当前位置:首页 » 服务存储 » 雷达数据库存储技术
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

雷达数据库存储技术

发布时间: 2022-05-10 11:37:13

1. 实验三十五 雷达图像处理

一、实验目的

通过对ERS-2卫星单波段雷达影像的显示、几何校正、滤波和彩色增强等处理,感受雷达微波遥感图像对地物反映的特征和与可见光图像的差别,了解雷达图像处理的内容,初步掌握ENVI雷达微波遥感图像处理的基本操作步骤,从而加深对雷达微波遥感对地质学应用原理的理解。

二、实验内容

①ENVI支持下的ERS-2雷达遥感图像数据输入、显示和输出;②雷达图像校正;③雷达图像滤波增强处理;④雷达图像彩色合成处理;⑤雷达图像地物影像特征识别;⑥雷达遥感影像与光学遥感影像特征差异比较分析。

三、实验要求

预习雷达遥感成像理论的相关知识,了解ERS-2雷达数据的技术参数,能够解读雷达图像上反映的信息,了解从ENVI中打开或存储在雷达文件的信息,初步掌握本实验所做的ENVI软件Radar模块的几种雷达图像处理操作,编写实验报告。

四、技术条件

①微型计算机;②桂林市ERS-2单波段Image格式的数据;③ENVI软件;④Photoshop软件(ver.6.0以上)和ACDSee软件(ver.4.0以上)。

五、实验步骤

1.打开雷达数据文件

ENVI提供两种方式打开雷达数据文件。

(1)在ENVI主菜单栏中选择“File>Open External File>Radar>相应雷达传感器类型”,在弹出的文件选择对话框中,选择SAR IM P IPXBJG20090217.E2波段数据文件, (注意:ERS-2雷达影像不同于其他光学影像,文件格式类型是E2)。ENVI将自动提取头文件信息,并把图像波段输入到可用波段列表中。

(2)在ENVl主菜单中,选择“Radar>Open>Prepare Radar File>相应雷达传感器类型”,也可打开。

在Available Bands List显示来自雷达数据的信息和参数,包括波段名;行数、样本数和波段数;文件大小;交叉格式(BSQ、BIL、BIP);数据类型(字节、整型等);以及数据是否已地理坐标定位等信息。

2.雷达图像纠正

(1)几何精纠正。雷达影像的几何纠正方法与光学遥感影像的处理方法一样,即也是选取地面控制点(GCPs)和建立GCPs文件的方式。可以采用Image to Map或Image to image两种方式之一来选取GCPs,具体参看本书实验十一和实验十二。

(2)自带定位参数的纠正。在ENVI主菜单中选择“Map>Georeference ENVISAT>Georeference ASAR”,弹出“Select ENVISAT File”,选择雷达影像点击【OK】按钮,在“Select Output Projection”对话框中(图35-1)根据实际需要选择投影方式、输出地面控制点路径及文件名。

图35-1 选择输出投影设置对话框

在“Registration Parameters”对话框中根据实际情况的需要来对参数重新定义,选择输出的路径,命名保存。纠正的目的就是赋予雷达图像地理坐标定位的信息,有利于之后信息的提取工作。

(3)天线阵列校正(Antenna Pattern Correction)。由于仪器的天线接受阵列,雷达图像在垂直于行程方向有明显的畸变。ENVI的天线阵列校正函数可以用来消除这种畸变。计算出方位角平均值,并作图显示行程方向上的平均变化。由用户限定次数的一个多项式函数可以用来消除接受时产生的畸变,可以选择加法或乘法校正。天线阵列校正操作方法如下:◎在ENVl主菜单选择“Radar>Antenna Pattern Correction”,在打开的“Antenna Pattern Input File”对话框中,选择雷达图像文件。

◎在打开的“Antenna Pattern Correction Parameters”对话框中(图35-2),编辑以下参数。

等斜距记录方向(Range Direction):列(Samples)或行(Lines),可以通过查看图像数据的头文件确定记录方式;

校正方法(Correction Method):可选择加法(Additvie)或乘法(Multiplicative),常用乘法校正作雷达天线阵列畸变校正;

多项式次数(Polynomial Order):多项式次数根据需要进行改变,最大次数为5。

点击“Plot Polynomial”,显示出一张红色平均值图(图35-3),上面叠置着白色的、选择的多项式的拟和,多项式的最高次数可以根据需要改变,并再次作图(最好用一个低次多项式),以便不消除后向散射信号中的局部改变。

设置完以上参数后选择输出路径及文件名,点击【OK】按钮,执行操作。

图35-2 天线阵列校正参数窗口

图35-3 天线阵列校正曲线图

.3 图像增强

ENVI包括几个自适应滤波器,它们可以用于SAR 处理。自适应滤波器(Adaptive Filters)运用围绕每个像元值标准差来计算一个新的像元值。不同于传统的低通平滑滤波,自适应滤波器在抑制噪声的通透时保留了图像的高频信息和细节。Adaptive Filters包括LEE、Frost、Gamma、Kuan、用于减少图像斑点的局部σ滤波器,以及消除坏像元的比特误差滤波器(Bit Errors filter)。

自适应滤波器可用通过ENVI主菜单中的“Filters>Adatove>滤波器或者主菜单>Radar>Adaptive Filters>滤波器”途径打开相应类型的滤波器,如图35-4所示。自适应滤波器包括如下几种。

(1) LEE滤波器:用于平滑亮度各图像密切相关的噪声数据以及附加或倍增类型的噪声;

(2) Enhance LEE滤波器:可以在保持雷达图像纹理信息的同时减少斑点噪声;

(3) Frost滤波器:能在保留边缘的情况下,减少斑点噪声;

(4) Enhance Frost滤波器:可以在保持雷达图像纹理信息的同时减少斑点噪声;

(5) Gamma滤波器:可以用于在雷达图像中保留边缘信息的同时减少斑点噪声;

(6) Kuan滤波器:用于在雷达图像中保留边缘的情况下,减少斑点噪声;

(7) Local Sigma滤波器:能很好地保留细节并有效地减少斑点噪声,即使是在对比度较低的区域;

(8) Bit Error Filters比特误差滤波器:可以消除图像中的“bit-error”噪声。

图35-4 LEE滤波器参数窗口

4.合成彩色图像(Synthetic Color Image)

可以使用“Synthetic Color Image”项将一幅灰阶图像转换成一幅彩色合成图像。这个转换通常用于将大比例尺雷达数据在保留有用细节情况下增强其中细微特征的显示。操作步骤如下:

图35-5 合成彩色参数窗口

(1)在 ENVI 主菜单中选择“Radar>Synthetic Color Image”,在文件选择对话框中选择输入文件,单击【OK】按钮。

(2)在“Synthetic Color Parameters”对话框中(图35-5),输入高通滤波(High Pass Kerenl Size)和低通滤波交换核大小(Low Pass Kerenl Size)。

(3)输入饱和度(Saturation Value):范围0~1,该值越大图像颜色越深或者越纯。

(4)选择输出路径及文件名,单击【OK】按钮执行合成彩色图像处理,处理得到的结果将自动加载在可用波段列表中,并可用在“Display”中显示。

六、实验报告

(1)简述实验过程。

(2)回答问题:①雷达遥感对云层和地面植被具有穿透性,将本次实验处理得到的桂林市ERS-2图像,与在实验二或实验九得到的桂林市TM影像进行比较,寻找两种影像特征之间的差异。②与被动遥感图像的几何校正相比,雷达图像的校正有哪些不同的新内容?③有哪些黑白雷达遥感图像增强方法?有哪些彩色雷达遥感图像增强方法?④熟悉雷达影像处理后,思考下列问题:SAR图像、多光谱图像、高分辨率图像三者之间融合的方案,是否融合后的图像具有高分辨率多光谱穿透性强的特点?

