当前位置:首页 » 服务存储 » 存储系统供数率
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

存储系统供数率

发布时间: 2022-04-27 01:12:16

存储性能和空间利用率哪个重要

最大限度地挖掘存储系统的性能潜力是用户永远的追求,但是,面对众多性能优化技术,还必须考虑到底是性能重要还是空间利用率重要。
在当前经济形势低迷的大背景下,挖掘现有存储系统的性能潜力成为用户的必然选择,不过追求性能只是一个方面。
看到的现象是大多数存储系统的空间利用率还不到50%,而且存储控制器的处理能力也只用到一小部分,这些都是让用户不可接受的事实。
在数据中心应用领域,通过服务器整合以及虚拟化技术,物理服务器的资源已经被最大化的利用起来,与此相反的是,存储效率低下的问题却成为用户的痛点。
若要实现服务器虚拟化的高效率,存储系统就必须跟得上,这是一个必要的前提,因此服务器虚拟化应用推动着存储技术向更高效的方向发展。
在虚拟化环境中,当前端服务器数量不断增加,后端存储阵列的不足便暴露出来,尤其表现在缺乏细粒度的分配和调动空间资源的能力方面。
因此,如果用户希望对数据中心进行高度整合,那么服务器虚拟化技术和高效的存储技术二者缺一不可。
存储效率是一个综合性的指标,实现最佳的存储效率意味着要在有效存储空间以及可用处理资源两方面都有出色表现,通常也是各产品之间相互竞争的重点。
StorageIO高级分析师GregSchulz说,“为了达到应用所需的IOPS能力,有些存储系统被设计得很大,通过大量磁盘的并发来提升IOPS,可是空间利用率却非常低,反之,追求空间利用率的最大化往往需要借助存储精简技术,比如压缩和重复数据删除等等,但是这些功能会对系统性能带来负面的影响“。
因此,达成高效的存储就需要在容量和性能之间寻找一个平衡点,根据应用需求的不同,对容量、处理能力、性能以及成本进行控制和优化。
保证存储效率有哪些基本条件优化存储系统的性能,本质上就是要尽可能地提高存储处理资源的利用率,同时尽量消除系统的瓶颈或阻塞。
随着处理资源利用率的增加,剩余的处理资源以及响应额外处理请求的能力相应的就会降低。
而且如果缓冲区太小,那么系统达到性能上限(瓶颈)的可能性就非常大。
举个例子来说,一个平均处理资源利用率在50%的磁盘阵列不太可能触及性能上限(瓶颈),而对于一个利用率达到80%的系统来说,这个可能性就要大得多。
高效存储技术及其对性能、容量和成本的影响由存储厂商或第三方公司提供的内嵌在存储系统内部或在外部附加的运行报告、监控以及存储分析功能是十分重要的,它们可以帮助用户更好的了解系统的运行情况,避免系统过度(过高)配置,并减少很多后期维护工作。
尤其是当用户需要优化性能或者按需增加处理资源时,这些组件的作用就会体现的非常明显。
对此,StorageIO高级分析师GregSchulz评价道:“无论是性能问题还是容量问题,好好利用存储厂商或第三方公司提供的工具都是十分重要的。
”这些工具不仅能够帮助用户定位性能的问题,更重要的方面在于它们可以帮助用户选择出最恰当的解决方案。
衡量一套存储系统的性能并不能依赖某个单一指标,而要考虑多种组合因素,它们每一项都对应用程序访问数据的速度有所影响。
其中,IOPS、吞吐带宽和访问延迟这三项指标是最关键的。
不过,指标数据究竟是好是坏还要考虑应用环境的差异,包括工作负载的类型(随机请求或者顺序请求)、数据块的大小、交易类型(读或是写),以及其他相关的能够影响性能的因素都依赖于应用程序本身的特点。
比方说,如果是流媒体视频应用,那么大文件快速顺序读性能和大数据块是最重要的;
而如果是虚拟化应用环境,那么随机读性能通常是最主要的考察指标。
下面的部分,将纵览那些可以优化性能并且提高存储资源利用率的技术,这里没有独门秘籍,因为每一种方法都有其优点和缺点。
通过堆砌磁盘数量来提高性能磁盘驱动器是一种机械装置,读写磁头通过在高速旋转盘片的内道和外道之间往复移动来寻找并读写数据。
即使是转速最快的15000转磁盘,其磁头机械臂的重定位时间延迟都会有数毫秒之多,因此每个磁盘的IOPS值最多只有几百个,吞吐带宽则局限在100MB/秒以内。
通过将数据分布在多个磁盘上,然后对多个磁盘同步进行读写访问是一种常见的扩展性能的方法。
通过增加磁盘的个数,系统整体的IOPS和带宽值也会等比例提升。
加之,有些存储厂商还提供shortstr好ing这样的可以缩短磁头机械臂移动距离的技术。
此类技术可以将数据集中放置在磁盘盘片的外道区域,结果是磁头移动的距离大大缩短,对数据访问的性能具有十分明显的提升作用。
可是,当通过利用大量的磁盘并发以及short-str好ing磁头短距离移动技术达成既定的性能目标之后,会发现其代价是非常高昂的,此外,由于仅仅使用了盘片的外道空间,所以存储的空间利用率会非常差。
早在SSD固态盘技术出现之前,利用大量的磁盘并发以及short-str好ing磁头短距离移动技术来满足应用的性能要求是最普遍的办法,即使在今天,这种方案依然被大量使用,原因是SSD固态盘的成本太高,所以用户依然青睐磁盘而不是SSD。
NatApp技术和战略总监MikeRiley就说:“对于顺序访问大数据块和大文件这样的应用,使用磁盘通常性价比更高。
”RAID及wide-striping技术对效率的影响很多用户容易忽视一点,即RAID和RAID级别其实都会对性能和容量产生影响。
通过改变RAID级别来提升存储性能或者空间的利用率是一种很现实的选择。
校验盘的数量、条带的大小、RAID组的尺寸以及RAID组内数据块大小都会影响性能和容量。
RAID技术对性能和容量的影响都熟悉那些常见的RAID级别及其特点,但还有一些不常见的技术趋势值得关注,这些都与讨论的存储效率有关。
首先,RAID组的尺寸会影响性能、可用性以及容量。
通常,大的RAID组包含的磁盘数量更多,速度也更快,但是,当出现磁盘故障后,大RAID组也需要更多的时间用来重建。
每隔几年,磁盘的容量都会翻一番,其结果是RAID重建的时间也相应变的更长,在数据重建期间出现其他磁盘故障的风险也变得更大。
即使是带有双校验机制,允许两块磁盘同时出现故障的RAID6也存在风险增加的问题,况且,RAID6对性能的影响还比较大。
有一个更好的办法是完全打破传统RAID组和私有校验盘的概念,比如,NetApp的DynamicDiskPools(DDP)技术,该技术将数据、校验信息以及闲置空间块分散放置在一个磁盘池中,池中所有的磁盘会并发处理RAID重建工作。
