当前位置:首页 » 服务存储 » 光脉冲存储设备
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

光脉冲存储设备

发布时间: 2022-05-05 07:19:40

A. 请问光是如何被冻结的

澳大利亚国立大学的物理学家杰文·朗戴尔及其同事利用新型光陷阱,首次成功地将一个光脉冲“冻住”了足足1秒钟的时间,这是以前最好成绩的1000倍。将“冻住”光束的时间大大延长,意味着可能据此找到实用方法,来制造光计算机或量子计算机用的存储设备。

要使光停住脚步,需要一种特殊的陷阱,其中的原子温度极低,几乎静止,以至于每个原子都有着同样的量子态。通常情况下,这样一团冻结的原子是不透明的,但仔细校准后的激光能够在其中“切割”出一条通道,使得一个光脉冲从另一方向传播过来时,陷阱相对于它来说是透明的。一旦切断激光,陷阱立刻又变得不透明,光脉冲就被困在陷阱里了。恢复激光照射,光脉冲将继续传播。

陷阱的秘密在于它并不像普通陷阱困住物体那样困住光线,而是通过建立“量子冲突”来保存住光脉冲的信息。激光和光脉冲对原子的作用是相反的,导致原子发生“纠缠”,处于两种量子态的混合状态。切断激光时,原子吸收光脉冲,但光脉冲并没有丢失,原子仍然纠缠在不同量子态中,光脉冲的信息给它们留下了印记。只要原子不移动或改变,就能完全保有光脉冲的信息

http://news.xinhuanet.com/st/2005-08/15/content_3355223.htm

“研究团队着手开发量子计算机用的存储设备,将会有一种新的存储和处理信息的方法,改变现有计算机,速度更快,功能更强大”,Matthew Sellars说,“光速的‘冻结’是基于量子存储器(存储和重复光量子态的器件)的能力。光是一种很好的传输介质,其唯一的不足是速度太快了,我们必须要在短时间内保存信息。我们如何存储传送的量子信息,又可以在哪里将其存储一段时间。我们采用了掺有稀土元素镨的硅酸盐晶体,由于晶体是固态的,而且镨的磁稳定性非常好,因此可以保存光脉冲信息。

通常激光脉冲照射这个晶体是相对较集中的。光脉冲不能通过这晶体。然后我们增加另一个激光束,他们就开始接合,接合后晶体变的透明,用第一个激光束照射,光脉冲将继续传播。也就是通过建立“量子冲突”来保存住光脉冲的信息,一旦切断激光,光脉冲就被困住,不能传播,此时就可以实现存储了”。使用这个方法,可以将300,000 km/s的光速减到几乎不到100m/s。意味着可能据此找到实用方法,来制造光计算机或量子计算机用的存储设备。

http://www.plnmag.com/news/newsinfo2.asp?news_id=1588&news_path=/news/html/&news_hits=24&news_html=200593001588.htm

B. 光脉冲是什么

光脉冲的原理
持续时间短、强度大的光脉冲能够穿透物料,穿透物料的光脉冲不传输,但是以热量的形式在物料中消散。物料的表面和内层产生温度梯度,热量以传导的形式从表面传递到内层。热传导一直进行到物料温度达到恒定的稳定状态,消散的热量和物料的热学性质决定所需的时间。光脉冲的持续时间比热传导的时间短,光脉冲的能量在物料表面贮存极短的时间,期间几乎没有出现热传导,这实际上是瞬间加热了薄层表面,使其温度高于具有等量平均功率的连续光束加热所达到的稳态温度。

光脉冲的应用
光脉冲能够杀灭无菌包装材料、液体食品、肉、鱼等固体食品和培烤食品上的微生物。光处理的肉制品可以延长冷藏状态的货架寿命。马铃薯、番茄、香蕉、苹果和通心粉、米饭等预制食品都可以应用光脉冲处理,延长货架寿命。番茄尽管在冷藏的条件下易于感染霉菌,但是经过光脉冲处理,在冷藏下可以贮藏30d。与此类似,脉冲处理包装的白面包切片,在2周之内可以使其保持新鲜状态,而未受处理的切片很快霉变。光脉冲不仅减少了接种在肉中的李斯特菌和沙门氏菌的菌数,而且肉的营养成分变化甚微。
光脉冲可以增加肉的货架寿命和安全性。除了食品的杀菌以外,光脉冲还用于以下的产品和领域:
①制造化妆品的配料和成品。
②要求高度清洁的设备、产品、装置和区域。
③使用前的医疗和齿科设备。
④食品加工设备,以减少交叉污染的程度和可能性。
⑤处理或半处理的污水,以减少微生物载荷。
⑥空气或其他气体或气态化合物,以减少微生物载荷。