实验报告格式见附录一。

2. 雷达的原理

雷达的工作原理是:雷达设备发射电磁波信号后,如果有目标物体碰到雷达信号就会反射回波,雷达接收器就会接收到回波信号,回波信号包含了目标的距离、方向和速度信息,雷达天线接收反射波后送至接收设备进行处理,提取有关该物体的某些信息,根据雷达发射波束还能测得出目标的角度。

雷达广泛应用于社会各个领域中,譬如汽车的倒车雷达装置。

倒车雷达是汽车泊车安全辅助装置,在倒车时,自动启动倒车雷达,不用回头看就可以知道车后有没有障碍物,是以声音或者更直观的显示监测告诉贺驶员车辆周围的障碍物,可以弥补驾驶员视野看不到的死角和视线模糊的地方,使停车和倒车更容易、更安全。

倒车雷达是根据蝙蝠在黑夜里高速飞行而不会与任何障碍物相撞的原理设计开发的。雷达的优点是白天黑夜均能探测远距离的目标,且不受雾、云和雨的阻挡,可以全天候、全天时工作的特点,并有一定的穿透能力。

倒车雷达装置装在驾驶台上,它不停地提醒司机车距后面物体还有多少距离,到危险距离时,蜂鸣器就开始鸣叫,提醒司机对障碍物的靠近,及时停车。

3. 一次雷达和二次雷达的区别在哪

20世纪70年代初计算机技术和雷达结合实现了航管雷达的全自动化。这种系统把一次雷达和二次雷达的数据都输入数据处理系统,高速运转的计算机接收三个方面来的数据,第一是一次雷达的雷达信息,第二是二次雷达来的信标信息,并把它转换成数字码,第三是由航管中心输入的飞行进程数据,即飞行计划的各种数据。这个系统跟踪一架飞机时,如果它的飞行计划已经报告给航管中心,这时计算机中已经存储了有关数据,在显示屏幕上就会把这架飞机的下一步预计的位置和高度显示出来,管制员就可以完全脱离进程单,直接在雷达屏幕上得到飞机的全部有关数据。这个系统极大改善了空中管制环境,提高了管制效率

4. SAR雷达的发展

在雷达卫星1号基础上,加拿大在2001年发射的雷达卫星2号雷达将具有全极化测量能力;欧空局也将在1999年11月发射的Envisat-1卫星上装载ASAR,有同极化和交叉极化两种极化模式;2002年将发射的LightSAR 将为L波段多极化及具有干涉测量、扫描模式的实用化成像雷达。同年计划发射的日本ALOS/PALSAR亦为多极化、多工作模式雷达系统。我国也将在未来的几年内,发射自行研制的L波段雷达卫星。由此可见, 国际上星载雷达正在向新的方向发展,它们将为数字地球的发展提供丰富的数据源。SAR技术的空间应用,使其成为20世纪末最受欢迎的侦察仪器之一,对它的应用和发展还刚刚开始。SAR卫星在未来将有更加广阔的发展和应用前景。 ALOS是日本的对地观测卫星,日本地球观测卫星计划主要包括2个系列:大气和海洋观测系列以及陆地观测系列。先进对地观测卫星ALOS是JERS-1与ADEOS的后继星,采用了先进的陆地观测技术,能够获取全球高分辨率陆地观测数据,主要应用目标为测绘、区域环境观测、灾害监测、资源调查等领域。ALOS卫星载有三个传感器:全色遥感立体测绘仪(PRISM),主要用于数字高程测绘;先进可见光与近红外辐射计-2(AVNIR-2),用于精确陆地观测;相控阵型L波段合成孔径雷达(PALSAR),用于全天时全天候陆地观测。ALOS卫星采用了高速大容量数据处理技术与卫星精确定位和姿态控制技术,下为ALOS卫星的基本参数。
发射时间:2006.01.24
运载火箭:H-IIA
卫星质量:约4000KG
产生电量:7000W
设计寿命:3-5年
轨道:太阳同步,高度691.65KM,倾角98.16°
重复周期:46天
重访时间:2天
数据速率:240MBPS(通过中继星)120MBPS(直接下传) RADARSAT-2是一颗搭载C波段传感器的高分辨率商用雷达卫星,由加拿大太空署与MDA公司合作,于2007年12月14日在哈萨克斯坦拜科努尔基地发射升空。卫星设计寿命7年而预计使用寿命可达12年,目前已投入运营。
RADARSAT-2具有3米高分辨率成像能力,多种极化方式使用户选择更为灵活,根据指令进行左右视切换获取图像缩短了卫星的重访周期,增加了立体数据的获取能力。另外,卫星具有强大的数据存储功能和高精度姿态测量及控制能力。 TerraSAR-X是固态有源相控阵的X波段合成孔径雷达(SAR)卫星,分辨率可高达1米。TerraSAR-X重访周期为11天,然而由于具有电子光束控制机制,对地面任一点的重复观测可达到4.5天,90%的地点可在2天内重访。
3种成像方式:
高分辨率聚束式(SpotLight):1米分辨率,覆盖范围5 x 10公里,具有可变的距离向分辨率和景幅大小,几何分辨率高、入射角可选、多种极化方式。
条带式(StripMap):3米分辨率,覆盖范围30 x 50公里,是SAR影像的基本拍摄模式,景幅框约30km,,长50 km,以入射角固定的波束沿飞行方向推扫成像,主要特点是几何分辨率高、覆盖范围较大、入射角可选,能生成双极化和全极化数据。其数据产品加上精密轨道数据,也可以用于重复轨道干涉测量,并获得观测目标区域的数字高程模型。
扫描式(ScanSAR):16米分辨率,覆盖范围100 x 150公里,天线在成像时沿距离向扫描,使观测范围加宽,同时也将降低方位向分辨率,可应用与大面积文理分析。天线高度随着入射角的不同转换扫描宽度,设计的ScanSAR成像模式扫描宽度为100 km,相当于4个连续的stripmap扫描宽度,这种模式的主要特点是,中等几何分辨率、覆盖率高、能够平行获取多于4个扫描条带的影像,入射角可选,可获取单极化。
基础影像数据
· SSC(Single Look Slant Range Complex) 单视斜距影像
· MGD(Multi Look Ground Range Detected) 多视地距影像
· GEC(Geocoded Ellipsoid Corrected)
· EEC(Enhanced Ellipsoid Corrected)
地理纠正数据:
· ORISAR 正射纠正影像
· RANSAR 辐射纠正影像
· MCSAR 镶嵌影像
· OISAR 定向影像
· DMSAR 升降轨融合影像 高分辨率雷达卫星COSMO-SkyMed是意大利航天局和意大利国防部共同研发的COSMO-SkyMed高分辨率雷达卫星星座的第二颗卫星,该卫星星座共有四颗卫星,整个卫星星座的发射任务于2008年底前完成。2007年6月8日,美国“德尔它”-2火箭成功发射意大利COSMO-SkyMed 1卫星。该卫星由泰勒斯阿莱尼亚航天公司建造,是意大利国防部与航天局合作项目的首颗卫星。该项目被称作COSMO-SkyMed星座,由4颗X波段合成孔径雷达(SAR)卫星组成。
卫星特点
作为全球第一颗分辨率高达1米的雷达卫星星座,COSMO-SkyMed系统将以全天候全天时对地观测的能力、卫星星座特有的高重访周期、1米高分辨率
卫星用途
Cosmo-Skymed雷达卫星的分辨率为1米,扫描带宽为10公里,具有雷达干涉测量地形的能力。
技术参数
COSMO-SkyMed卫星的技术参数
轨道参数:
发射时间 2007年6月8日
轨道类型 近极地太阳同步
倾角 97.86°
每天圈数 14.8125圈/天
轨道周期 16天
偏心率 0.00118
近地点 90°
半长轴 7003.52千米
卫星高度 619.6mk
升交点时间 6:00 A.M.
卫星数目 4
轨道定相 90°
2010年6月21日,德国在拜科努尔发射场通过第聂伯火箭将一颗雷达卫星射入太空,这颗卫星将与2007年发射的TerraSAR编队飞行,执行绘制将是全球最精确的3D地图的任务。这对卫星将在全球范围内一起测量地表高度变化,其精确度低于2米。
建立这些数字高程模型,有无数的用途,可以帮助军用飞机超低飞行,可以给救济工作人员显示地震的哪里破坏最大。
“我们的目标是产生一个分辨率和质量目前都还没有达到的模型。”卫星图像处理公司Infoterra GmbH 的Vark Helfritz博士解释说。他告诉BBC说,“这将是一个真正无缝的全球产品,而不是将片段的数据拼凑在一起”。 虽然编队飞行扩展了单颗卫星的功能,提高了单颗卫星的性能,但编队飞行中卫星的密集分布,其覆盖依然是非连续的;如果要实现连续覆盖,则由编队飞行组成卫星星座,即编队飞行卫星星座。在传统的卫星星座中,组成星座的单元为单颗卫星;而在编队飞行卫星星座中,组成星座的单元为飞行编队。编队飞行可以实现立体成像功能,由飞行编队组成的卫星星座则可以实现对某个区域的连续立体成像。
SAR侦察卫星具有全天时、全天候、不受大气传播和气候影响、穿透力强等优点,并对某些地物具有一定的穿透能力。这些特点使它在军事应用中具有独特的优势,必将成为未来战场上的杀手锏。因此,各航天国家纷纷计划或正在发展自己的SAR侦察卫星。我们完全有理由相信,21世纪是SAR卫星飞速发展的新世纪。