另一个有代表性的产品是HP的3PAR存储系统,3PAR采用了一种叫做widestriping的技术,将数据条块化之后散布在一大堆磁盘上,同时磁盘自身的裸容量又细分成若干小的存储块(chunklet)。
3PAR的卷管理器将这些小的chunklet组织起来形成若干个micro-RAID(微型RAID组),每个微型RAID组都有自己的校验块。
对于每一个单独的微型RAID组来说,其成员块(chunklet)都分布在不同的磁盘上,而且chunklet的尺寸也很小,因此数据重建时对性能的冲击和风险都是最小的。
固态存储毫无疑问,SSD固态存储的出现是一件划时代的“大事儿“,对于存储厂商来说,在优化性能和容量这两个方面,SSD技术都是一种全新的选择。
与传统的磁盘技术相比,SSD固态盘在延迟指标方面有数量级上的优势(微秒对毫秒),而在IOPS性能上,SSD的优势甚至达到了多个数量级(10000以上对数百)。
Flash技术(更多的时候是磁盘与flash的结合)为存储管理员提供了一种更具性价比的解决方案,不必像过去那样,为了满足应用对性能的高要求而不得不部署大批量的磁盘,然后再将数据分散在磁盘上并发处理。
SSD固态盘最佳的适用场景是大量数据的随机读操作,比如虚拟化hypervisor,但如果是大数据块和大文件的连续访问请求,SSD的优势就没有那么明显了。
EMC统一存储部门负责产品管理与市场的高级副总裁EricHerzog说:“Flash的价格仍然10倍于最高端的磁盘,因此,用户只能酌情使用,而且要用在刀刃上。
”目前,固态存储有三种不同的使用方式:第一种方式,用SSD固态盘完全代替机械磁盘。
用SSD替换传统的磁盘是最简单的提升存储系统性能的方法。
如果选择这个方案,关键的一点是用户要协同存储厂商来验证SSD固态盘的效果,并且遵循厂商提供的建议。
如果存储系统自身的处理能力无法承载固态存储的高性能,那么SSD有可能会将整个系统拖垮。
因为,如果SSD的速度超出了存储控制器的承受范围,那么很容易出现性能(I/O阻塞)问题,而且会越来越糟。
另一个问题涉及到数据移动的机制,即的数据在什么时候、以何种方式迁移到固态存储上,或从固态存储上移走。
最简单但也最不可取的方法是人工指定,比如通过手动设定将数据库的日志文件固定存放在SSD固态存储空间,对于比较老的存储系统来说,这也许是唯一的方式。
在这里推荐用户使用那些自动化的数据分层移动技术,比如EMC的FAST(FullyAutomatedStorageTiering)。
第二种方式,用Flash(固态存储芯片)作为存储系统的缓存
传统意义上的DRAM高速缓存容量太小,因此可以用Flash作为DRAM的外围扩展,而这种利用Flash的方式较之第一种可能更容易实现一些。
Flash缓存本身是系统架构的一个组成部分,即使容量再大,也是由存储控制器直接管理。
而用Flash作缓存的设计也很容易解决数据分层的难题,根据一般的定义,最活跃的数据会一直放置在高速缓存里,而过期的数据则驻留在机械磁盘上。
与第一种方式比较,存储系统里所有的数据都有可能借助Flash高速缓存来提升访问性能,而第一种方式下,只有存放在SSD固态盘中的数据才能获得高性能。
初看起来,用Flash做高速缓存的方案几乎没有缺陷,可问题是只有新型的存储系统才支持这种特性,而且是选件,因此这种模式的发展受到一定的制约。
与此相反,看到用Flash做大容量磁盘的高速缓存(而不是系统的高速缓存)反而成为更普遍的存储架构设计选择,因为它可以将高容量和高性能更好的融合。
IBM存储软件业务经理RonRiffe说:“在一套磁盘阵列中,只需要增加2-3%的固态存储空间,几乎就可以让吞吐带宽提高一倍。
”在服务器中使用Flash存储卡。
数据的位置离CPU和内存越近,存储性能也就越好。
在服务器中插入PCIeFlash存储卡,比如Fusion-IO,就可以获得最佳的存储性能。
不太有利的一面是,内置的Flash存储卡无法在多台服务器之间共享,只有单台服务器上的应用程序才能享受这一好处,而且价格非常昂贵。
尽管如此,仍然有两个厂商对此比较热衷,都希望将自己的存储系统功能向服务器内部扩展。
一个是NetApp,正在使其核心软件DataOntap能够在虚拟机hypervisor上运行;
另一个是EMC,推出的功能叫做VFCache(原名叫ProjectLightning)。
显而易见,这两家公司的目标是通过提供服务器端的Flash存储分级获得高性能,而这种方式又能让用户的服务器与提供的外部存储系统无缝集成。
存储加速装置存储加速装置一般部署在服务器和存储系统之间,既可以提高存储访问性能,又可以提供附加的存储功能服务,比如存储虚拟化等等。
多数情况下,存储加速装置后端连接的都是用户已有的异构存储系统,包括各种各样的型号和品牌。
异构环境的问题是当面临存储效率低下或者性能不佳的困扰时,分析与评估的过程就比较复杂。
然而,存储加速装置能够帮助已有磁盘阵列改善性能,并将各种异构的存储系统纳入一个统一的存储池,这不但可以提升整个存储环境的整体性能、降低存储成本,而且还可以延长已有存储的服役时间。
最近由IBM发布的是此类产品的代表,它将IBM的存储虚拟化软件SVC(SANVolumeController)以及存储分析和管理工具集成在一个单独的产品中。
可以将各种异构的物理存储阵列纳入到一个虚拟存储池中,在这个池之上创建的卷还支持自动精简配置。
该装置不但可以管理连接在其后的存储阵列中的Flash固态存储空间,而且自身内部也可以安装Flash固态存储组件。
通过实时存储分析功能,能够识别出I/O访问频繁的数据以及热点区域,并能够自动地将数据从磁盘迁移到Flash固态存储上,反向亦然。
用户可以借助的这些功能大幅度的提高现有的异构混合存储系统环境的性能和空间利用率。
与IBM类似的产品还有Alacritech和Avere,它们都是基于块或基于文件的存储加速设备。
日益增加的存储空间利用率利用存储精简技术,可以最大化的利用起可用的磁盘空间,存储精简技术包括自动精简配置、瘦克隆、压缩以及重复数据删除等等。
这些技术都有一个共同的目标,即最大程度的引用已经存在的数据块,消除或避免存储重复的数据。
然而存储精简技术对系统的性能稍有影响,所以对于用户来说,只有在明确了性能影响程度并且能够接受这种影响的前提下,才应该启动重复数据删除或数据压缩的功能。
性能和容量:密不可分存储系统的性能和空间利用率是紧密相关的一对参数,提升或改进其中的一个,往往会给另一个带来负面的影响。
因此,只有好好的利用存储分析和报表工具,才能了解存储的真实性能表现,进而发现系统瓶颈并采取适当的补救措施,这是必要的前提。
总之,提高存储效率的工作其实就是在性能需求和存储成本之间不断的寻找平衡。