C. 存储设备主要有哪几种

硬盘

硬盘是用来存储数据的仓库。看到“硬盘”这个名字,有的同学可能会问,硬盘外面看起明明是个盒子为什么叫个“盘”呢?这是因为传统的机械硬盘(HDD)盒子般的外表下藏着一张(或者几张)盘子的“心”。我们存在电脑上的数据都在这些盘子里,这些盘子的学名叫“磁盘”。磁盘上方有一个名叫“磁头”的部件,当电脑从磁盘上存读数据的时候,“磁头”就会与“磁盘”摩擦摩擦,魔鬼般的步伐…当然不是真的“摩擦”,它们之间是通过“心灵(电磁)感应”实现交流的。传统的机械硬盘容量已经从G时代步入了T时代,它的量价比(存储容量/价格)是最大的(嗯,给日本大姐姐们安家很合适)。

固态硬盘(SSD)是近几年渐渐被普及的新产品,相比HDD来说,固态硬盘的这个“盘”字就有点名不副实了。SSD用闪存替代了HDD的“磁盘”来作为存储介质,直接通过电流来写入、读取数据,摒弃了HDD中的机械操作过程,并且SSD的读和写可以将一个完整数据拆成多份,在主控的控制下并行操作,这样就大大提高了读写的吞吐量。一般来说固态硬盘的随机存取速度(读取大量小文件)比HDD快几十倍甚至上百倍,持续存取速度(一次读取一个大文件)也比HDD快一倍以上。不过相对HDD来说,SSD还是硬盘界的高富帅,相同容量的SSD的售价可以买十几块同容量的HDD。

U盘、SD卡、MiniSD卡和各种卡:

这几类产品都是用闪存作为存储介质的常用存储设备,不过相比SSD而言,存储容量较小(人家身材好嘛),也没有复杂的主控电路实现数据的并行写入,所以存取速度上比SSD慢不少。 U盘的英文名是“USB flash disk”,名字中有个“USB”,顾名思义,这种“盘”经常与电脑上的USB接口插来插去,一般用来做数据中转站。

D. 光脑和电脑相比具有哪三方优势呢它们分别是多少呢

望采纳/光脑 光脑光脑-未来更加先进的计算机,利用光的传播速度比电子速度快的原理。

美国哈佛大学的科学家最近宣布,用超低温原子来“冷冻”并控制光线,就能构成光学电脑的“心脏”——中央处理器(CPU)。光脑以比传统电子设备快10倍的数据传输速度,一举冲破了硅技术的速度极限。

这项研究是利用光线代替电子进行信息处理的超速电脑开发方案的重大突破。作为全球“慢光”研究的权威之一,哈佛大学的Lene Hau教授领导的研究小组由于能有效降低光线速度而闻名世界。他们用一种含有超低温钠原子团的设备,把光速由每秒30万千米降低到自行车的正常骑行速度,甚至成功地“冻结”了光线。Hau说,这项技术可用来制作下一代光学电脑的存储设备。

Hau最新的一个研究项目是直接针对光学电脑的相关技术开发。她通过计算证明,一种称为玻色—爱因斯坦凝聚(BEC)的超低温原子团,可用于光线的“可控连贯数据处理”。在普通物质中,光脉冲的振幅和相位都会逐渐变淡,储存的一切信息随之损坏。而Hau博士的“慢光”实验研究证明,在BEC中光线的这些属性都被保留下来,而这样的设备终有一天能“进化”成光学电脑的CPU。

随着技术发展,传统电子计算机的体积和速度不断逼近理论上限,“集成电路集成度每18个月翻一番”的莫尔定律终将难以为继。不少科学家相信,总有一天光学电脑将凭借其更小的体积、更快的速度,带来一场新的技术革命。

光脑是由光导纤维与各种光学元件制成的计算机。它不像普通电脑靠电子在线路中的流动来处理信息,而是靠一小束低功率激光进入由反射镜和透镜组成的光回路来进行“思维”的,但同样具有存储、运算和控制等功能。

计算机的“本领”大小,主要决定于两个因素:一是计算机部件的运行速度;二是它们的排列紧密程度。从这两方面看,光比电优越得多。光子是宇宙中速度最快的东西,每秒达30万公里。电子就不行,它在半导体内的运动速度约每秒60—500公里,最快也不到光速的十分之一。另外,超大型集成电路中,一些片状器件的线脚已达300多只,排列密度受到限制。而光束可以相互穿越,互不干扰,这使得科学家能够在极小的空间内开辟很多的信息通道。例如,贝尔实验室的光学转换器就可以做得很小,以致在不到2毫米直径的器件中,可装入2000多个通道。