5. 二次雷达的发展

20世纪70年代初计算机技术和雷达结合实现了航管雷达的全自动化。这种系统把一次雷达和二次雷达的数据都输入数据处理系统,高速运转的计算机接收三个方面来的数据,第一是一次雷达的雷达信息,第二是二次雷达来的信标信息,并把它转换成数字码,第三是由航管中心输入的飞行进程数据,即飞行计划的各种数据。这个系统跟踪一架飞机时,如果它的飞行计划已经报告给航管中心,这时计算机中已经存储了有关数据,在显示屏幕上就会把这架飞机的下一步预计的位置和高度显示出来,管制员就可以完全脱离进程单,直接在雷达屏幕上得到飞机的全部有关数据。这个系统极大改善了空中管制环境,提高了管制效率。

6. 国内安防主要应用的是什么技术毫米波雷达是主流技术吗

新一代汽车安全防撞毫米波雷达
南京瑞维尔电子技术有限公司通过技术引进、消化,研发生产出适合中国道路行驶、大众用户可配置的安全防撞毫米波雷达。
功能:
测距:探测电车前方障碍物距离(包括纵向和侧向距离),障碍物可以是汽车、自行车、人等,可以是静止物也可以是运动中的对象。
测速:可以探测前方目标相对于雷达载体的速度,包括横向速度(目标物垂直于雷达探测轴线的速度)和纵向速度(目标物平行于雷达探测轴线的速度);
目标识别:雷达可探测并识别超过40个的目标。并输出目标的特质参数如长宽、运动
性、方向等。
警示功能:按目标相对轨迹计算分析障碍物对车辆的影响,按照其危险等级设置报警级
别,提醒司机注意。
事故分析:能存储3天内目标数据,一旦发生事故可导出雷达“黑匣子”数据通过专用
软件复原事故发生瞬间车前方目标运动场景,辅助分析责任方。
特点
该雷达与国内目前“双眼睛”激光测距雷达相比,明显的优势是
1)真正的全天候工作 雾霾、下雨、下雪、风沙天气均能正常工作
2)通过探测前方目标的运动轨迹,根据轨迹来判断目标(障碍物)与本车有无相撞的危险,进而警示提示司机
3)能够提供目标物的特征比如长宽、方向及运动状态
4)探测距离远,给司机有足够的反应和处理时间
5)受光污染干扰小
6)能探测车前第二辆车(前车的前车)的运动状态,避免急刹车连环撞,尤其是能探测前车前横闯的“鬼头”车。
7) 价格、国内用户都能配置的产品
目前已广泛应用在客车、货车、轿 车、校车、特种车等各个细分车型市场上。
技术指标:
作用距离:200米
 雷达工作频率:77GHz
探测精度:0.25米
 探测范围:近处60°远处20°
 测角分辨率 :远处0.1°
 探测数据更新周期:80ms
 工作电压: +24 V DC
 工作温度: 雷达头-40°C...+85°C
工作原理: 按车前方目标轨迹并根据本车的速度、相对速
度计算是否有碰撞危害,提示司机警示;轨迹
计算相对测距计算虚警低

