㈠ 为什么选择硅片做做芯片它的信息存储原理是什么
硅材料具有耐高温和抗辐射性能较好,特别适宜制作大功率器件的特性而成为应用最多的一种半导体材料,集成电路半导体器件大多数是用硅材料制造的。硅在室温的化学性质很稳定,且现在的硅片加工工艺,很容易制备大尺寸平整度在纳米级水平的硅片,使得该方法有望用于信息存储技术。
单晶硅:熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。单晶硅具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显着的半导电性。
超纯的单晶硅是本征半导体。在超纯单晶硅中掺入微量的ⅢA族元素,如硼可提高其导电的程度,而形成p型硅半导体;如掺入微量的ⅤA族元素,如磷或砷也可提高导电程度,形成n型硅半导体。
(1)纳米芯片存储原理扩展阅读:
硅有明显的非金属特性,可以溶于碱金属氢氧化物溶液中,产生(偏)硅酸盐和氢气。
硅原子位于元素周期表第IV主族,它的原子序数为Z=14,核外有14个电子。电子在原子核外,按能级由低硅原子到高,由里到外,层层环绕,这称为电子的壳层结构。硅原子的核外电子第一层有2个电子,第二层有8个电子,达到稳定态。
最外层有4个电子即为价电子,它对硅原子的导电性等方面起着主导作用。
正因为硅原子有如此结构,所以有其一些特殊的性质:最外层的4个价电子让硅原子处于亚稳定结构,这些价电子使硅原子相互之间以共价键结合,由于共价键比较结实,硅具有较高的熔点和密度;
化学性质比较稳定,常温下很难与其他物质(除氟化氢和碱液以外)发生反应;硅晶体中没有明显的自由电子,能导电,但导电率不及金属,且随温度升高而增加,具有半导体性质。
㈡ 有关于纳米的知识
什么是纳米?
纳米是尺寸或大小的度量单位,是一米的十亿分之一(千米→米→厘米→毫米→微米→纳米), 4倍原子大小,万分之一头发粗细。纳米技术是是指制造体积不超过数百个纳米的物体,其宽度相当于几十个原子聚集在一起。
纳米科技及其研究内容
纳米科学技术是研究在千万分之一米(10-8)到亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的学问;同时在这一尺度范围内对原子、分子进行操纵和加工又被称为纳米技术。 用扫描隧道显微镜的针尖将 原子一个个地排列成汉字, 汉字的大小只有几个纳米。纳米科技的研究内容包括: 创造和制备优异性能的纳米材料,设计、制备各种纳米器件和装置,探测和分析纳米区域的性质和现象 。
纳米科技研究目标和可能的应用
材料和制备:更轻、更强和可设计;长寿命和低维修费;以新原理和新结构在纳米层次上构筑特定性质的材料或自然界不存在的材料;生物材料和仿生材料;材料破坏过程中纳米级损伤的诊断和修复;
微电子和计算机技术:2010年实现线条为100nm的芯片,纳米技术的目标为:纳米结构的微处理器,效率提高一百万倍;10倍带宽的高频网络系统;兆兆比特的存储器(提高1000倍);集成纳米传感器系统;
医学与健康 快速、高效的基因团测序和基因诊断和基因治疗技术;用药的新方法和药物“导弹”技术;耐用的人体友好的人工组织和器官;复明和复聪器件;疾病早期诊断的纳米传感器系统
航天和航空 低能耗、抗辐照、高性能计算机;微型航天器用纳米测试、控制和电子设备;抗热障、耐磨损的纳米结构涂层材料
环境和能源 发展绿色能源和环境处理技术,减少污染和恢复被破坏的环境; 孔径为1nm的纳孔材料作为催化剂的载体;MCM-41有序纳孔材料(孔径10-100nm)用来祛除污物;纳米颗粒修饰的高分子材料
生物技术和农业 在纳米尺度上,按照预定的大小、对称性和排列来制备具有生物活性的蛋白质、核糖、核酸等。在纳米材料和器件中植入生物材料产生具有生物功能和其他功能的综合性能。,生物仿生化学药品和生物可降解材料,动植物的基因改善和治疗,测定DNA的基因芯片等。
纳 米 技 术 简 介
纳米(nanometer):长度单位的一种,1纳米=10-9米,即十亿分之一米。大约相当于头发粗细的八万分之一。“nanometer“"源自拉丁文,意思是"矮小"。纳米的确微乎其微,然而纳米构建的世界却是神奇而宏大的。21世纪,信息科学技术、生命科学技术和纳米科学技术是科学技术发展的主流。人们普遍认为,纳米技术是信息和生命科学技术能够进一步发展的共同基础。纳米技术所带动的技术革命及其对人类的影响,远远超过电子技术。