从理论上讲,光脑的运算速度比现代的电脑还要快上千倍;其次,光脑器件还有信息量大的优点,一束光可以同时传送数以千计的通道的信息。然而,光脑的制造在理论上和技术上还有许多问题没有解决。作为第一步,科学家利用光脑驱动能量小的特点,把电子转换器同光结合起来,制造一种光与电“杂交”的计算机。

关于光脑,人们对它也许还很陌生,但制造光脑的尝试,科学界早在上个世纪50年代就开始了,直到80年代后期可以说才有了决定意义的突破.上世纪90年代中期,世界上第一台光脑已由欧共体的英国、法国、比利时、德国、意大利的70多位不同国籍的科学家研制成功

E. 光是怎样被冻结的

澳大利亚国立大学的物理学家杰文·朗戴尔及其同事利用新型光陷阱,首次成功地将一个光脉冲“冻住”了足足1秒钟的时间,这是以前最好成绩的1000倍。将“冻住”光束的时间大大延长,意味着可能据此找到实用方法,来制造光计算机或量子计算机用的存储设备。 要使光停住脚步,需要一种特殊的陷阱,其中的原子温度极低,几乎静止,以至于每个原子都有着同样的量子态。通常情况下,这样一团冻结的原子是不透明的,但仔细校准后的激光能够在其中“切割”出一条通道,使得一个光脉冲从另一方向传播过来时,陷阱相对于它来说是透明的。一旦切断激光,陷阱立刻又变得不透明,光脉冲就被困在陷阱里了。恢复激光照射,光脉冲将继续传播。 陷阱的秘密在于它并不像普通陷阱困住物体那样困住光线,而是通过建立“量子冲突”来保存住光脉冲的信息。激光和光脉冲对原子的作用是相反的,导致原子发生“纠缠”,处于两种量子态的混合状态。切断激光时,原子吸收光脉冲,但光脉冲并没有丢失,原子仍然纠缠在不同量子态中,光脉冲的信息给它们留下了印记。只要原子不移动或改变,就能完全保有光脉冲的信息 “研究团队着手开发量子计算机用的存储设备,将会有一种新的存储和处理信息的方法,改变现有计算机,速度更快,功能更强大”,Matthew Sellars说,“光速的‘冻结’是基于量子存储器(存储和重复光量子态的器件)的能力。光是一种很好的传输介质,其唯一的不足是速度太快了,我们必须要在短时间内保存信息。我们如何存储传送的量子信息,又可以在哪里将其存储一段时间。我们采用了掺有稀土元素镨的硅酸盐晶体,由于晶体是固态的,而且镨的磁稳定性非常好,因此可以保存光脉冲信息。 通常激光脉冲照射这个晶体是相对较集中的。光脉冲不能通过这晶体。然后我们增加另一个激光束,他们就开始接合,接合后晶体变的透明,用第一个激光束照射,光脉冲将继续传播。也就是通过建立“量子冲突”来保存住光脉冲的信息,一旦切断激光,光脉冲就被困住,不能传播,此时就可以实现存储了”。使用这个方法,可以将300,000 km/s的光速减到几乎不到100m/s。意味着可能据此找到实用方法,来制造光计算机或量子计算机用的存储设备

F. 服务器本地硬盘读写速度和光纤存储设备读写速度哪个快些

。。这里有个概念性问题,光纤是数据信号经调制成光脉冲信号的传输载体,并没有存储数据功能。那"光纤存储设备"指何种存储介质?

G. 光学存储器的工作原理

抓住光波

(英)《新科学家》

在慕尼黑大学的实验室里,阿希姆.维克斯福特和他的同事们找到了一种捕获光束的方法,他们可以把光束存储一会儿,然后再把它放走。

光学梦想

这是一种绝妙的方法,并且可能具有深远的意义,因为在现有的计算机中携带和传送数据的电子有其局限性,它们会相互影响。它们需要电线才能运动,并且它们传送信息的速度较慢。
而光束则具有通信和计算机技术人员所盼望的理想特性,其信息载运能力(或者说带宽)非常巨大。一束激光脉冲一秒钟可传输整部《不列颠网络全书》。光束还能轻而易举地分成很多单束光束,使其成为并行处理的理想媒介,而人们广泛认为并行处理是高速计算技术的未来发展趋势。当然,光束还具有速度快的优点,宇宙中没有什么东西比光束更快了。
虽然光束运动速度快而且携带的数据多,但它正如一辆刹车失灵而失控的邮政列车,如果你想获得数据,必须让它撞上什么东西使它停下来。近年来,物理学家已设计出一些非常奇特的墙壁供光束撞击,这些研究统称为光电子学——这是把光所携带的数据转换成普通机器所使用的电子形式的技术。
光电子学使你能够把信息以光速从一个地方传送到另一个地方,在越洋电话线缆、电视遥控器等各个领域都可见到光电子设备的身影。但归根结底,你仍然要把光束的惊人速度和传输容量转换成缓慢的电子流,从而受到导电物体变幻莫测的电学现象的限制。如果你能够使用光而不是电子,那么就有可能建造超高速的设备——如光学计算机。
为了实现这一梦想,必须设法让光束在某些地方滞留一段时间以备使用——实际上滞留时间要足够长,以使光束能够充当光传导数据的存储器。