7. 雷达的类型主要有哪些

雷达的分类: [1]岸防雷达 用于对海防御探测和岸防武器控制的雷达。是岸防作战指挥控制系统的组成部分。包括海岸警戒雷达、岸舰导弹制导雷达和海岸炮炮瞄雷达等。它具有较好的抗海浪杂波干扰的能力。其安装形式有固定式和机动式两种。固定式安装在永备工事内,或用气球悬空;机动式安装在车辆上。海岸警戒雷达一般设置在海岸和岛屿的高地上,以增大对海面和低空目标的探测距离。 [2]弹道导弹跟踪雷达 一种远距离跟踪雷达。用于跟踪洲际导弹、中程导弹和潜地弹道导弹,连续测定其坐标和速度,识别真假弹头,并精确预测其未来位置,测定其轨道,制导己方反弹道导弹导弹攻击目标。也用于弹道导弹试验的靶场测量和鉴定。它是反导弹武器系统和靶场测量系统不可缺少的组成部分。 [3]弹道导弹预警雷达 一种远距离搜索雷达。用于发现洲际、中程和潜地弹道导弹,测定其瞬时位置、速度、发射点和弹着点等参数,为国家军事指挥机关提供弹道导弹来袭的情报。也用于担负空间监视和人造地球卫星等飞行器编目的任务。 [5]对空情报雷达 搜索、监视与识别空中目标并确定其坐标和运动参数的雷达。亦称对空搜索雷达。它所提供的情报,主要用于发布防空警报、引导歼击机截击敌方航空器和为防空武器系统指示目标,也用于保障飞行训练和飞行管制。是现代战争中获取空中目标情报的重要技术装备。 [6]机载雷达 装在飞机上的各种雷达的总称。主要用于控制和制导武器,实施空中警戒、侦察,保障准确航行和飞行安全。机载雷达的基本原理和组成与其他军用雷达相同,其特点是:一般都有天线平台稳定系统或数据稳定装置;通常采用3厘米以下的波段;体积小,重量轻;具有良好的防震性能。 按用途可分为: ② 轰炸雷达,主要用来为瞄准轰炸、制导空地导弹和领航提供目标信息。它可单独工作,也可与光学瞄准具、计算机配合使用,构成轰炸瞄准系统。轰炸雷达按搜索方式可分为前视和环视(亦称全景)两类。前视雷达的天线波束指向载机前下方,在一个扇形地区内搜索。环视雷达的天线波束成扇形,指向载机下方作圆周搜索。它有搜索和瞄准两种工作状态。搜索时,天线作圆周扫瞄,当显示器画面上目标进入瞄准区时,雷达转入瞄准状态,将测得的目标数据送到计算装置,会同其他参数标出投弹点并显示在显示器上。当目标信号与投弹标志重合时,发出投弹指令,实现自动轰炸。轰炸雷达的作用距离一般为150~300公里,方位分辨力约为1°~3°。 ③ 空中侦察与地形显示雷达,用于提供地(海)面固定目标和移动目标的位置和地形资料。它通常是一种侧视雷达,具有很高的分辨力。其天线安装在机身两侧,波束指向载机左右下方并垂直于航线,随载机飞行向前扫瞄(图 2机载侧视雷达工作示意图)。侧视雷达分为真实口径侧视雷达和合成孔径侧视雷达两类。真实口径侧视雷达的天线沿机身纵向长达8~10米,在飞机机身两侧形成很窄的波束,分辨力较全景雷达高10倍左右。合成孔径侧视雷达的天线实际尺寸并不大,但它利用载机的前进运动,通过对相干信号的存储和处理,可获得有效长度为几公里的天线孔径,从而极大地提高了雷达的分辨力(可达几米)。由这种雷达获得的地形图,其清晰度与航空照相的效果相接近。侧视雷达能昼夜进 行空中侦察和地形显示,可在不飞越对方阵地的情况下侦察到对方纵深一二百公里内的目标。 ④ 航行雷达,用于观测载机前方的气象状况、空中目标和地形地物,保障飞机准确航行和飞行安全。有一类专门用来保障飞机低空、超低空飞行安全的航行雷达,叫地形跟随雷达和地物回避雷达,通常装在执行低空突防任务的飞机上。地形跟随雷达与计算机和飞行控制系统配合,控制飞行高度随地形起伏变化,使飞机始终保持一定的安全高度。地物回避雷达为飞行员显示选定高度上地面障碍物的分布情况,提供回避信号,使飞机绕过障碍物,保证飞行安全。利用工作转换开关,上述两种雷达可以交替使用。还有一种专门用于测定载机的偏流角和地速的航行雷达,称为多普勒导航雷达,可提供导航和轰炸所需数据,通常装在轰炸机和运输机上。 ⑤ 机载预警雷达,是预警机的主要电子设备,用于空中警戒和指挥引导,也可用于空中交通管制。它已成为现代防空体系的重要组成部分。与地面对空情报雷达相比,它的盲区小,发现低空、超低空目标的距离远,机动性较强。 发展趋势:中国人民解放军于50年代开始装备机载雷达,60年代自行设计和研制出单脉冲体制机载截击雷达和轰炸雷达。70年代,又研制了多种体制和多功能的机载雷达。随着电子技术的发展和战术要求的不断变化,机载雷达在作用距离、目标分辨力和识别能力、抗干扰能力和可靠性等方面将进一步发展。搜索、跟踪多个目标和具有多种功能的机载相控阵雷达将获得较为广泛的应用。机载雷达的小型化、自动化程度和自适应能力也将进一步提高。 [7]舰载雷达 装备在舰艇上的各种雷达的总称。用于探测和跟踪海面和空中目标,为武器系统提供目标坐标等数据,引导舰载机飞行和着舰,保障舰艇安全航行和战术机动等。 发展趋势:发展多功能雷达,以提高雷达效能,减少舰上雷达的数量;进一步提高抗干扰能力,抑制海浪杂波,克服低空多路径效应,改善低空探测和跟踪性能等。 [8]军用雷达 利用电磁波发现目标并测定其位置、速度和其他特性的军用电子装备。“雷达”一词是英文RADAR (radiodetection and ranging的缩写)的音译,原意是无线电探测和测距。雷达具有发现目标距离远,测定目标坐标速度快,能全天候使用等特点。因此在警戒、 引导、武器控制、侦察、航行保障、气象观测、敌我识别等方面获得广泛应用,成为现代战争中一种重要的电子技术装备。 主要有:①炮瞄雷达。用于连续测定目标坐标的实时数据,通过射击指挥仪控制火炮瞄准射击。有地面型和舰载型。②导弹制导雷达。用于引导和控制各种战术导弹的飞行。有地面型和舰载型。③鱼雷攻击雷达。安装在鱼雷艇和潜艇上,用于测定目标的坐标,通过指挥仪控制鱼雷攻击。④机载截击雷达。安装在歼击机上,用于搜索、截获和跟踪空中目标,并控制航炮、火箭和导弹瞄准射击。⑤机载轰炸雷达。安装在轰炸机上,用于搜索和识别地面或海面目标,并确定投弹位置。⑥末制导雷达。安装在导弹上,在导弹飞行的末段,自动控制导弹飞向目标。⑦弹道导弹跟踪雷达。在反导武器系统和导弹靶场测量中,用于连续测定飞行中的弹道导弹的坐标、速度,并精确预测其未来位置。 用于侦察的雷达 主要有:①战场侦察雷达。陆军侦察分队用于侦察和监视战场上敌方运动中的人员和车辆。②炮位侦察校射雷达。 地面炮兵用于侦察敌方火炮发射阵地位置,测定己方弹着点的坐标,以校正火炮射击。③活动目标侦察校射雷达。 用于测定地面或海面的活动目标,并测定炮弹炸点或水柱对目标的偏差以校正地炮或岸炮射击。④侦察与地形显示雷达。安装在飞机上,用于侦察地面、海面的活动目标与固定目标和测绘地形。它采用合成孔径天线,具有很高的分辨力;所获得的地形图像,清晰度与光学摄影相接近。 用于航行保障的雷达 主要有:①航行雷达。安装在飞机上,用于观测飞机前方气象情况、空中目标和地形地物,以保障飞机安全飞行。②航海雷达。安装在舰艇上,用于观测岛屿和海岸目标,以确定舰位,并根据所显示的航路情况,引导、监督舰艇航行。③地形跟随与地物回避雷达。安装在飞机上,用于保障飞机低空、超低空飞行安全。它和有关机载设备结合起来,可使飞机在飞行过程中保持一定的安全高度,自动避开地形障碍物。④着陆(舰)雷达。在复杂气象条件下,用于引导飞机安全着陆或着舰。通常架设在机场或航空母舰甲板跑道中段的一侧。 用于气象观测的气象雷达,可探测空中云、雨的状态,测定云层的高度和厚度,测定不同大气层里的风向、风速和其他气象要素。它包括测雨雷达、测云雷达、测风雷达等。此外,按雷达架设位置的不同,可分为地面雷达、机载雷达、舰载雷达、导弹载雷达、航天雷达、气球载雷达等。按工作频段不同,可分为米波雷达、分米波雷达、厘米波雷达、毫米波雷达等。按发射信号形式不同,可分为脉冲雷达、连续波雷达、脉冲压缩雷达等。 按天线波束扫描控制方式不同,可分为机械扫描雷达、机电扫描雷达、频扫雷达和相控阵雷达等。 发展趋势:雷达的工作频段将继续向电磁频谱的两端扩展;应用微电子学和固态技术成果,将实现雷达的小型化;利用计算机管理和控制雷达,将实现操作、校准、性能和故障检测的自动化,并发展自适应抗干扰技术;在中小型地面、舰载、机载雷达中,相控阵技术将获得广泛应用,以实现雷达的多功能;将提高雷达对目标实际形象、尺寸大小、运动姿态和诱饵识别的能力,增强雷达抗核袭击和抗反辐射导弹摧毁的能力;并将发展新的雷达体制如多基地雷达、无源雷达、扩频雷达、噪声雷达等。 [8]炮瞄雷达 用于自动跟踪空中目标,测定目标坐标,并通过指挥仪控制高射炮瞄准射击的雷达。又称火炮控制雷达。它是高射炮系统的组成部分。 [9]战场侦察雷达 一种探测地面活动目标的雷达。主要装备于陆军部队,用于警戒、侦察敌方运动中的人员、车辆和坦克等目标,测定其方位、距离和活动路线,提供敌军地面活动的情报。根据雷达作用距离的不同,战场侦察雷达可分为近距离(对车辆10公里左右)便携式和中远距离(对车辆20~40公里左右)车载式两种类型。根据雷达发射波形的不同,又有连续波和脉冲波两种体制。这种雷达一般采用 3厘米或者更短的波长,以提高精度和减少体积、重量。由于目标周围环境中常伴有很多地物,这种雷达通常采用动目标检测技术,以便将活动目标信号从强烈的地物杂波中检测出来。 。 [11] 侧视雷达 视野方向和飞行器前进方向垂直,用来探测飞行器两侧地带的合成孔径雷达。飞行器上的侧视雷达包括发射机、接收机、传感器、数据存贮和处理装置等部分。早期使用真实孔径雷达探测目标,它借直接加大天线孔径和发射窄脉冲的办法来提高雷达图像分辨率。