⑵ 如何估算一套储存系统的最终I/O速率以及IOPS如何验证

通常情况下,广义的IOPS指得是服务器和存储系统处理的I/O数量。
但是,由于在IO传输的过程中,数据包会被分割成多块(block),交由存储阵列缓存或者磁盘处理,对于磁盘来说这样每个block在存储系统内部也被视为一个I/O,存储系统内部由缓存到磁盘的的数据处理也会以IOPS来作为计量的指标之一。
本文中提到的IOPS,是指得广义的IOPS,即由服务器发起的,并由存储系统中处理的I/O单位。

⑶ 计算机存储系统的分类及其特点

计算机存储器的种类和特点 一、RAM(Random Access Memory,随机存取存储器) RAM的特点是:电脑开机时,操作系统和应用程序的所有正在运行的数据和程序都会放置其中,并且随时可以对存放在里面的数据进行修改和存取。它的工作需要由持续的电力提供,一旦系统断电,存放在里面的所有数据和程序都会自动清空掉,并且再也无法恢复。 根据组成元件的不同,RAM内存又分为以下十八种: 01.DRAM(Dynamic RAM,动态随机存取存储器) 这是最普通的RAM,一个电子管与一个电容器组成一个位存储单元,DRAM将每个内存位作为一个电荷保存在位存储单元中,用电容的充放电来做储存动作,但因电容本身有漏电问题,因此必须每几微秒就要刷新一次,否则数据会丢失。存取时间和放电时间一致,约为2~4ms。因为成本比较便宜,通常都用作计算机内的主存储器。 02.SRAM(Static RAM,静态随机存取存储器) 静态,指的是内存里面的数据可以长驻其中而不需要随时进行存取。每6颗电子管组成一个位存储单元,因为没有电容器,因此无须不断充电即可正常运作,因此它可以比一般的动态随机处理内存处理速度更快更稳定,往往用来做高速缓存。 03.VRAM(Video RAM,视频内存) 它的主要功能是将显卡的视频数据输出到数模转换器中,有效降低绘图显示芯片的工作负担。它采用双数据口设计,其中一个数据口是并行式的数据输出入口,另一个是串行式的数据输出口。多用于高级显卡中的高档内存。 04.FPM DRAM(Fast Page Mode DRAM,快速页切换模式动态随机存取存储器) 改良版的DRAM,大多数为72Pin或30Pin的模块。传统的DRAM在存取一个BIT的数据时,必须送出行地址和列地址各一次才能读写数据。而FRM DRAM在触发了行地址后,如果CPU需要的地址在同一行内,则可以连续输出列地址而不必再输出行地址了。由于一般的程序和数据在内存中排列的地址是连续的,这种情况下输出行地址后连续输出列地址就可以得到所需要的数据。FPM将记忆体内部隔成许多页数Pages,从512B到数KB不等,在读取一连续区域内的数据时,就可以通过快速页切换模式来直接读取各page内的资料,从而大大提高读取速度。在96年以前,在486时代和PENTIUM时代的初期,FPM DRAM被大量使用。 05.EDO DRAM(Extended Data Out DRAM,延伸数据输出动态随机存取存储器) 这是继FPM之后出现的一种存储器,一般为72Pin、168Pin的模块。它不需要像FPM DRAM那样在存取每一BIT 数据时必须输出行地址和列地址并使其稳定一段时间,然后才能读写有效的数据,而下一个BIT的地址必须等待这次读写操作完成才能输出。因此它可以大大缩短等待输出地址的时间,其存取速度一般比FPM模式快15%左右。它一般应用于中档以下的Pentium主板标准内存,后期的486系统开始支持EDO DRAM,到96年后期,EDO DRAM开始执行。。 06.BEDO DRAM(Burst Extended Data Out DRAM,爆发式延伸数据输出动态随机存取存储器) 这是改良型的EDO DRAM,是由美光公司提出的,它在芯片上增加了一个地址计数器来追踪下一个地址。它是突发式的读取方式,也就是当一个数据地址被送出后,剩下的三个数据每一个都只需要一个周期就能读取,因此一次可以存取多组数据,速度比EDO DRAM快。但支持BEDO DRAM内存的主板可谓少之又少,只有极少几款提供支持(如VIA APOLLO VP2),因此很快就被DRAM取代了。 07.MDRAM(Multi-Bank DRAM,多插槽动态随机存取存储器) MoSys公司提出的一种内存规格,其内部分成数个类别不同的小储存库 (BANK),也即由数个属立的小单位矩阵所构成,每个储存库之间以高于外部的资料速度相互连接,一般应用于高速显示卡或加速卡中,也有少数主机板用于L2高速缓存中。 08.WRAM(Window RAM,窗口随机存取存储器) 韩国Samsung公司开发的内存模式,是VRAM内存的改良版,不同之处是它的控制线路有一、二十组的输入/输出控制器,并采用EDO的资料存取模式,因此速度相对较快,另外还提供了区块搬移功能(BitBlt),可应用于专业绘图工作上。 09.RDRAM(Rambus DRAM,高频动态随机存取存储器) Rambus公司独立设计完成的一种内存模式,速度一般可以达到500~530MB/s,是DRAM的10倍以上。但使用该内存后内存控制器需要作相当大的改变,因此它们一般应用于专业的图形加速适配卡或者电视游戏机的视频内存中。 10.SDRAM(Synchronous DRAM,同步动态随机存取存储器) 这是一种与CPU实现外频Clock同步的内存模式,一般都采用168Pin的内存模组,工作电压为3.3V。 所谓clock同步是指内存能够与CPU同步存取资料,这样可以取消等待周期,减少数据传输的延迟,因此可提升计算机的性能和效率。 11.SGRAM(Synchronous Graphics RAM,同步绘图随机存取存储器)DRAM的改良版,它以区块Block,即每32bit为基本存取单位,个别地取回或修改存取的资料,减少内存整体读写的次数,另外还针对绘图需要而增加了绘图控制器,并提供区块搬移功能(BitBlt),效率明显高于SDRAM。 12.SB SRAM(Synchronous Burst SRAM,同步爆发式静态随机存取存储器) 一般的SRAM是异步的,为了适应CPU越来越快的速度,需要使它的工作时脉变得与系统同步,这就是SB SRAM产生的原因。 13.PB SRAM(Pipeline Burst SRAM,管线爆发式静态随机存取存储器) CPU外频速度的迅猛提升对与其相搭配的内存提出了更高的要求,管线爆发式SRAM取代同步爆发式SRAM成为必然的选择,因为它可以有效地延长存取时脉,从而有效提高访问速度。 14.DDR SDRAM(Double Data Rate二倍速率同步动态随机存取存储器) 作为SDRAM的换代产品,它具有两大特点:其一,速度比SDRAM有一倍的提高;其二,采用了DLL(Delay Locked Loop:延时锁定回路)提供一个数据滤波信号。这是目前内存市场上的主流模式。 15.SLDRAM (Synchronize Link,同步链环动态随机存取存储器) 这是一种扩展型SDRAM结构内存,在增加了更先进同步电路的同时,还改进了逻辑控制电路,不过由于技术显示,投入实用的难度不小。 16.CDRAM(CACHED DRAM,同步缓存动态随机存取存储器) 这是三菱电气公司首先研制的专利技术,它是在DRAM芯片的外部插针和内部DRAM之间插入一个SRAM作为二级CACHE使用。当前,几乎所有的CPU都装有一级CACHE来提高效率,随着CPU时钟频率的成倍提高,CACHE不被选中对系统性能产生的影响将会越来越大,而CACHE DRAM所提供的二级CACHE正好用以补充CPU一级CACHE之不足,因此能极大地提高CPU效率。 17.DDRII (Double Data Rate Synchronous DRAM,第二代同步双倍速率动态随机存取存储器) DDRII 是DDR原有的SLDRAM联盟于1999年解散后将既有的研发成果与DDR整合之后的未来新标准。DDRII的详细规格目前尚未确定。 18.DRDRAM (Direct Rambus DRAM) 是下一代的主流内存标准之一,由Rambus 公司所设计发展出来,是将所有的接脚都连结到一个共同的Bus,这样不但可以减少控制器的体积,已可以增加资料传送的效率。