光存储器

人们多年来一直在寻找制造这种光学存储器的方法。他们尝试了各种各样的方法,有的方法要利用古怪的量子效应,有的方法则显得直截了当(比如让光在一个光纤做成的线圈中运行一段时间等)。
维克斯福特说,这些装置的缺点在于它们的体积一般很庞大,为了把光滞留百万分之一秒,你需要300米长的光纤,并且它们还难以控制。他说:“理想的光学存储器应该是一个小型容器,进入容器中的光信号应该能够按人们的需要保留一段时间,然后再以光的形式释放出来。”
这差不多就是他的研究小组今年早些时候在《科学》杂志上公布的成果:一种把光存储在比一个句号还要小的存储装置中的切实可行的方法。而且,他们使用的是半导体材料,这使这种装置非常容易制造并且与现有的电子技术相结合。
从理论上说,用半导体制造光学存储器应该很容易。半导体中电子的能量分布在两个宽能带上。大多数电子处于价电子带中,在这个能带上电子与特定的原子结合在一起。如果给予它们足够的能量,它们就会跃迁到传导带,此时它们变得能够自由移动,留下一些行为像带正电的粒子一样的空穴。因此,如果你把带有适当能量的光子打到半导体上,这些光子将被吸收,留下一些电子一空穴对,不管是电子还是空穴都可存储原来的光。
但是,制造一种能够捕获、存储和释放光的存储器则要困难得多。

另辟蹊径

为了克服这个障碍,维克斯福特和同事们利用了一种令人意想不到的现象:声波。这个科研小组是在研究控制电子运动的新方法时找到这个解决方案的。他们发现表面声波——施加到晶体表面的波浪形压力——是一种大有希望的控制电子的方法。
制造出这些压力很简单——只需要在铌酸锂等压电材料上施加交流电压即可。变化的电压使压电材料的晶格舒张和弯曲,产生一种沿着材料运动的压力波。当压力波运动时,会产生一个强电场,这个电场能够用来捕捉和传送电子。
维克斯福特和同事们使用这些声波移动电子时意识到,这些波还有另外一个用途:把由光导致的电子—空穴对分隔开来。这些波产生的强大电场把半导体平整的传导带和价电子带扭曲成规则的正弦波形状。当电子—空穴对遇到波峰和波谷时,它们会被彼此分隔,电子移动到波峰,而空穴则移动到波谷。
1997年,由维克斯福特的学生之一卡斯滕*勒克领导的一个研究小组宣布,他们用以铟镓为基础的多层半导体在压电材料上制成了一个微小的“三明治”,并且使用一个高频电场制造出一种声波。
一束红外激光脉冲使半导体产生一些电子—空穴对,这些电子和空穴旋即被电场分隔开来。由于电子和空穴隔开的距离大约有1微米,从而无法再次结合,这些电子—空穴对只好保存促使它们产生的光子的能量。
勒克和他的同事们设法把能量保存了几个微秒的时间——这比自然条件下电子—空穴对的存在时间长了几千倍。
但是这里有个难题:所有这些实验都是在只比绝对零度高4度的液氦低温中进行的,并不便于在日常电器中使用。目前,维克斯福特则向人们表明,通过采用砷化镓和砷化铝半导体层,并且在表面装上一个透明的电极用来产生电场,在液氮温度下也能取得同样的结果。
他们设法把光存储了35微秒。而且,通过使用一种静止的电场把电子和空穴隔开,他们做出的芯片在尺寸上只是勒克所用晶体的一个零头。通过进一步改善设计,他们认为能够在室温下运行的装置没有理由不会很快做成。

