时间为1ms,小端排序方式下,上位机响应时间为2ms。这时,大端编码就比小端排序更快。如果需要对完整的通信包进行校验,则没有区别。
在串行通信测试程序中,计算机显示的字节顺序一般就是接收顺序。如果用大端编码的话,测试程序直接就可以显示出从大到小排列好的数据。而小端排序的方向相反,可视性不好,容易看花眼掉。
结论是:1、串行通信(包括以太网、WIFI、串口、USB等)如果采用大端编码有时会使系统响应更快速。2、串行通信采用大端编码有利于调试。
小端排序下,选定一个数据的起点后,只需要重复进位加法就可以实现高精度加法计算。减法也是一样。数组的第0位固定是最低位。而大端方式下,如果高精度计算的精度可变,就很难确定数组的第0位到底代表多大。不同精度的计算还会产生数据对齐问题。比如早期的16位CPU中,int类型和long类型做加法,用小端排序就很容易从指针位置开始计算。而大端排序则非常复杂。加法运算是非常常用的运算,其性能直接影响程序的整体性能。所以CPU中要采用性能较好的小端排序。
由于CPU本身是小端排序,如果内存和文件也采用小端排序的话,就可以把文件中的数据直接存储到内存中,再直接把内存中的数据存储到CPU的寄存器。这样不仅提高计算机的性能,程序也变得简单。
结论是:所有直接与硬件有关的代码都适合按小端排序
❺ 计组中的大端,小端到底是数据存储方式还是地址指定方式
大端序就是数据的高位放在内存的低地址,数据的低位放在内存的高地址,这符合人类的阅读方式。例如将0x12345678这个数放在内存地址0x0~0x3这4字节空间中,它的表现形式是:12 34 56 78。其中0x0地址存放12,0x1地址存放34,0x2地址存放56,0x3地址存放78。
小端序就是数据的低位放在内存的低地址,数据的高位放在内存的高地址,这符合机器的阅读方式。例如将0x12345678这个数放在内存地址0x0~0x3这4字节空间中,它的表现形式是:78 56 34 12。其中0x0地址存放78,0x1地址存放56,0x2地址存放34,0x3地址存放12。
x86CPU使用小端序作为数据的存储方式。
❻ 笔试面试7 如何判断一个系统的存储方式是大端还是小端
简单来说,从内存地址增加的方向来说,大端就是先存放高序字节,小端就是先存放低序字节。
例如:0x0102
-------->内存增加的方向------>
地址A------>地址A+1
大端:01 02
小端:02 01
判断方法是利用union的一个特性,那就是里面的变量共享一段内存。
可以定义一个union.
union Test{
short num;//2byte
char c[sizeof(num)];//2byte
} ;
然后存入一个0x0102或者其他数字到test.num中,因为共享内存的原因,可以访问c[1],c[2],查看里面的值来判断大小端。
一个实现是(参照unix网络编程中的一个例子):
[cpp] view plain print?
#include <stdio.h>
#include <conio.h>
union Test{
short num;
char c[sizeof(short)];
};
int main()
{
union Test t;//C++ 直接声明为Test t即可
t.num=0x0102;
if(t.c[0]==1&&t.c[1]==2)
printf("大端!\n");
else if(t.c[0]==2&&t.c[1]==1)
printf("小端!\n");
else
printf("未知!\n");
getch();
return 0;
}
在Win7 32bit里面用DEV c++运行的结果为:
或者更简单的是存一个short值,然后取其地址。
[cpp] view plain print?