⑷ 为什么存储系统和显示系统等系统的时钟的频率都低于系统时钟。

主频,外频和超频

#1,我们经常听到的时钟频率,FSB和超频说,一个准确的说法,这些概念是什么?它们之间有什么样的关系?频率,FSB水平的计算机速度的速度怎样的影响呢?超频是不正确的?本文将给你一个答案。排名第1时钟和频率

在电子技术中,该脉冲信号是在一定的时间间隔连续脉冲信号发送一定的电压振幅。简称为周期的第一脉冲和第二脉冲之间的时间间隔;所谓的频率和在单位时间内产生的脉冲数(例如,1秒)。周期性的信号包括在单位时间内的脉冲信号的脉冲的数目,频率被描述,计量名称的数目;标准单元的频率的测量是Hz(赫兹)。的计算机系统是一个典型的频率是非常准确的,稳定的时钟脉冲信号发生器。脉冲信号的频率和周期,请参阅^ 300701a ^。频率“f”的数学表达式各自的单位Hz(赫兹),kHz(千赫),兆赫(兆赫兹),GHz(千兆赫兹)。 1G = 1000MHz的,1MHz的1000KHZ,1kHz时= 1000Hz的。计算出的脉冲信号周期的时间单位及相应的换算关系为:s(秒)ms(毫秒),微秒(微秒),ns(纳秒),其中包括:1秒= 1000毫秒,1毫秒=1000μs为1μs= 1000ns。
计算机的时钟和我们的一天到一天的“时钟”有很大的不同,它是不是现在的“某种形式的指令,但只有一个特定的频率连续发出的脉冲信号发生器。至于电脑主板COMS保留日期和时间功能则是另一回事。
为什么要有计算机系统中的时钟?例如,我们做广播操总把广播操记录(或想??一个人喊口令),在数十个演习的男性和女性,老的少的,但只要都按统一的节拍做广播操可以做得相当整齐。同样的,电脑是一个复杂的数据处理系统,其中CPU在处理数据是按照一定的指导,每次该指令被执行时,算术单元的CPU的内部寄存器,和一个控制器,等,必须相互合作,虽然每个执行指令涉及一个以上的操作的CPU单元内的不同的长度,但也可以是按照与统一的时钟脉冲同步,所以整个系统可以协调到正常操作。此外,计算机CPU,以及存储系统和显示系统,等除外,这些子系统运行还需要使用特定的频率的时钟信号被使用的规范运行,所以除了CPU频率和系统时钟为ISA总线和PCI总线和AGP接口时钟,当然,该计算机系统的时钟频率比系统时钟低。
排名第1时钟速度和FSB
计算机系统总线通常是指CPU的I / O接口单元和系统内存,L2高速缓存,主板芯片组,指令之间的数据传输信道的系统总线时钟是,我们常说的系统外部时钟和CPU时钟(FSB),它是在计算机的各种子系统的计算机系统的基本的时钟与系统时钟相关联的所有的不同的频率的时钟,详细情况可参考^ 300701b ^。
从486DX2 (CPU)和内核CPU频率和FSB(系统时钟频率)不一致。586686计算机系统时钟是CPU FSB,系统根据规定的比例倍频时钟信号的时钟,CPU时钟内核。电脑主频的CPU核心时钟通常被称为频率,例如说,电脑是奔腾-233,然后计算机的系统时钟为66MHz,时钟(66×3.5)= 233MHz的。
^ 300701b ^可以看出,子系统时钟和AGP接口的时钟分频器按照一个一定比例的系统时钟或乘数得到,所以调整计算机的系统时钟频率将不可避免地改变其他各种子系统的时钟信号频率,影响了实际操作的各种子,系统为电脑爱好者要充分重视的CPU超外频运行。
#1频率,FSB和运行速度
数据传输率的计算方法在计算机数据通信经常使用的公式:时钟频率×数据总线宽度÷8 = Betys / s的CPU和系统内存,显示器接口(如AGP“总线”),以及主板芯片组,扩展总线(ISA,PCI),时钟频率之间的数据交换计算机系统,例如,当系统时钟为66MHz,系统存储器和CPU之间的数据传输速率是528MB / s的高速AGP显示接口的时钟频率为66MHz X1模式中,但因为数据宽度是只32,所以AGP接口的数据传输速率只能达到266MB / s的PCI总线的数据宽度为32,但由于PCI总线的时钟频率只有33MHz,最高数据传输速率的PCI总线只有133MB / s的。 440BX主板芯片Intel公司推出的系统时钟频率从66MHz到100MHz的CPU和系统内存为800MB / s(100×64÷8)之间的数据交换速率。从这一点可以看出,简单地增加了操作的时钟可以提高频率的条件下,相同的数据宽度,传输信道的数据传输速率。
另外,增加CPU的时钟速度来提高速度的CPU也是非常有效的措施。比方说,假设某种类型的CPU在一个时钟周期(即^ 300701a ^,一个周期)进行算术运算指令,那么当CPU运行在100MHz的时钟速度比它运行在50MHz的频率快1倍。100MHz的时钟周期占用比50MHz的时钟周期时间缩短了一半,这是工作在100MHz的时钟速度所需的CPU时间来执行操作指令,只有10ns的50MHz的频率比为20ns缩短一半自然运算速度也将提高一倍。的计算机的整体速度取决于CPU的速度,但也与其他子系统的运行,所以人们都不断地尝试,以提高CPU的工作频率在同一时间,是同时工作,以尝试提高您的计算机的系统时钟频率,这些的最终目标的努力是到提高整体的运行速度的计算机,因为只有当数据的传输速度之间的各个子系统的运行速度和各个子系统的操作的计算机的CPU速度可以提高,整个计算机的运行速度要真正改善。