纳米技术:于细微之处显神奇
纳米技术是在纳米尺度内,通过对物质反应、传输和转变的控制来实现创造新的材料、器件和充分利用它们的特殊的性能,并且探索在纳米尺度内物质运动的新现象和新规律。由于纳米正好处于原子、分子为代表的微观世界和以人类活动空间为代表的宏观世界的中间地带,被称为纳米世界,也是物理、化学、材料科学、生命科学以及信息科学发展的新领地。纳米材料中包含了若干个原子、分子,使得人们可以在原子层面上进行材料和器件的设计和制备。几十个原子、分子或成千个原子、分子"组合"在一起时,表现出既不同于单个原子、分子的性质,也不同于大块物体的性质,这种"组合"被称为"超分子"或"人工分子"。"超分子"的性质,如它的熔点、磁性、电容性、导电性、发光性和颜色及水溶性都有重大变化。当"超分子"继续长大或以通常的方式聚集成大块材料时,奇特的性质又会失去。通俗来说,纳米材料一方面可以被当作一种"超分子",充分地展现出量子效应;而另一方面它也可以被当作一种非常小的"宏观物质",以至于表现出前所未有的特性。同时, 许多化学和生物反应的过程也发生在纳米尺度的层面上,因此探测纳米尺度内物理、化学和生物性质的变化,将加深对生命科学的理解。对由数量不多的电子、原子或分子组成的体系中新规律的认识和如何操纵或组合他们,是当今纳米科学技术的主要问题之一。当前纳米技术的研究和应用主要在材料和制备、微电子和计算机技术、医学与健康、航天和航空、环境和能源、生物技术和农业等方面。
纳米材料:材料科学领域的前沿
纳米科技发展中,纳米材料是它的前导,因为纳米材料集中体现了小尺寸、复杂结构、高集成度和强相互作用以及高比表面积等现代科学技术发展的特点,其中最应该指出的是纳米材料是将量子力学效应工程化或技术化的最好场合之一,可能会产生全新的物理、化学现象。现在可以用物理、化学及生物学的方法制备出只包含几百个或儿千个原子、分子的 "颗粒"。这些"颗粒"的尺寸只有几个纳米,它们很容易与外界的气体、流体甚至固体的原子发生反应,也就是说十分活泼。实验上发现如果将金属铜或铝做成几个纳米的颗粒,一遇到空气就会燃烧,发生爆炸。有人认为用纳米颗粒的粉体做成火箭的固体燃料将会有更大的推力。另外,用纳米金属颗粒粉体做催化剂,可加快化学反应过程,大大地提高化工合成的产率。
如果把金属纳米材料颗粒粉体制成块状金属材料,它会变得十分结实,强度比普通金属高十几倍,同时又可以像橡胶一样富于弹性。人们幻想有一天会使用这样的纳米钢材或纳米铝材制造出汽车、飞机或轮船,使它们的重量减少到原来的1/10。不仅如此,汽车或飞机的发动机由具有塑性的纳米陶瓷材料制成,可在更高的温度下运作,汽车跑得更快,飞机飞得更高。
氧化物纳米颗粒最大的本领是在电场作用下或在光的照射下迅速改变颜色。平常人们戴的变色镜变色的速度较慢,用纳米材料做成的变色镜就不一样了,变色速度很快,用它做士兵的防护激光镜是再好不过了。用纳米氧化物材料做成广告板,在电、光的作用下会变得更加绚丽多彩。
半导体纳米材料的最大用处是可以发出各种颜色的光,可以做成超小型激光的光源。它还可以吸收太阳光中的光能,把它们直接变成电能,这种技术一旦实现,太阳能汽车、太阳能住宅就会成为现实。利用特种半导体纳米材料使海水淡化已得到应用;半导体纳米材料做成的各种传感器,可灵敏地检测温度、湿度和大气成分的变化,这在汽车尾气和大气环境保护士已得到应用。
目前科学家正在致力于研究的碳纳米管材料,是一种非常独特的材料。它是石墨中一层或若干层碳原子卷曲而成的笼状"纤维",内部是空的,外部直径只有几到几十个纳米。这种材料的密度是钢的1/6,而强度却是钢的l00倍。用这样轻而柔软,又非常结实的材料做防弹背心是最好不过的。如果用碳纳米管作绳索,是惟一可以从月球上挂到地球表面,而不被自身重量所拉断的绳索,如果用它做成地球月球乘人的电梯,人们到月球定居就很容易了。纳米管的细尖极易发射电子,用于做电子枪,可以做成几厘米厚的壁挂式电视屏,这是电视制造业新的方向。
利用纳米技术还可以以新原理和新结构在纳米层次上构筑特定性质的材料或自然界不存在的材料,制作生物材料和仿生材料,并能在材料破坏过程中进行纳米级损伤的诊断和修复。