8. 激光雷达的特点及用途有哪些

1.激光雷达的特点

与普通微波雷达相比,激光雷达由于使用的是激光束,工作频率较微波高了许多,因此带来了很多特点,主要有:

(1)分辨率高

激光雷达可以获得极高的角度、距离和速度分辨率。通常角分辨率不低于0.1mard也就是说可以分辨3km距离上相距0.3m的两个目标(这是微波雷达无论如何也办不到的),并可同时跟踪多个目标;距离分辨率可达0.lm;速度分辨率能达到10m/s以内。距离和速度分辨率高,意味着可以利用距离——多谱勒成像技术来获得目标的清晰图像。分辨率高,是激光雷达的最显着的优点,其多数应用都是基于此。

(2)隐蔽性好、抗有源干扰能力强

激光直线传播、方向性好、光束非常窄,只有在其传播路径上才能接收到,因此敌方截获非常困难,且激光雷达的发射系统(发射望远镜)口径很小,可接收区域窄,有意发射的激光干扰信号进入接收机的概率极低;另外,与微波雷达易受自然界广泛存在的电磁波影响的情况不同,自然界中能对激光雷达起干扰作用的信号源不多,因此激光雷达抗有源干扰的能力很强,适于工作在日益复杂和激烈的信息战环境中。

(3)低空探测性能好

微波雷达由于存在各种地物回波的影响,低空存在有一定区域的盲区(无法探测的区域)。而对于激光雷达来说,只有被照射的目标才会产生反射,完全不存在地物回波的影响,因此可以"零高度"工作,低空探测性能较微波雷达强了许多。

(4)体积小、质量轻

通常普通微波雷达的体积庞大,整套系统质量数以吨记,光天线口径就达几米甚至几十米。而激光雷达就要轻便、灵巧得多,发射望远镜的口径一般只有厘米级,整套系统的质量最小的只有几十公斤,架设、拆收都很简便。而且激光雷达的结构相对简单,维修方便,操纵容易,价格也较低。

2、激光雷达的用途

直升机障碍物规避激光雷达

化学战剂探测激光雷达

机载海洋激光雷达

成像激光雷达可水下探物

无人驾驶激光雷达

3、激光雷达原理

http://jingyan..com/article/ae97a646f19bf5bbfd461dad.html

9. raid什么意思

一.Raid定义
RAID(Rendant Array of Independent Disk 独立冗余磁盘阵列)技术是加州大学伯克利分校1987年提出,最初是为了组合小的廉价磁盘来代替大的昂贵磁盘,同时希望磁盘失效时不会使对数据的访问受损失而开发出一定水平的数据保护技术。RAID就是一种由多块廉价磁盘构成的冗余阵列,在操作系统下是作为一个独立的大型存储设备出现。RAID可以充分发挥出多块硬盘的优势,可以提升硬盘速度,增大容量,提供容错功能够确保数据安全性,易于管理的优点,在任何一块硬盘出现问题的情况下都可以继续工作,不会受到损坏硬盘的影响。
二、RAID的几种工作模式
1、RAID0
即Data Stripping数据分条技术。RAID 0可以把多块硬盘连成一个容量更大的硬盘群,可以提高磁盘的性能和吞吐量。RAID 0没有冗余或错误修复能力,成本低,要求至少两个磁盘,一般只是在那些对数据安全性要求不高的情况下才被使用。
(1)、RAID 0最简单方式
就是把x块同样的硬盘用硬件的形式通过智能磁盘控制器或用操作系统中的磁盘驱动程序以软件的方式串联在一起,形成一个独立的逻辑驱动器,容量是单独硬盘的x倍,在电脑数据写时被依次写入到各磁盘