#1限制的频率,FSB提高的因素
由于CPU频率和系统时钟频率可以提高操作的计算机系统的速度只能达到400MHz奔腾II主频到目前为止,时钟频率为的电脑系统中只有66MHz到100MHz的?这是因为CPU的时钟频率和系统时钟频率,暂时无法克服的技术障碍而引起的。
提高CPU的工作频率是有限的,生产过程中的。由于CPU制造在半导体晶片上,在晶片上的元件之间需要在高频状态下的权利要求更精细的时间越短越好,以减少导线分布电容杂散干扰,以确保CPU的算术运算是正确的,然而目前的导体耦合线CPU生产工艺只能达到0.25微米的水平,CPU时钟速度只能达到400MHz的,但是,据业内人士声称间隙产生的700MHz的CPU主频为0.18微米技术是没有问题的,如果基于IBM的铜导线技术,那么可以制造的主CPU的工作频率更高。
另一方面,提高了系统的时钟频率的尝试也已运行较慢的外部设备的约束。十年来,虽然外部的装置,主要数据存储设备技术是逐步的,但其发展速度与CPU相比的进步的发展是一个巨大的差异。到硬盘,例如,虽然制造商没有松懈努力的硬盘制造技术的改进,然而,硬盘的读,写的真实速度只有约7MB /秒硬磁盘接口可以只工作的时钟33MHz的周围后的时钟频率是增加太多,驱动器可能不能够正确地运行。^ 300701b ^可以是清楚看出,系统时钟频率的变化,同时也改变了ISA和PCI扩展总线时钟频率,因此不可避免地会影响连接到这些接口的外部设备的运行状态,所以我们不能不受控制,提高了系统时钟频率。
#1超频运行在FSB选择
300701b我们可以清楚的了解,586686 CPU时钟与系统时钟的计算机之间的对应关系,奔腾166 166MHz的频率是66MHz的系统时钟2.5乘数,因此从理论上讲,将更改为3,可以使它运行在200MHz的时钟速度,这就是我们常说的所谓的CPU“超频奔腾166倍数”其实,很多人在做什么,甚至有不少备注CPU。 BR />超频“损害了利益的CPU厂商Intel大部分的CPU产品锁定”技术处理,频率锁定,CPU使用一个固定的倍增因子来限制用户运行CPU超频,CPU性能是频率锁定乘法因子时,用户设置是人为的乘法系数超过原来的CPU中,CPU仍然是使用原来的系统时钟频率乘法器的乘法因子,以确保CPU运行在额定频率值,如频率锁定的倍增因子奔腾133被锁定在2,所以无论你如何设置倍增因子的主板,你不能强迫它之上运行,133MHz的时钟速度。具体表现是主板上的CPU核心时钟设置超过标称值,CPU仍然一概忽略不计,
道高一尺,魔高一丈。对于英特尔锁定,许多电脑爱好者的另一种方式来识别的方法,以提高系统时钟频率(其实,是为了提高CPU的外频运行在133MHz频率规定的倍增因子。)强制性解锁CPU运行在高于主频率上的特定的标称值。具体方法增加至原来的66MHz的系统时钟75MHz或83MHZ的CPU上的工作电压,然后适当地调节,因此,尽管乘数的CPU保持不变的,也使上运行的奔腾133(75×2)= 150MHz的(83×2)= 166MHz的时钟速度。奔腾Ⅱ233 686 CPU,用于其它频率锁定时,此方法也进行处理但提高系统时钟不一定是在每一台电脑上是成功的,这是因为系统时钟频率的增加,电脑的系统内存,PCI总线时钟和AGP接口的时钟频率增加。PCI总线时钟是系统时钟的一半当系统时钟为75MHz或83MHZ PCI总线的时钟频率对应的37.5MHz或41MHz以上,那么你可能有硬盘的品牌有相当一部分没有正常运行。同样,在66MHz的系统时钟,AGP显示接口的时钟频率的系统时钟频率等于,当系统时钟频率高达75MHz或83MHZ时钟的AGP接口将高达75MHz的工作时钟75MHz或83MHZ,也有相当多的品牌AGP显卡不能正常运行时,高达83MHZ的时钟频率,几乎所有的AGP显卡不能正常运行,当系统时钟为100MHz规格,系统时钟频率为112MHz和133MHz系统时钟频率是影响PCI总线和AGP接口为66MHz,在同一台计算机系统,提高系统时钟频率所造成的硬盘和显卡不能正常运行的现象。
不过,这种情况不能一概而论,一些主板采用了特殊的变频技术, PCI总线和AGP总线的时钟频率仍然是标准的工作频率附近,这里就不详细,具体设置看主板说明书。此外,系统时钟频率的Pentium II型CPU内部L2高速缓存,工作频率的增加,相应的L2高速缓存的存取速度提高是有限的,当系统时钟频率提高到一定程度时(如66MHz到100MHz的一个)L2高速缓存时,有可能无法正常工作,因此,我们没有解锁CPU和解锁CPU超频不同的待遇。解锁CPU,我们可以保持正常的系统时钟(CPU FSB)频率,CPU的倍频系数法的超频,超频成功只取决于CPU的性能和质量,提高系统时钟锁频CPU超频,超频的成功取决于不仅对CPU的性能和质量,而且还取决于系统内存(RAM),硬盘驱动器和AGP图形卡和其它组件的性能和质量,所以对CPU超频运行,必须考虑到这些因素,适可而止。