前景远大

维克斯福特说,只要你知道了原理,就像生活中的平常事情一样,制造一个光学存储器是非常容易的。
掌握了基本的原理之后,维克斯福特和他的同事们正在越来越多地考虑这种“声光”装置的可能用途。他们认为,这种存储器的灵活性为制造一系列的装置开辟了道路,这些装置不仅能够存储光,而且还能够处理诸如复合和分解(把很多输入的光信号合成一个信号以及把一个信号分解成多个信号)这样的任务。维克斯福特还发现他甚至能够改变再次发出的光的波长,只需要压挤半导体即可。他说,最终研究人员有可能利用这种装置对附加的信息进行编码。
目前,他们的注意力集中在对常规的通信和计算至关重要的动态随机存储器上。用一系列半导体单元或者“像素”制成的能够处理光子的一种声光装置,有可能完成常规电子装置无能为力的任务。维克斯福特说:“光学动态随机存储器在诸如光学模式的识别和图像处理等领域具有诱人的应用潜力。”
除了使用光,他预见还能使用表面声波产生的电子—空穴对装载和读取每个存储单元。存储的信息甚至能够从一个单元移动到另外一个单元以供处理。
从长远看,声光元件也许能够为开发未来的光学计算机做出贡献。使用激光而不是电线并且利用光束固有的并行性质,这种计算机可能成为除了量子计算机外的终极数码处理器。

H. 光存储技术的光存储技术的分类及最新进展

相变型存储材料的光盘 记录信息:高功率调制后的激光束照射记录介质,形成非晶相记录点。非晶相记录点的反射率与未被照射的晶态部分有明显的差异。读出信息:用低功率激光照射存储单元,利用反射光的差异读出信息。信息的擦除:相记录点在低功率、宽脉冲激光照射下,又变回到晶态。
磁光存储材料的光盘 记录信息:记录介质为磁化方向单向规则排列的垂直磁光膜。在聚焦激光束照射下,发生热磁效应,记录点的磁化方向发生变化,进而完成信息记录。读出信息:利用法拉第效应和克尔效应。信息的擦出:在激光的作用下,改变偏磁场的方向,删出了记录信息。 多媒体信息时代的第一次数字化革命是以直径为12cm 的高音质CD(Compact disc)光盘取代直径为30cm 的密纹唱片。这其中包括CD-ROM, CD-R 和CD-RW 类型。CD 光盘使用的激光波长为780nm,数值孔径为0.45,道间距为1.6um,存储容量为650MB。第二代数字多用光盘DVD(Digital Versatile Disk)使用的激光波长为635/650nm,数值孔径为0.6,道间距为0.74um,单面存储容量为4.7GB,双面双层结构的为17GB。DVD光盘系列有DVD-ROM, DVD-R, DVD-RW, DVD+RW 等多种类型。目前DVD-Multi 已兼容了
DVD-RW, DVD+RW, DVD-RAM 三种光盘。上述这些产品的问世,对包括音频、视频信息在内的数据的记录都发挥过巨大的作用。 多阶光存储是目前国内外光存储研究的重点之一,缘于它可以大大地提高存储容量和数据传输率。在传统的光存储系统中,二元数据序列存储在记录介质中,记录符只有两种不同的物理状态,例如只读光盘中交替变化的坑岸形貌。多阶光存储是读出信号呈现多阶特性,或者直接采用多阶记录介质。多阶光存储分为信号多阶光存储和介质多阶光存储。
从技术上讲,蓝光光盘的下一代存储技术是相当先进的,不过由于蓝光光盘格式本身与现存的红光DVD格式并不兼容,所以如果采用蓝光光盘格式的厂商必须大动干戈的更换整条生产线,这大大增加了生产厂商的生产成本,使得其价格普遍偏高,从很大程度上阻碍了蓝光光盘格式的普及。所以虽然蓝光技术得到了很多大厂得支持,但价格是蓝光技术的致命伤。不过还是有很多有实力的大厂如三星、飞利浦、LG、三菱、索尼等表示他们已经或将很快推出其支持蓝光技术的产品。