#include <stdio.h>
#include <conio.h>
int main()
{
short int num=0x0201;
char *p=#
if(*p==0x02)
printf("大端!\n");
else if(*p==0x01)
printf("小端!\n");
else
printf("未知!\n");
getch();
return 0;
}
测试结果:
❼ 1,理解大端模式,小端模式的存储方式;2,掌握STR、CMP、LDR、LDREQ、MOV、ADDE
摘要 一种方法是在编译器中加上-thumb选项,在编译器中进行设置好了之后编译下,采用的指令集就是Thumb指令集了。二是可以直接在ARM汇编里实现。具体的切换是通过Branch Exchange—即BX 指令来实现的。指令格式为:Thumb状态 BX RnARM状态 BX Rn其中Rn可以是寄存器R0—R15中的任意一个。指令可以通过将寄存器Rn的内容拷贝到程序计数器PC来完成在4Gbyte地址空间中的绝对跳转,而状态切换是由寄存器Rn的最低位来指定的,如果操作数寄存器的状态位Bit0=0,则进入ARM状态,如果Bit0=1,则进入Thumb状态,以下是一个用例:CODE32 //表示以下使用ARM状态下的代码,32位对齐LDR R0, =Into_Thumb+1 //将Into_Thumb地址值加1,再赋给R0//产生跳转地址并且设置最低位BX R0 //地址值位0为1,将进入THUMB状态//Branch Exchange 进入Thumb状态… CODE16 //Thumb状态下的子函数,16位对齐…LDR R3, =Back_to_ARM //将Back_to_ARM 地址值赋给R0//产生字对齐的跳转地址,最低位被清除,即bit0为0BX R3//Branch Exchange 返回到ARM状态,此时运行在ARM指令集环境里 CODE32 //ARM状态下的子函数Bach_to_ARM
❽ 判断一个机器使用的是大端存储还是小端存储
下面的程序可以判断一台机器是大端存储还是小端存储。
[cpp]view plain
#include<stdio.h>
intmain(intargc,char**argv){
//联合(union)中,所有成员引用的是内存中相同位置,
//由具体成员类型决定了这些位如何被解释
union{
shorts;
charc[sizeof(short)];
}un;
un.s=0x0102;//16进制数中,02是低序字节,01是高序字节
if(sizeof(short)==2){
if(un.c[0]==1&&un.c[1]==2){
printf("big-endian ");
}elseif(un.c[0]==2&&un.c[1]==1){
printf("little-endian ");
}else{
printf("unknow ");
}
}else{
printf("sizeof(short)=%d ",sizeof(short));
}
return0;
}
❾ 大端模式和小端模式
具体如下:
1、大端模式:
大端模式,是指数据的高位,保存在内存的低地址中,而数据的低位,保存在内存的高地址中,这样的存储模式类似于把数据当作字符串顺序处理。
地址由小向大增加,而数据从高位往低位放;小端模式,是指数据的高位保存在内存的高地址中,而数据的低位保存在内存的低地址中,这种存储模式将地址的高低和数据位权有效地结合起来,高地址部分权值高,低地址部分权值低,和我们的逻辑方法一致。
在大端模式下,前16位应该这样读: e6 84 6c 4e ( 假设int占4个字节)。
记忆方法: 地址的增长顺序与值的增长顺序相反。
2、小端模式例子:
0000430: e684 6c4e 0100 1800 53ef 0100 0100 0000。
0000440: b484 6c4e 004e ed00 0000 0000 0100 0000。
在小端模式下,前16位应该这样读: 4e 6c 84 e6( 假设int占4个字节)。
记忆方法: 地址的增长顺序与值的增长顺序相同。
大小端模式:
为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为 8bit。但是在C语言中除了8bit的char之外,还有16bit的short型,32bit的long型(要看具体的编译器),另外,对于位数大于 8位的处理器。
例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。例如一个16bit的short型x,在内存中的地址为0x0010,x的值为0x1122,那么0x11为高字节,0x22为低字节。
对于 大端模式,就将0x11放在低地址中,即0x0010中,0x22放在高地址中,即0x0011中。小端模式,刚好相反。我们常用的X86结构是小端模式,而KEIL C51则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。
❿ 大端存储法与小端存储法有什么不同
大端模式就是低位存放在高地址上。高位存放在地址上。
小端模式就是地位存放在低地址上。高位存放在高地址上。
例如,16bit宽的数0x1234在Little-endian模式CPU内存中的存放方式(假设从地址0x4000开始存放)为:
内存地址 0x4000 0x4001
存放内容 0x34 0x12
而在Big-endian模式CPU内存中的存放方式则为:
内存地址 0x4000 0x4001
存放内容 0x12 0x34