⑸ 用户如何提高存储性能有哪些解决方案

何提高网速 电脑运行速度显卡关内存关 杀毒软件突打
:数据存储备份存储管理源于世纪70代终端/主机计算模式由于数据集主机易管理海量存储设备——磁带库必备设备80代由于PC发展尤其90代应用广客户机/服务器模式普及及互联网迅猛发展使存储容量、存储模式存储要求都发根本性变化些新兴存储技术迅速崛起构建更安全信息代提供更选择
编者按何确保所数据能够靠备份及进行灾难恢复存储管理软件核任务外存储管理软件存些基本功能诸改进系统应用I/O性能及存储管理能力提高数据应用系统高用性减少由于各种原断数据存取或者应用系统宕机间实现技术级存储管理(HSM)、ClusterServer(集群服务器)等
首先能提供些识别析存储访问模式VolumeManager工具VolumeManager通复杂磁盘配置能均衡I/O负载影响应用同能够优化应用数据布局数据条形散放物理盘提高性能同具断应用情况识别消除性能瓶颈能力增强系统应用性能另外VolumeManager减少系统断间、增加数据完整性等面俗表现允许磁盘进行线管理更改配置减少系统产极影响停机间同利用冗余技术提高数据用性防止数据丢失破坏
其非重要快速恢复志式文件系统FileSystem能间断数据访问条件文件作线备份并系统重启或崩溃前允许访问数据并恢复文件提高用户管理员产效率FileSystem系统崩溃前能未完数据记录事件志利用恢复程序重现保持数据完整性
VolumeManagerFileSystem都工作操作系统级实现集群与故障恢复、自管理、备份与HSM及基于浏览器远程管理等两者机结合利用双特磁盘数据管理能力能给企业系统提供尽能高性能、用性及管理性
基础便整存储管理核任务——备份技术
数据存储备份技术般包含硬件技术及软件技术等硬件技术主要磁带机技术软件技术主要通用专用备份软件技术等我主要软件技术面加讨论备份软件技术整数据存储备份程具相重要性仅关系否支持磁带各种先进功能且程度决定着备份效率备份软件定操作系统所提供备份功能厂商都提供许专业备份软件专业备份软件能通优化数据传输率即自较高传输率进行数据传输仅能缩短备份间、提高数据存储备份速度且磁带机设备本身处另外专业备份软件支持新磁带机技术HPTapeAlert技术差所主流专业备份软件均提供支持
于存储模式说比较见DAS、NASSAN等DAS(DirectAttachedStorage-直接连接存储)指存储设备通SCSI接口或光纤通道直接连接台计算机服务器理比较散、难通远程连接进行互连直接连接存储比较解决案直接连接存储帮助企业继续保留已传输速率并高网络系统
网络主要信息处理模式需要存储数据量增加数据作取竞争优势战略性资产其重要性增加目前发展趋势NASSAN现响应点NAS网络连接存储即存储设备通标准网络拓扑结构(例太网)连接群计算机重点于帮助工作组部门级机构解决迅速增加存储容量需求种两面改善数据用性第即使相应应用服务器再工作仍读数据第二简易服务器本身崩溃避免引起服务器崩溃首要原即应用软件引起问题另外NAS产品真即插即用产品其设备物理位置非灵
SAN(存储区域网络)通光纤通道连接群计算机该网络提供主机连接并非通标准网络拓扑并且通同物理通道支持广泛使用SCSIIP协议结构允许任何服务器连接任何存储阵列管数据置放哪服务器都直接存取所需数据SAN解决案基本功能剥离存储功能所运行备份操作需考虑网络总体性能影响案使管理及集控制实现简化特别于全部存储设备都集群起候
集群通用于加强应用软件用性与扩展性某些集群架构技术加入单系统印象概念单点单系统式管理台计算机集群服务器支持达百台互相连接服务器结合松散结合单位执行作业保护彼应用软件免于故障由于集群服务器完全整合应用软件服务架构建置高效应用软件执行环境即使整系统现故障终端计算机都使用几乎所应用软件集群服务器软件包括引擎、编译器、负载计算器、代理、指令与图形化系统管理接口等组件集群化运算环境优势卓越数据处理能力原则任何类型重主机架构存储设备包括直接连接磁盘都用作集群数据存储设备求系统用性适合使用拥重主机存取路径容错或高用性存储系统
层管理式解决存储容量断增导致何效扩充容量问题情况更用于布式网络环境级其实意味着用同介质实现存储RAID系统、光存储设备、磁带等每种存储设备都其同物理特性同价格例要备份候备份文件般存储速度相比较慢、容量相比较、价格相比较低存储设备磁带做经济实用何实现级呢原理讲级存储线系统迁移数据种文件由HSM系统选择进行迁移拷贝HSM介质文件确拷贝原文件相同名字标志文件创建占用比原文件磁盘空间用户访问标志文件HSM系统能原始文件确介质恢复级存储同实施式HSM根据两级或三级体系态迁移/迁数据类实现级存储
存储应用深入必带整体解决案需求仅包括硬件包括相应软件及服务软硬件兼容融合应用环境势所趋比存储虚拟化提证明趋势利于提高存储利用率、简化管理降低本构建融合存储应用环境总随着网络技术发展、计算机能力断提高数据量断膨胀数据备份与恢复等存储技术面问题显越越重要存储管理技术发展必引起业界高度重视
相关链接:前主流存储介质
磁盘阵列、磁带库
磁盘阵列特点数据存取速度特别快其主要功能提高网络数据用性及存储容量并数据选择性布磁盘提高系统数据吞吐率另外磁盘阵列能够免除单块硬盘故障所带灾难通较容量硬盘连智能控制器增加存储容量磁盘阵列种高效、快速、易用网络存储备份设备
广义磁带库产品包括自加载磁带机磁带库自加载磁带机磁带库实际磁带磁带机机结合组自加载磁带机位于单机磁带驱器自磁带更换装置装盘磁带磁带匣拾取磁带并放入驱器或执行相反程自加载磁带机能够支持例行备份程自每备份工作装载新磁带拥工作组服务器公司或理处使用自加载磁带机自完备份工作
磁带库像自加载磁带机基于磁带备份系统能够提供同基本自备份数据恢复功能同具更先进技术特点存储容量达数百PB(1PB=100万GB)实现连续备份、自搜索磁带驱管理软件控制实现智能恢复、实监控统计整数据存储备份程完全摆脱工干涉磁带库仅数据存储量且备份效率工占用面拥比拟优势网络系统磁带库通SAN(存储局域网络)系统形网络存储系统企业存储提供力保障容易完远程数据访问、数据存储备份或通磁带镜像技术实现磁带库备份疑数据仓库、ERP等型网络应用良存储设备
光盘塔、光盘库光盘网络镜像服务器
光盘仅存储容量巨且本低、制作简单、体积更重要其信息保存100至300光盘塔由几台或十几台CD-ROM驱器并联构通软件控制某台光驱读写操作光盘塔同支持几十几百用户访问信息光盘库叫自换盘机利用机械手机柜选张光盘送驱器进行读写库容量极机柜放几十片甚至百片光盘光盘库特点:安装简单、使用便并支持几乎所见网络操作系统及各种用通信协议
光盘网络镜像服务器仅具型光盘库超存储容量且具与硬盘相同访问速度其单位存储本(摊每张光盘设备本)低于光盘库光盘塔光盘网络镜像服务器已始取代光盘库光盘塔逐渐光盘网络共享设备主流产品

⑹ 磁盘存储系统的性能主要由哪些指标来衡量

磁盘存储系统的性能主要用下面的四项指标来衡量:记录密度、存储容量、寻址时间和数据传输速率

⑺ 计算机的存储系统通常包括

计算机的存储系统通常包括:

一、存储器:是计算机的重要组成部分。

它可分为:

计算机内部的存储器(简称内存)

计算机外部的存储器(简称外存)

内存储器从功能上可以分为:读写存储器 RAM、只读存储器ROM两大类

计算机存储容量以字节为单位,它们是:字节B( 1Byte=8bit)、千字节(1KB=1024B)、兆字节(1MB=1024KB)、千兆字节(1GB=1024MB)、1TB=1024GB

二、计算机的外存储器一般有:软盘和软驱、硬盘、CD-ROM、可擦写光驱即CD-RW光驱还有USB接口的移动硬盘、光驱、或可擦写电子硬盘(优盘)等。

存储器的容量的基本单位是字节(Byte),并有下列的运算换算关系:

1KB=1024Bytes

1MB=1024KB

1GB=1024MB

1TB=1024GB

1个汉字在计算机内需要2个字节来存储;

1个英文字符(即ASCII码)在计算机中需要1个字节来存储;

1个字节相当于8个二进制位。

(7)存储系统供数率扩展阅读:

计算机的存储系统指计算机中由存放程序和数据的各种存储设备、控制部件及管理信息调度的设备和算法所组成的系统。存储系统是计算机的重要组成部分之一。存储系统提供写入和读出计算机工作需要的信息(程序和数据)的能力,实现计算机的信息记忆功能。现代计算机系统中常采用寄存器、高速缓存、主存、外存的多级存储体系结构。

计算机存储系统的核心是存储器,存储器是计算机中必不可少、用来存储程序和数据的记忆设备。内部存储器(简称内存)主要存储计算机当前工作需要的程序和数据,包括高速缓冲存储器(Cache,简称缓存)和主存储器。