I. 光脑和普通电脑区别

美国哈佛大学的科学家最近宣布,用超低温原子来“冷冻”并控制光线,就能构成光学电脑的“心脏”——中央处理器(CPU)。光脑以比传统电子设备快10倍的数据传输速度,一举冲破了硅技术的速度极限。 这项研究是利用光线代替电子进行信息处理的超速电脑开发方案的重大突破。作为全球“慢光”研究的权威之一,哈佛大学的Lene Hau教授领导的研究小组由于能有效降低光线速度而闻名世界。他们用一种含有超低温钠原子团的设备,把光速由每秒30万千米降低到自行车的正常骑行速度,甚至成功地“冻结”了光线。Hau说,这项技术可用来制作下一代光学电脑的存储设备。 Hau最新的一个研究项目是直接针对光学电脑的相关技术开发。她通过计算证明,一种称为玻色—爱因斯坦凝聚(BEC)的超低温原子团,可用于光线的“可控连贯数据处理”。在普通物质中,光脉冲的振幅和相位都会逐渐变淡,储存的一切信息随之损坏。而Hau博士的“慢光”实验研究证明,在BEC中光线的这些属性都被保留下来,而这样的设备终有一天能“进化”成光学电脑的CPU。 随着技术发展,传统电子计算机的体积和速度不断逼近理论上限,“集成电路集成度每18个月翻一番”的莫尔定律终将难以为继。不少科学家相信,总有一天光学电脑将凭借其更小的体积、更快的速度,带来一场新的技术革命。光脑是由光导纤维与各种光学元件制成的计算机。它不像普通电脑靠电子在线路中的流动来处理信息,而是靠一小束低功率激光进入由反射镜和透镜组成的光回路来进行“思维”的,但同样具有存储、运算和控制等功能。 计算机的“本领”大小,主要决定于两个因素:一是计算机部件的运行速度;二是它们的排列紧密程度。从这两方面看,光比电优越得多。光子是宇宙中速度最快的东西,每秒达30万公里。电子就不行,它在半导体内的运动速度约每秒60—500公里,最快也不到光速的十分之一。另外,超大型集成电路中,一些片状器件的线脚已达300多只,排列密度受到限制。而光束可以相互穿越,互不干扰,这使得科学家能够在极小的空间内开辟很多的信息通道。例如,贝尔实验室的光学转换器就可以做得很小,以致在不到2毫米直径的器件中,可装入2000多个通道。 从理论上讲,光脑的运算速度比现代的电脑还要快上千倍;其次,光脑器件还有信息量大的优点,一束光可以同时传送数以千计的通道的信息。然而,光脑的制造在理论上和技术上还有许多问题没有解决。作为第一步,科学家利用光脑驱动能量小的特点,把电子转换器同光结合起来,制造一种光与电“杂交”的计算机。 关于光脑,人们对它也许还很陌生,但制造光脑的尝试,科学界早在上个世纪50年代就开始了,直到80年代后期可以说才有了决定意义的突破.上世纪90年代中期,世界上第一台光脑已由欧共体的英国、法国、比利时、德国、意大利的70多位不同国籍的科学家研制成功. 光脑无需散热 多数人对电脑的深入原理并没有太深了解,但是当家里的电脑使用时间比较长,或者天气较热的情况 光脑2下,机箱中往往就会传来刺耳的噪音。其实让你感到刺耳的噪音也同样在烦恼着计算机科学家们。因为在电脑中,计算机速度越快、效率越高,热量产生越大。高温会阻碍电子元件的工作效率,所以热量的问题就成为“电”脑速度提高的一个无法逾越的障碍。 “光”是解决这个问题的好办法。首先光是冷的,如果在电脑里用“光”而不是电来传递信息,那么散热的问题就会迎刃而解。同时,使用过宽带上网的人也有体会,接入光纤的宽带远远比接入其他线路的宽带速度要快得多,这也是因为光的速度可以达到每秒钟30万公里,远远比电快。如果使用的是光脑,那么本身就会比电脑快上许多倍。 用光的明暗传达信息 在我们今天使用的电脑不同,流通在电路中的是“电”,通过元件对电流“开”和“关”的控制来表达复杂的信息。而在光脑中取而代之的则是用光来传递信号,光的“明”和“暗”则可以代表信息的传递。当然,首先你必须使得芯片可以发光,而芯片所采用的材料主要是硅,所以科学家们需要得到的是一束硅激光。 光脑会是更小的计算机 日常生活的经验告诉我们,当几束不同颜色的光相遇时,能够相安无事、互不干扰的穿越,这样不同频率的光就可以携带不同的信息在同一条光纤通道中穿过,而电则不行。因此如果我们的“电”脑能够变成光脑,那么当我们同时打开许多窗口玩游戏、听音乐和聊天的时候,甚至让一台计算机同时肩负多种复杂工作的时候,也不会有急剧的速度变慢现象了。 对于计算机来说,越快代表越聪明,低散热问题,就意味着可以更小。因此,当用上光脑之后,我们才有可能将整个房屋的全部事务委托给一台小盒子那么大的计算机控制,而不是像现在使用穿衣柜一样的一排计算机来管理。我们可能会使用科幻片中带着极高速度自动行驶的汽车来缓解城市交通的压力,而实际控制的也许是个比手掌大不了多少的计算机。 “光脑”渐近 与叫了几十年的“电脑”相比,“光脑”似乎更时髦,而且充满着科幻色彩。