纳米器件:给信息技术带来革命
纳米科技的另一主要研究领域是设计、制备新型纳米结构和纳米器件。就像30年前,微电子器件取代真空电子管器件给信息技术带来革命一样,纳米结构将再次给信息技术带来革命。
把自由运动的电子囚禁在一个小的纳米颗粒内,或者在一根非常细的短金属线内,线的宽度只有几个纳米,会发生十分奇妙的事情。由于颗粒内的电子运动受到限制,原来可以在费米动量以下连续具有任意动量的电子状态,变成只能具有某动量值,也就是电子动量或能量被量子化了。自由电子能量量子化的最直接的结果表现在:当在金属颗粒的两端加上合适电压,金属颗粒导电;而电压不合适时,金属颗粒不导电。这样一来,原来在宏观世界内奉为经典的欧姆定律在纳米世界内就不再成立了。还有一种奇怪的现象,当金属颗粒具有了负电性,它的库仑力足以排斥下一个电子从外电路进入金属颗粒内,从而切断了电流的连续性。这使得人们想到是否可以发展用一个电子来控制的电子器件,即所谓单电子器件。单电子器件的尺寸很小,把它们集成起来做成电脑芯片,电脑的容量和计算速度不知要提高多少倍。然而,事情可不是人们想象的那么简单。实际上,被囚禁的电子可不那么"老实",按照量子力学的规律,有时它可以穿过"监狱"的"墙壁"逃逸出来,这会使芯片的动作不可控制,同时还需要新的设计使单电子器件变成集成电路。所以尽管电子器件已经在实验室里得以实现,但是真要用在工业上还需要时间。
被囚禁在小尺寸内的电子的另一种贡献,是会使材料发出强的光。"量子点列激光器"或"级联激光器"的尺寸极小,但发光的强度很高,用很低的电压就可以驱动它们发生蓝光或绿光,用来读写光盘可使光盘的存贮密度提高几倍。如果用"囚禁"原子的小颗粒量子点来存贮数据,制成量子磁盘,存贮度可提高成千上万倍,会给信息存贮的技术带来一场革命。
纳米加工:有待人类显身手
为了研究纳米科学和应用纳米科学的研究成果,首先要能按照人们的意愿在纳米尺度的世界中自由地剪裁、安排材料,这一技术被称为纳米加工技术。实际上,一方面纳米加工技术是纳米材料的重要基础,另一方面纳米加工技术中包含了许多人们尚未认识清楚的纳米科学问题。比如说,在一个粗细为几纳米的孔或线里,原子的扩散就与宏观世界里的扩散大不一样。一般而言,原子运动的自由程为几个微米,在此长度上,原子发生碰撞,进行热扩散器壁的作用可忽略不计,可在纳米孔或线内,原子的扩散主要是靠与孔壁的碰撞来完成的。再举一个例子,一般认为物体之间相互运动时的摩擦力主要来源于物体表面的不平整性,即物体表面越光滑,它们之间的摩擦力越小。而纳米材料表面越小,相互之间距离很近,以至于两块材料表面上的原子会发生化学键合而产生对相互运动的阻力。因此,在纳米世界里,所有的加工都必须在原子尺寸的层面上考虑。纳米加工技术可以使不同材质的材料集成在一起,它具有芯片的功能,又可以探测到电磁波、光波(包括可见光、红外线、紫外线等)信号,同时还能完成电脑的命令。如果将这一集成器件安装在卫星上,可以使卫星的重量大大地减小,更容易发射,成本也更低。当前人们已经在考虑用"小鸟"卫星部分地代替现有的卫星系统。
㈢ 硅芯片存储数据的原理是什么
硅芯片存储数据的原理是sram里面的单位是若干个开关组成一个触发器,形成可以稳定存储0, 1信号,同时可以通过时序和输入信号改变存储的值。dram,主要是根据电容上的电量,电量大时,电压高表示1反之表示0芯片就是有大量的这些单元组成的,所以能存储数据。
硅材料具有耐高温和抗辐射性能较好,特别适宜制作大功率器件的特性而成为应用最多的一种半导体材料,集成电路半导体器件大多数是用硅材料制造的。硅在室温的化学性质很稳定,且现在的硅片加工工艺,很容易制备大尺寸平整度在纳米级水平的硅片,使得该方法有望用于信息存储技术。
相关资料
单晶硅:熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。单晶硅具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显着的半导电性。
超纯的单晶硅是本征半导体。在超纯单晶硅中掺入微量的ⅢA族元素,如硼可提高其导电的程度,而形成p型硅半导体;如掺入微量的ⅤA族元素,如磷或砷也可提高导电程度,形成n型硅半导体。
以上内容参考:网络-硅晶片
㈣ 关于纳米的知识
什么是纳米?