⑻ 存储系统中数据块的引用率一般为多少

一般是10%,看学校的具体规定

⑼ 存储性能和空间利用率哪个重要

最大限度地挖掘存储系统的性能潜力是用户永远的追求,但是,面对众多性能优化技术,我们还必须考虑到底是性能重要还是空间利用率重要。在当前经济形势低迷的大背景下,挖掘现有存储系统的性能潜力成为用户的必然选择,不过追求性能只是一个方面。我们看到的现象是大多数存储系统的空间利用率还不到50%,而且存储控制器的处理能力也只用到一小部分,这些都是让用户不可接受的事实。在数据中心应用领域,通过服务器整合以及虚拟化技术,物理服务器的资源已经被最大化的利用起来,与此相反的是,存储效率低下的问题却成为用户的痛点。若要实现服务器虚拟化的高效率,存储系统就必须跟得上,这是一个必要的前提,因此服务器虚拟化应用推动着存储技术向更高效的方向发展。在虚拟化环境中,当前端服务器数量不断增加,后端存储阵列的不足便暴露出来,尤其表现在缺乏细粒度的分配和调动空间资源的能力方面。因此,如果用户希望对数据中心进行高度整合,那么服务器虚拟化技术和高效的存储技术二者缺一不可。存储效率是一个综合性的指标,实现最佳的存储效率意味着要在有效存储空间以及可用处理资源两方面都有出色表现,通常也是各产品之间相互竞争的重点。StorageIO高级分析师Greg Schulz说,“为了达到应用所需的IOPS能力,有些存储系统被设计得很大,通过大量磁盘的并发来提升IOPS,可是空间利用率却非常低,反之,追求空间利用率的最大化往往需要借助存储精简技术,比如压缩和重复数据删除等等,但是这些功能会对系统性能带来负面的影响“。因此,达成高效的存储就需要在容量和性能之间寻找一个平衡点,根据应用需求的不同,对容量、处理能力、性能以及成本进行控制和优化。保证存储效率有哪些基本条件优化存储系统的性能,本质上就是要尽可能地提高存储处理资源的利用率,同时尽量消除系统的瓶颈或阻塞。随着处理资源利用率的增加,剩余的处理资源以及响应额外处理请求的能力相应的就会降低。而且如果缓冲区太小的话,那么系统达到性能上限(瓶颈)的可能性就非常大。举个例子来说,一个平均处理资源利用率在 50%的磁盘阵列不太可能触及性能上限(瓶颈),而对于一个利用率达到80%的系统来说,这个可能性就要大得多。高效存储技术及其对性能、容量和成本的影响由存储厂商或第三方公司提供的内嵌在存储系统内部或在外部附加的运行报告、监控以及存储分析功能是十分重要的,它们可以帮助用户更好的了解系统的运行情况,避免系统过度(过高)配置,并减少很多后期维护工作。尤其是当用户需要优化性能或者按需增加处理资源时,这些组件的作用就会体现的非常明显。对此,StorageIO高级分析师Greg Schulz评价道:“无论是性能问题还是容量问题,好好利用存储厂商或第三方公司提供的工具都是十分重要的。”这些工具不仅能够帮助用户定位性能的问题,更重要的方面在于它们可以帮助用户选择出最恰当的解决方案。衡量一套存储系统的性能并不能依赖某个单一指标,而要考虑多种组合因素,它们每一项都对应用程序访问数据的速度有所影响。其中,IOPS、吞吐带宽和访问延迟这三项指标是最关键的。 不过,指标数据究竟是好是坏还要考虑应用环境的差异,包括工作负载的类型(随机请求或者顺序请求)、数据块的大小、交易类型(读或是写),以及其他相关的能够影响性能的因素都依赖于应用程序本身的特点。比方说,如果是流媒体视频应用,那么大文件快速顺序读性能和大数据块是最重要的;而如果是虚拟化应用环境,那么随机读性能通常是最主要的考察指标。下面的部分,我们将纵览那些可以优化性能并且提高存储资源利用率的技术,这里没有独门秘籍,因为每一种方法都有其优点和缺点。通过堆砌磁盘数量来提高性能磁盘驱动器是一种机械装置,读写磁头通过在高速旋转盘片的内道和外道之间往复移动来寻找并读写数据。即使是转速最快的15000转磁盘,其磁头机械臂的重定位时间延迟都会有数毫秒之多,因此每个磁盘的IOPS值最多只有几百个,吞吐带宽则局限在100MB/秒以内。通过将数据分布在多个磁盘上,然后对多个磁盘同步进行读写访问是一种常见的扩展性能的方法。通过增加磁盘的个数,系统整体的IOPS和带宽值也会等比例提升。加之,有些存储厂商还提供short stroking这样的可以缩短磁头机械臂移动距离的技术。此类技术可以将数据集中放置在磁盘盘片的外道区域,结果是磁头移动的距离大大缩短,对数据访问的性能具有十分明显的提升作用。可是,当我们通过利用大量的磁盘并发以及short-stroking磁头短距离移动技术达成既定的性能目标之后,我们会发现其代价是非常高昂的,此外,由于仅仅使用了盘片的外道空间,所以存储的空间利用率会非常差。早在SSD固态盘技术出现之前,利用大量的磁盘并发以及 short-stroking磁头短距离移动技术来满足应用的性能要求是最普遍的办法,即使在今天,这种方案依然被大量使用,原因是SSD固态盘的成本太高,所以用户依然青睐磁盘而不是SSD。NatApp技术和战略总监Mike Riley就说:“对于顺序访问大数据块和大文件这样的应用,使用磁盘通常性价比更高。”RAID 及wide-striping技术对效率的影响很多用户容易忽视一点,即RAID和RAID级别其实都会对性能和容量产生影响。通过改变RAID级别来提升存储性能或者空间的利用率是一种很现实的选择。校验盘的数量、条带的大小、RAID组的尺寸以及RAID组内数据块大小都会影响性能和容量。RAID技术对性能和容量的影响我们都熟悉那些常见的RAID级别及其特点,但还有一些不常见的技术趋势值得我们关注,这些都与我们讨论的存储效率有关。首先,RAID组的尺寸会影响性能、可用性以及容量。通常,大的RAID组包含的磁盘数量更多,速度也更快,但是,当出现磁盘故障后,大RAID组也需要更多的时间用来重建。每隔几年,磁盘的容量都会翻一番,其结果是RAID重建的时间也相应变的更长,在数据重建期间出现其他磁盘故障的风险也变得更大。即使是带有双校验机制,允许两块磁盘同时出现故障的RAID 6也存在风险增加的问题,况且,RAID 6对性能的影响还比较大。有一个更好的办法是完全打破传统RAID组和私有校验盘的概念,比如,NetApp的Dynamic Disk Pools (DDP)技术,该技术将数据、校验信息以及闲置空间块分散放置在一个磁盘池中,池中所有的磁盘会并发处理RAID重建工作。另一个有代表性的产品是HP的 3PAR存储系统,3PAR采用了一种叫做wide striping的技术,将数据条块化之后散布在一大堆磁盘上,同时磁盘自身的裸容量又细分成若干小的存储块(chunklet)。3PAR的卷管理器将这些小的chunklet组织起来形成若干个micro-RAID(微型RAID组),每个微型RAID组都有自己的校验块。