试想,计算机如果以光子传 光脑3递信息,即使光线相交也互不影响,而速度却至少提高三个数量级,突破电子逻辑门开关的速度极限。那时,我们再也没有金属导线的高延迟,没有令人头疼的高发热量,计算机更小更快、传输信息量更大……诸多优越性背后的技术支撑是硅光电子学。 英特尔将硅光电子学作为其战略性技术开展研究,并多次公开发表最新研究成果。2008年年底,英特尔在《自然》上发表了在光电探测器方面的新突破,让“光脑”再激千层浪,我们多久可以拥有它,五年、十年还是更久?一时间,“光脑”话题再度升温。尽管完全“光脑”还不可行,但作为第一步,我们已经看到科学家把电子转换器同光结合起来,制造出光与电混合的新一代计算机的曙光。 为何钟情硅光子 硅光子学唤起了太多人的热情。硅光子学既是半导体光子学中的新兴研究课题,也在发展中逐渐成为物理学、材料学、计算科学、通信学等多学科综合的一门交叉学科。硅光电子学专门研究在硅及硅基异质结材料中的光子行为和规律,并且非常注重硅光子器件。成熟的硅工艺为硅光子学提供了坚实的技术支持,加速了硅光子学的形成和发展。 一方面是现代微电子产业的基石——硅基半导体的发展接近极限,以英特尔为代表的半导体厂商都在寻找并引入高K新材料,以实现延长基于硅的摩尔定律的寿命;而另一方面,光电子技术作为一项快速发展且前景光明的技术,吸引众多国内外专家学者的关注,他们致力于将光子技术和微电子技术结合起来。 硅光子器件将是继集成电路之后最有应用前景的实用元器件,这一创新将在后硅材料时代引领技术革命。我国着名的硅光子学研究专家、中科院半导体研究所集成光电子学国家重点实验室研究员余金中指出,成熟的硅光子学将在信息领域和社会生活中起到重要作用,特别是推动光计算发展。在未来十几年重点攻关后,在信息功能材料及器件、传感器网络及智能信息处理、激光技术、纳米研究等项目推进中,硅光子学具有广阔发展空间。 发展硅基光子科学和技术的意义是如此重大,这就不难理解为何有一定科研实力的国家都把这一学科作为长远的技术发展目标,这以美国最为突出。我国的863计划、973计划,也都把硅基光电子研究的相关课题列入计划,中国科学院微电子研究所、中国科学院半导体研究所光电子研究发展中心、浙江大学硅材料国家重点实验室、吉林大学集成光电子国家重点实验室等领先研究性机构,都在这一前瞻性研究的硅基材料、器件实用化等方面取得了突出成果。 成本是个大问题 我们期待硅光子技术突破,主要就是要解决提高传输速度的问题,尤其是进入单芯片万亿次计算时代后,这个问题就更加突出,与万亿次计算相匹配的还应该有万亿次通信。这个问题在未来的高性能计算领域同样存在,计算机需要找到一种更快的方法,以便在芯片内部及芯片之间传送大量数据,业界把突破通信瓶颈的希望寄托在硅光子通信上。 我们对“高带宽、低延迟”的期待可以从光纤谈起。目前,长距离传输由光纤通信实现,主要是城域和长距离传输,长度约是0.1km~80km。机架到机架也开始采用光纤传输,长度约是1m~100m。而从板卡到板卡、芯片到芯片,采取的还是导线传输。目前硅光子学研究就是要把光传输从长距离向超短距离传输扩展。 从目前发展情况来看,持续改进的技术只是问题的一个方面,另一个重要问题是成本。举例来说,以铜导线连接为例,每年需要连接的器件数量在数十亿以上,对光模块的需求量非常大。而目前,多数光子器件都采用砷化镓和磷化铟之类的特殊半导体制造,成本过于高昂、处理与封装也十分复杂,很难用于单台计算机甚至本地网络。英特尔院士兼光子学技术实验室总监Mario Paniccia在接受记者采访时说:“我们要把光通信技术的优势带到芯片级平台上,不只要有技术,还要把这个技术做到低成本,这样才可能把技术规模化,这是我们研究的推动力。” Mario Paniccia说的这项技术就是硅光电子学,其愿景是要研究使用廉价、制造工艺简单的硅作为基础材料开发光子器件,并在现有的晶圆工厂中,采用标准的批量生产的硅制造技术来实现。这样带来的优势就是能为光通信带来规模经济效应。英特尔在开展这项研究的数年来取得了一系列成果,尤其是从2005年开始,逐渐进入了成果收获期。 一举两得的选择 硅光子学从研究到最终产业化,是一项系统工程,英特尔把通过光传输方式收发数据的过程分解为以下步骤来实现:一是先解决光源问题,就是生成光束的激光器,要能发出连续光;二是解决传输路径问题,就是光波导,就如同让光在硅平台上传播的高速公路网络;三是光调制器,把光束分成代表数字0和1的开/关信号,光的变化就携带了传输信息;四是光探测器,光传输到目的地后,需要有光探测器探测到脉冲光信号,把附加在光上面的信息下载下来,重新转换成电信号。 在这些技术问题都解决了之后,就是考虑生产与产业化的问题了,即实现低成本封装和CMOS工艺批量制造。现在基于硅的制造工艺已经非常成熟,这能够实现低成本的大规模生产。而根据不同的应用需求,我们还可以像搭积木一样,对这些模块进行组合,以实现不同的功能。