中,当一块磁盘的空间用尽时,数据就会被自动写入到下一块磁盘中,它的好处是可以增加磁盘的容量.速度与其中任何一块磁盘的速度相同,如果其中的任何一块磁盘出现故障,整个系统将会受到破坏,可靠性是单独使用一块硬盘的1/n。
(2)、RAID 0的另一方式
是用n块硬盘选择合理的带区大小创建带区集,最好是为每一块硬盘都配备一个专门的磁盘控制器,在电脑数据读写时同时向n块磁盘读写数据,速度提升n倍。提高系统的性能。
2、RAID 1
RAID 1称为磁盘镜像:把一个磁盘的数据镜像到另一个磁盘上,在不影响性能情况下最大限度的保证系统的可靠性和可修复性上,具有很高的数据冗余能力,但磁盘利用率为50%,故成本最高,多用在保存关键性的重要数据的场合。RAID 1有以下特点:
(1)、RAID 1的每一个磁盘都具有一个对应的镜像盘,任何时候数据都同步镜像,系统可以从一组镜像盘中的任何一个磁盘读取数据。
(2)、磁盘所能使用的空间只有磁盘容量总和的一半,系统成本高。
(3)、只要系统中任何一对镜像盘中至少有一块磁盘可以使用,甚至可以在一半数量的硬盘出现问题时系统都可以正常运行。
(4)、出现硬盘故障的RAID系统不再可靠,应当及时的更换损坏的硬盘,否则剩余的镜像盘也出现问题,那么整个系统就会崩溃。
(5)、更换新盘后原有数据会需要很长时间同步镜像,外界对数据的访问不会受到影响,只是这时整个系统的性能有所下降。
(6)、RAID 1磁盘控制器的负载相当大,用多个磁盘控制器可以提高数据的安全性和可用性。
3、RAID0+1
把RAID0和RAID1技术结合起来,数据除分布在多个盘上外,每个盘都有其物理镜像盘,提供全冗余能力,允许一个以下磁盘故障,而不影响数据可用性,并具有快速读/写能力。RAID0+1要在磁盘镜像中建立

带区集至少4个硬盘。
4、RAID2
电脑在写入数据时在一个磁盘上保存数据的各个位,同时把一个数据不同的位运算得到的海明校验码

保存另一组磁盘上,由于海明码可以在数据发生错误的情况下将错误校正,以保证输出的正确。但海明码

使用数据冗余技术,使得输出数据的速率取决于驱动器组中速度最慢的磁盘。RAID2控制器的设计简单。
5、RAID3:带奇偶校验码的并行传送
RAID 3使用一个专门的磁盘存放所有的校验数据,而在剩余的磁盘中创建带区集分散数据的读写操作

。当一个完好的RAID 3系统中读取数据,只需要在数据存储盘中找到相应的数据块进行读取操作即可。但

当向RAID 3写入数据时,必须计算与该数据块同处一个带区的所有数据块的校验值,并将新值重新写入到

校验块中,这样无形虽增加系统开销。当一块磁盘失效时,该磁盘上的所有数据块必须使用校验信息重新

建立,如果所要读取的数据块正好位于已经损坏的磁盘,则必须同时读取同一带区中的所有其它数据块,

并根据校验值重建丢失的数据,这使系统减慢。当更换了损坏的磁盘后,系统必须一个数据块一个数据块

的重建坏盘中的数据,整个系统的性能会受到严重的影响。RAID 3最大不足是校验盘很容易成为整个系统

的瓶颈,对于经常大量写入操作的应用会导致整个RAID系统性能的下降。RAID 3适合用于数据库和WEB服

务器等。
6、 RAID4
RAID4即带奇偶校验码的独立磁盘结构,RAID4和RAID3很象,它对数据的访问是按数据块进行的,也

就是按磁盘进行的,每次是一个盘,RAID4的特点和RAID3也挺象,不过在失败恢复时,它的难度可要比

RAID3大得多了,控制器的设计难度也要大许多,而且访问数据的效率不怎么好。
7、 RAID5
RAID 5把校验块分散到所有的数据盘中。RAID 5使用了一种特殊的算法,可以计算出任何一个带区校

验块的存放位置。这样就可以确保任何对校验块进行的读写操作都会在所有的RAID磁盘中进行均衡,从而

消除了产生瓶颈的可能。RAID5的读出效率很高,写入效率一般,块式的集体访问效率不错。RAID 5提高

了系统可靠性,但对数据传输的并行性解决不好,而且控制器的设计也相当困难。
8、RAID6
RAID6即带有两种分布存储的奇偶校验码的独立磁盘结构,它是对RAID5的扩展,主要是用于要求数据

绝对不能出错的场合,使用了二种奇偶校验值,所以需要N+2个磁盘,同时对控制器的设计变得十分复杂

,写入速度也不好,用于计算奇偶校验值和验证数据正确性所花费的时间比较多,造成了不必须的负载,

很少人用。
9、 RAID7
RAID7即优化的高速数据传送磁盘结构,它所有的I/O传送均是同步进行的,可以分别控制,这样提高

了系统的并行性和系统访问数据的速度;每个磁盘都带有高速缓冲存储器,实时操作系统可以使用任何实

时操作芯片,达到不同实时系统的需要。允许使用SNMP协议进行管理和监视,可以对校验区指定独立的传

送信道以提高效率。可以连接多台主机,当多用户访问系统时,访问时间几乎接近于0。但如果系统断电

,在高速缓冲存储器内的数据就会全部丢失,因此需要和UPS一起工作,RAID7系统成本很高。
10、 RAID10
RAID10即高可靠性与高效磁盘结构它是一个带区结构加一个镜象结构,可以达到既高效又高速的目的。这

种新结构的价格高,可扩充性不好。
11、 RAID53
RAID7即高效数据传送磁盘结构,是RAID3和带区结构的统一,因此它速度比较快,也有容错功能。但价格

十分高,不易于实现。

三、应用RAID技术
要使用磁盘RAID主要有两种方式,第一种就是RAID适配卡,通过RAID适配卡插入PCI插槽再接上硬盘

实现硬盘的RAID功能。第二种方式就是直接在主板上集成RAID控制芯片,让主板能直接实现磁盘RAID。这

种方式成本比专用的RAID适配卡低很多。
此外还可以用2k or xp or linux系统做成软raid.
个人使用磁盘RAID主要是用RAID0、 RAID1或RAID0+1工作模式。

10. 车载测速雷达二次开发:PC机显示界面及数据处理软件开发

虚拟仪器 - 软件就是仪器
虚拟仪器,虚拟示波器,虚拟仪器技术,虚拟仪器软件,虚拟仪器技术的发展,虚拟仪器组成
介绍
多媒体计算机,信息计算机信息科学和计算机网络的发展,高速公路的三个重要方向。它们相互联系,相互促进,共同发展,已经渗透到人们的日常工作??生活中,学习娱乐的各个方面,并逐步由办公室,实验室的家庭。
虚拟现实是一个重要的应用领域,多媒体计算机,多媒体技术,虚拟现实技术基础。虚拟现实(虚拟现实)是一个模拟现实的环境中使用多媒体计算机技术生成一个逼真的视觉,听觉,触觉和嗅觉。用户可能会采用自然的技能这个虚拟现实的互动体验,而用户体验的结果的反应与用户体验真正的现实 - 虚拟现实的结果相似或相同的。虚拟现实概念包括三个层次的含义:

1,虚拟现实是利用计算机技术生成逼真的实体,该实体拥有一个真正的立体视觉,立体听觉,质感触觉和嗅觉。
2,人们可以对话,即一个人的头部,眼睛,四肢真实自然的技能与虚??拟现实在虚拟现实的各种行动的反应。
3,虚拟现实技术往往必须依靠三维传感设备来完成交互操作,如头戴式立体显示器,数据手套,数据衣服,三维操作等。
虚拟现实技术还处于起步阶段,但在科学计算可视化,CAD,飞机/汽车/外科,虚拟仪器模拟经营及其他方面的应用。具有广阔的应用前景,在航空航天,国防,生物医学,教育,培训,娱乐,游戏,旅游领域。
虚拟仪器(虚拟仪器 - VI)是虚拟现实技术在仪器仪表领域,已经悄然崛起在国际舞台上的一个重要应用。虚拟仪器作为一台多媒体电脑,使用图形界面的编程技术来模拟实际的仪表盘,功能和操作,从而产生特殊的工具,以完成各种任务的基础。

由于高度的科学和技术的发展,导致了各种强大的,日益复杂的金融工具不断涌现,许多电脑微机化仪器的发展趋势,其主要性能为基础的仪器:

1,计算机硬件及接口标准化
2的硬件和软件技术
3,模块化的软件
模块控制
5,系统集成
编程图形
7,科学计算可视化
硬件接口的软件驱动程序
计算机软件和硬件技术的不断发展,再加上实际应用的需求,因此,人们越来越大的兴趣在虚拟仪器,虚拟仪器也已成为一种现实的可能性。开发的虚拟仪器主要是由于以下用途:

1,节约了仪器仪表的开发时间和资金
2,充分利用计算机数据处理和分析功能
3 ,统一仪器的用户界面
提高了仪器的功能和适用范围
5集成的仪器需要

很容易地扩展虚拟仪器的仪器主要由以下几个部分组成:

1接口的控件库
2,数据输入,输出
3,数据处理方法库
资料库
5个数据的存储和管理<BR / 6,任意信号发生器
7,图形界面编程环境

界面控件库,包括一些常用的仪表盘组件,如指标计发光二极管,按钮,刻度盘,刻度盘,滑块等,每个控制,具有可编程的功能和属性。
数据输入和输出从外部设备中获取数据到计算机或输出数据由计算机来控制外部设备,数据采集板,串行和并行通信,以及其他标准的接口(IEEE- 488 GPIB,RS-232,RS-422,SCSI,VXI等),通信驱动软件,,延长仪器适用
应用范围。
数据处理方法库的集中数据处理方法,如FFT计算,过滤,建模,参数估计,并提供编程接口,这些治疗方法,这些方法只是简单的组合完成复杂的各种任务。
数据表示的方式来显示数据和处理结果,包括数字显示,曲线,直方图,散点图,二维图形,三维网格图案,填充图形三维,四维图形,图像甚至是动态的图形或图像,数据表示是非常直观和易于理解。
数据存储和管理主要是指格式的数据存储,数据查询,数据浏览方法。的
的必要性的基础上产生任何信号产生的信号,其中的一些是标准信号可用于仪器测试和自检。
图形化编程环境,用户可以使用任意组合的控制和方法,结合为一个整体,形成专门的仪器工具。虚拟仪器的用户可以快速生成所需的仪器像积木。

一个集成的环境,例如现有的虚拟仪器

1,MATLAB将高性能的数值计算和数据分析软件

MATLAB是由美国MathWorks公司将高性能的数值计算和数据分析软件。它已成为行业标准,工程和科学研究,它有一个独特的用户界面,复杂的数值计算,强大的数据分析,灵活的图形,快速的计算,方便的扩展特性,产量高,创造性科学研究的首选软件。
MATLAB基本功能:
※矩阵运算
※矩阵分解
矩阵的特征值特征向量
※信号卷积
※谱估计
※复杂的操作
一维和二维FFT
※过滤器
※曲线拟合
※三次样条符合
※贝塞尔函数
※非线性滤波器的设计优化
※线性方程组的求解
※微分方程

MATLAB工具箱包括:

※数字信号处理工具箱
控制系统设计工具箱
*系统辨识工具箱
自我膨胀的工具箱

MATLAB包括绘图功能:

直方图
※散点图 />的※图
在※三维网格图
在※二维填充图
※等高线地图
※极坐标图形
※XY图<BR / ※图像显示

2,DADiSP:科学家和工程师,数据分析和图形软件

DADiSP软件开发的美国公司的DSP开发公司,主要为科学家和工程师的工具,用于数据分析和图形显示。它包括以下功能:
*矩阵运算
※特征值和特征值?
※一维,二维FFT和卷积
两个二维,三维,四维图形显示
※医学图像处理
※卫星遥感图像处理
地震信号处理
※统计分析和处理
> *实验设计
※假设检验
※过滤器的设计
声音娜磊达信号处理
※语音通信信号处理
※振动分析
BR />

MP100:医学信号采集和处理系统

MP100是由美国BIOPAC医学信号采集和处理系统,运行起来它与AcqKnowledge软件,提供了一个灵活的,易于使用的模块化系统,所以你要完成数据收集和分析工作。 AcqKnowledge是一个强大的和非常灵活的包中,使用下拉菜单和对话框,而无需学习另一门编程语言,你可以设计出复杂的数据采集,模拟触发和分析系统。主要包括一个实时数据记录,分析和滤波,离线数据分析和处理,各种的数据和其他功能的图形表示。该系统可以提供可视化图形化编程环境LabVIEW虚拟仪器连接。其主要应用领域:

※运动生理学
肌电图信号记录
※相信,电子记录和分析
※EEG记录和分析
※诱发潜在的记录和分析
※性眼震电图及眼球运动分析
※神经传导分析
※psychophysiologist
※药理学
※遥测监护仪

>

4时,LabVIEW图形化编程的虚拟仪器
LabVIEW虚拟仪器图形化编程系统是由美国国家仪器公司开发的。包括数据采集,控制,数据点,数据表示等功能,它提供了一种新的编程方法,图形化组装软件模块,以产生特殊的仪器。流程框图的LabVIEW面板,图标/连接器面板的用户界面,流程框图是一个虚拟仪器的源代码,被称为图标/连接器接口(调用接口)。流程框图,包括组件和子VI部分的输入/输出(I / O),计算的部分,他们的图标和数据流连接的I / O组件,直接与数据采集板,GPIB板或其他外部物理仪器通信,计算组件来完成数学或其他的算术运算子VI组件调用其他的虚拟仪器。