对于每一个单独的微型 RAID组来说,其成员块(chunklet)都分布在不同的磁盘上,而且chunklet的尺寸也很小,因此数据重建时对性能的冲击和风险都是最小的。固态存储毫无疑问,SSD固态存储的出现是一件划时代的“大事儿“,对于存储厂商来说,在优化性能和容量这两个方面,SSD技术都是一种全新的选择。与传统的磁盘技术相比,SSD固态盘在延迟指标方面有数量级上的优势(微秒 对 毫秒),而在IOPS性能上,SSD的优势甚至达到了多个数量级(10000以上 对 数百)。Flash技术(更多的时候是磁盘与flash的结合)为存储管理员提供了一种更具性价比的解决方案,我们不必像过去那样,为了满足应用对性能的高要求而不得不部署大批量的磁盘,然后再将数据分散在磁盘上并发处理。SSD固态盘最佳的适用场景是大量数据的随机读操作,比如虚拟化 hypervisor,但如果是大数据块和大文件的连续访问请求,SSD的优势就没有那么明显了。EMC统一存储部门负责产品管理与市场的高级副总裁Eric Herzog说:“Flash的价格仍然10倍于最高端的磁盘,因此,用户只能酌情使用,而且要用在刀刃上。”目前,固态存储有三种不同的使用方式:第一种方式,用SSD固态盘完全代替机械磁盘。用SSD替换传统的磁盘是最简单的提升存储系统性能的方法。如果选择这个方案,关键的一点是用户要协同存储厂商来验证SSD固态盘的效果,并且遵循厂商提供的建议。如果存储系统自身的处理能力无法承载固态存储的高性能,那么SSD有可能会将整个系统拖垮。因为,如果SSD的速度超出了存储控制器的承受范围,那么很容易出现性能(I/O阻塞)问题,而且会越来越糟。另一个问题涉及到数据移动的机制,即我们的数据在什么时候、以何种方式迁移到固态存储上,或从固态存储上移走。最简单但也最不可取的方法是人工指定,比如我们通过手动设定将数据库的日志文件固定存放在SSD固态存储空间,对于比较老的存储系统来说,这也许是唯一的方式。在这里我们推荐用户使用那些自动化的数据分层移动技术,比如EMC的 FAST(Fully Automated Storage Tiering)。第二种方式,用Flash(固态存储芯片)作为存储系统的缓存。传统意义上的DRAM 高速缓存容量太小,因此我们可以用Flash作为DRAM的外围扩展,而这种利用Flash的方式较之第一种可能更容易实现一些。Flash缓存本身是系统架构的一个组成部分,即使容量再大,也是由存储控制器直接管理。而用Flash作缓存的设计也很容易解决数据分层的难题,根据一般的定义,最活跃的数据会一直放置在高速缓存里,而过期的数据则驻留在机械磁盘上。与第一种方式比较,存储系统里所有的数据都有可能借助Flash高速缓存来提升访问性能,而第一种方式下,只有存放在SSD固态盘中的数据才能获得高性能。初看起来,用Flash做高速缓存的方案几乎没有缺陷,可问题是只有新型的存储系统才支持这种特性,而且是选件,因此这种模式的发展受到一定的制约。与此相反,我们看到用Flash做大容量磁盘的高速缓存(而不是系统的高速缓存)反而成为更普遍的存储架构设计选择,因为它可以将高容量和高性能更好的融合。IBM存储软件业务经理Ron Riffe说:“在一套磁盘阵列中,只需要增加2-3%的固态存储空间,几乎就可以让吞吐带宽提高一倍。”在服务器中使用Flash存储卡。数据的位置离CPU和内存越近,存储性能也就越好。在服务器中插入PCIe Flash存储卡,比如Fusion-IO,就可以获得最佳的存储性能。不太有利的一面是,内置的Flash存储卡无法在多台服务器之间共享,只有单台服务器上的应用程序才能享受这一好处,而且价格非常昂贵。尽管如此,仍然有两个厂商对此比较热衷,他们都希望将自己的存储系统功能向服务器内部扩展。一个是 NetApp,正在使其核心软件Data Ontap能够在虚拟机hypervisor上运行;另一个是EMC,推出的功能叫做VFCache(原名叫Project Lightning)。显而易见,这两家公司的目标是通过提供服务器端的Flash存储分级获得高性能,而这种方式又能让用户的服务器与他们提供的外部存储系统无缝集成。存储加速装置存储加速装置一般部署在服务器和存储系统之间,既可以提高存储访问性能,又可以提供附加的存储功能服务,比如存储虚拟化等等。多数情况下,存储加速装置后端连接的都是用户已有的异构存储系统,包括各种各样的型号和品牌。异构环境的问题是当面临存储效率低下或者性能不佳的困扰时,分析与评估的过程就比较复杂。然而,存储加速装置能够帮助已有磁盘阵列改善性能,并将各种异构的存储系统纳入一个统一的存储池,这不但可以提升整个存储环境的整体性能、降低存储成本,而且还可以延长已有存储的服役时间。最近由IBM发布的 SmartCloud Virtual Storage Center是此类产品的代表,它将IBM的存储虚拟化软件SVC(SAN Volume Controller)以及存储分析和管理工具集成在一个单独的产品中。SmartCloud Virtual Storage Center可以将各种异构的物理存储阵列纳入到一个虚拟存储池中,在这个池之上创建的卷还支持自动精简配置。该装置不但可以管理连接在其后的存储阵列中的Flash固态存储空间,而且SmartCloud Virtual Storage Center自身内部也可以安装Flash固态存储组件。通过实时存储分析功能,SmartCloud Virtual Storage Center能够识别出I/O访问频繁的数据以及热点区域,并能够自动地将数据从磁盘迁移到Flash固态存储上,反向亦然。用户可以借助 SmartCloud Virtual Storage Center的这些功能大幅度的提高现有的异构混合存储系统环境的性能和空间利用率。与IBM SmartCloud Virtual Storage Center类似的产品还有Alacritech和Avere,它们都是基于块或基于文件的存储加速设备。日益增加的存储空间利用率利用存储精简技术,我们可以最大化的利用起可用的磁盘空间,存储精简技术包括自动精简配置、瘦克隆、压缩以及重复数据删除等等。这些技术都有一个共同的目标,即最大程度的引用已经存在的数据块,消除或避免存储重复的数据。然而存储精简技术对系统的性能稍有影响,所以对于用户来说,只有在明确了性能影响程度并且能够接受这种影响的前提下,才应该启动重复数据删除或数据压缩的功能。性能和容量:密不可分存储系统的性能和空间利用率是紧密相关的一对参数,提升或改进其中的一个,往往会给另一个带来负面的影响。因此,只有好好的利用存储分析和报表工具,我们才能了解存储的真实性能表现,进而发现系统瓶颈并采取适当的补救措施,这是必要的前提。总之,提高存储效率的工作其实就是在性能需求和存储成本之间不断的寻找平衡。