J. FC-SAN的结构有哪些部件

1、宿主层

允许访问 SAN 及其存储设备的服务器被认为构成了 SAN的主机层。此类服务器具有主机适配器,它们是连接到服务器主板上的插槽(通常是 PCI 插槽)并与相应的固件和设备驱动程序一起运行的卡。通过主机适配器,服务器的操作系统可以与 SAN 中的存储设备进行通信。

在光纤通道部署中,电缆通过千兆接口转换器(GBIC)连接到主机适配器。GBIC 也用于 SAN 内的交换机和存储设备,它们将数字位转换为光脉冲,然后可以通过光纤通道电缆传输。相反,GBIC 将传入的光脉冲转换回数字位。GBIC 的前身称为千兆链路模块 (GLM)。

2、织物层

结构层由 SAN 网络设备组成,包括SAN 交换机、路由器、协议桥、网关设备和电缆。SAN 网络设备在 SAN 内或在启动器(例如服务器的 HBA 端口)和目标(例如存储设备的端口)之间移动数据。

在最初构建 SAN 时,集线器是唯一支持光纤通道的设备,但是开发了光纤通道交换机,现在在 SAN 中很少发现集线器。与集线器相比,交换机的优势在于它们允许所有连接的设备同时通信,因为交换机提供专用链路以将其所有端口相互连接。

最初构建 SAN 时,光纤通道必须通过铜缆实现,如今 SAN 中使用多模光纤电缆。 

SAN 网络通常采用冗余方式构建,因此 SAN 交换机之间采用冗余链路连接。SAN 交换机将服务器与存储设备连接起来,并且通常是无阻塞的,允许同时通过所有连接的线路传输数据。

29 个 SAN 交换机用于在网状拓扑中设置的冗余目的。单个 SAN 交换机可以具有少至 8 个端口和多达 32 个带有模块化扩展的端口。 所谓的导向器级交换机最多可以有128个端口。

在交换 SAN 中,使用光纤通道交换结构协议 FC-SW-6,在该协议下,SAN 中的每个设备在主机总线适配器 (HBA) 中都有一个硬编码的全球名称(WWN) 地址。如果设备连接到 SAN,其 WWN 将在 SAN 交换机名称服务器中注册。

代替 WWN 或全球端口名称 (WWPN),SAN 光纤通道存储设备供应商还可以硬编码全球节点名称 (WWNN)。存储设备端口的WWN通常以5开头,而服务器的总线适配器则以10或21开头。

3、存储层

串行化小型计算机系统接口(SCSI) 协议通常用于服务器和 SAN 存储设备中的光纤通道交换结构协议之上。

以太网上的Internet 小型计算机系统接口(iSCSI)和Infiniband协议也可以在 SAN 中实现,但通常桥接到光纤通道 SAN 中。但是,可以使用 Infiniband 和 iSCSI 存储设备,尤其是磁盘阵列。

SAN 中的各种存储设备被称为形成存储层。它可以包括各种存储数据的硬盘和磁带设备。在 SAN 中,磁盘阵列通过RAID 连接起来,这使得许多硬盘看起来和运行起来就像一个大存储设备。

每个存储设备,甚至该存储设备上的分区,都有一个逻辑单元号(LUN) 分配给它。这是 SAN 中的唯一编号。SAN 中的每个节点,无论是服务器还是其他存储设备,都可以通过引用 LUN 来访问存储。

优势

存储器的共享通常简化了存储器的维护,提高了管理的灵活性,因为连接电缆和存储器设备不需要物理地从一台服务器上搬到另外一台服务器上。

其它的优势包括从SAN自身来启动并引导服务器的操作系统。因为SAN可以被重新配置,所以这就使得更换出现故障服务器变得简单和快速,更换后的服务器可以继续使用先前故障服务器LUN。

这个更替服务器的过程可以被压缩到半小时之短,这在目前还是一个只在新建数据中心才使用的相对新潮的办法。现在也出现了很多新产品得益于此,并且在提高更换速度方面不断进步。

例如Brocade的应用资源管理器Application Resource Manager可以自动管理可以从SAN启动的服务器,而完成操作的时间通常情况只需要几分钟。

尽管此方向的技术现在仍然很新,还在不断演进,许多人认为它将进入未来的企业级数据中心。

SAN也被设计为可以提供更有效的灾难恢复特性。一个SAN可以“携带”距离相对较远的第二个存储阵列。这就使得存储备份可以使用多种实现方式,可能是磁盘阵列控制器、服务器软件或者其它特别SAN设备。