5 LabWindows / CVI的C语言编程的虚拟仪器

LABWINDOWS使用LabVIEW和类似的功能,由同一家公司,开发的区别是,它可以用在C语言编程的虚拟仪器。

6,LabLinc V:模块化的虚拟仪器系统

模块化的虚拟仪器系统开发的的美国COULBOURN仪器的LabLinc V的基本单元,信号采集和处理,控制模块,主要用于在该领域的生理,生物医学和生物力学数据采集,实时显示和过程控制。

7,HyperSignal:可视化信号处理系统的设计

HyperSignal美国Hyperception视觉信号处理系统设计软件开发,使信号处理系统的设计过程可视化,信号处理和结果可视化。

8,Model900:灵活的数据采集和波形系统

Model900由美国公司开发的应用信号技术,提供高速大大容量数据采集,波形生成功能,使用虚拟环境的仪器,以节省开发时间和金钱。

9,DASP大容量的自动数据采集和处理

DASP,东方学院的噪声和振动分析软件, ,主要是与信号采集和分析的数据记录和分析的科学实验,多功能,自动化的数据采集,显示,阅读,计算,分析,存储,打印,绘图等。

10,LabDoc:集成的仪器包

LabDoc日本康泰克电子科技有限公司,公司开发的,它具有多种测量仪器的功能,通过一个图形化的用户界面和在线帮助,操作方便,仪器屏幕上。可用于实验室和生产线的检查,教育和培训等领域的主要测试功能:

※数字滤波
*脉冲发生器
※函数发生器
※波形产生
※调谐信号
※FFT分析
※频率计
以上我们列出了10种比较流行的虚拟仪器和系统集成环境,最杰出的作品在这方面,美国和中国在这方面才刚刚起步,目前还没有看到一个完整的虚拟仪器系统。从上面所举的例子可以看出,虚拟仪器具有以下特点:

※涉及更深奥的数值方法
※集成化信号处理和过程控制算法
※软硬件模块,独立的相互
※二次开发的集成编程环境
※多学科的产品

渗透,虚拟医学信号处理设备 BR />
一个非常广泛的医学信号,电力常见的医学信号确定,脑电图,诱发电位,肌电图,眼电图,胃电神经冲动的潜力,血压,呼吸波,脉冲波,温度等信号,其特征在于由每个
是不一样的,各自的频段,取值范围为,干扰源,从而使医疗信号处理变得非常复杂。
无论是医学信号仪器,几乎所有涉及到的信号放大,采集,分析,处理,过滤和其他常见任务,不同的信号有自己的特殊待遇,这些共性和特异性有机结合起来,形成一个集成的环境的基础上的虚拟仪器。
多参数的临床监测和诊断的需要,医学信号的采集和处理仪器融合的趋势,人们从医疗的信号仪器开发由单一功能的多功能综合型仪器的发展,但是,这种整合堆相结合的仪器是不是一个单一的功能,而是从不同的单一功能的仪器识别的相似性和差异性,形成软,硬件模块,计算机化的医学信号处理设备构成医学信号处理仪器的开发环境,这是一个虚拟仪器。
虚拟医学信号处理机器是非常有前途的领域,许多医疗设备公司的市场前景是乐观的,在这方面投入了大量的人力,物力和财力资源,以从事研究和开发,前面提到的MP100医疗数据采集系统和LabLinc的v模块化的虚拟仪器的杰出代表之一。
虚拟医学信号处理仪器的开发和生产的各种医学信号分析仪是一种工具。对于像搭积木一样快速生成一个专用仪器仪表的开发,节省了大量的开发时间和金钱,对于用户来说,可以花更少的钱,买的仪器。虚拟医学信号处理设备为一体的多功能仪表的发展奠定了基础,并尽快的最新研究成果可应用于仪器。的虚拟机可用于医学信号处理研究未知的未知特性的信号和信号,实现更快的结果,取得更大的成就目的。实际上,虚拟医学信号处理的机器发挥作用,助长了当前的热点研究领域,远程医疗,医疗电子图书。

四个虚拟仪器技术

1,数值计算

虚拟仪器,您需要提供一个灵活的数据处理方法,这些方法中,可以根据实际的需要由用户通过编程来实现,为了简化编程的复杂程度,并保存的特定时间的发展,在虚拟仪器应该是尽可能地提供各种数值计算程序,这些数值?计算主要表现在以下几个方面:

*矩阵运算(加,减,乘,逆,转置)
特征值和特征向量计算
矩阵分解
※一元,二元插值
※数值积分和微分
※线性代数方程组的求解
※非线性方程组求解
※配件和近似
※※特殊功能
回归和统计

2,数字信号处理

复杂的仪器,拥有数字信号处理的重要地位,从而在虚拟仪器是需要整合各种数字信号处理方法,和数字信号处理方法可分为几类:

信号预处理 BR /> *滤波器设计滤波
※经典谱估计
※现代谱估计
※相关和卷积
※离散变换
※数字特征
※常用的信号信号建模

※※数据压缩

3,计算机图形,图像科学

图形和图直观的大量的数据,如静态和动态脑电地形图,表面温度分布,电磁场分布图等复杂的金融工具,它可以将原来抽象的数据,直观和易于理解的;此外,数据并对其进行分析的结果,人们习惯于曲线,柱状图,3D图形和等高线图。因此,在虚拟仪器,图形,图像,来创建这些数据表明该模块是非常必要的。

4,科学计算可视化

前面所提到的,复杂的,大量的数据图形,图像的虚拟仪器测绘数据是非常重要的图形,但是,是不是一件简单的事情,这是最近开发的可视化科学计算研究课题。
在科学计算可视化的根本目的是将大的实验或数值计算的成人在视觉上能感受到计算机图像获得的数据量。图片要大一些的有机抽象的数据组织在一起,从而形象生动地显示表示的数据,以及它们之间的关系,帮助人们直接把握的复杂性,全球性,更好地发现和规律的认识,摆脱复杂的抽象数据混乱。虚拟仪器引入的科学可视化,给予无限魅力的人显示仪器,该仪器是大量复杂的数据处理和分析的能力。

5,面向对象的可视化编程

虚拟仪器是一种集成编程环境,其中一个可以快速生成复杂的仪器。虚拟仪器不仅具有可编程性,而且也很容易操作,从而引入面向对象的可视化图形编程技术的虚拟仪器。虚拟仪器集成了许多功能强大的组件,这些部件提供了一个直观的计算机图形,每个组件都具有的的可控属性,操作和功能,人只是这些组件的计算机屏幕上的一个很好的布局,设置相应的属性,以及它与其他的连接关系成员,以生成相应的功能构成的仪器。

五,总结

虚拟仪器是一个研究领域,许多高科技公司和研究机构都看好羽翼未丰的家,国内外市场前景都投入了大量的人力,物力和财力资源,加紧开发和研究。虚拟仪器是一台多媒体电脑的应用程序,是多学科交叉,渗透的产品,集中的许多高精确度,锐利的科学和技术。比仪器是高于仪器,虚拟仪器,大大缩短了开发周期的新仪器,新仪器的开发成本节约,它不仅是仪器的开发工具,但也科学研究的有力工具。虚拟仪器微机化仪器,是基础的综合性仪器,仪器行业的一场革命,其研究和发展具有深远的意义。