纳米是尺寸或大小的度量单位,是一米的十亿分之一(千米→米→厘米→毫米→微米→纳米), 4倍原子大小,万分之一头发粗细。纳米技术是是指制造体积不超过数百个纳米的物体,其宽度相当于几十个原子聚集在一起。
纳米科技及其研究内容
纳米科学技术是研究在千万分之一米(10-8)到亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的学问;同时在这一尺度范围内对原子、分子进行操纵和加工又被称为纳米技术。 用扫描隧道显微镜的针尖将 原子一个个地排列成汉字, 汉字的大小只有几个纳米。纳米科技的研究内容包括: 创造和制备优异性能的纳米材料,设计、制备各种纳米器件和装置,探测和分析纳米区域的性质和现象 。
纳米科技研究目标和可能的应用
材料和制备:更轻、更强和可设计;长寿命和低维修费;以新原理和新结构在纳米层次上构筑特定性质的材料或自然界不存在的材料;生物材料和仿生材料;材料破坏过程中纳米级损伤的诊断和修复;
微电子和计算机技术:2010年实现线条为100nm的芯片,纳米技术的目标为:纳米结构的微处理器,效率提高一百万倍;10倍带宽的高频网络系统;兆兆比特的存储器(提高1000倍);集成纳米传感器系统;
医学与健康 快速、高效的基因团测序和基因诊断和基因治疗技术;用药的新方法和药物'导弹'技术;耐用的人体友好的人工组织和器官;复明和复聪器件;疾病早期诊断的纳米传感器系统
航天和航空 低能耗、抗辐照、高性能计算机;微型航天器用纳米测试、控制和电子设备;抗热障、耐磨损的纳米结构涂层材料
环境和能源 发展绿色能源和环境处理技术,减少污染和恢复被破坏的环境; 孔径为1nm的纳孔材料作为催化剂的载体;MCM-41有序纳孔材料(孔径10-100nm)用来祛除污物;纳米颗粒修饰的高分子材料
生物技术和农业 在纳米尺度上,按照预定的大小、对称性和排列来制备具有生物活性的蛋白质、核糖、核酸等。在纳米材料和器件中植入生物材料产生具有生物功能和其他功能的综合性能。,生物仿生化学药品和生物可降解材料,动植物的基因改善和治疗,测定DNA的基因芯片等。
㈤ 芯片纳米光刻机是怎么工作的,原理是怎样的呢
它的工作原理其实就是按照物理来工作的原理,其实就是有机械力的推动,然后有一些独立可以促进他们的复刻,然后再进行运转
㈥ cpu的60纳米工艺是指什么其中什么是60纳米的
CUP纳米工艺是讲两晶体间的距离.距离越小就代表CUP做的越小当然是同一种型号啦...但是越小发热越大...
什么是纳米科技?
纳米科学技术是研究在千万分之一米(10-8)到亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的学问;同时在这一尺度范围内对原子、分子进行操纵和加工又被称为纳米技术。
纳米科技的研究内容
创造和制备优异性能的纳米材料
设计、制备各种纳米器件和装置
探测和分析纳米区域的性质和现象
用扫描隧道显微镜的针尖将原子
一个个地排列成汉字,汉字的大小只有几个纳米。
什么是纳米?
纳米是尺寸或大小的度量单位:
千米(103 )→米→厘米→毫米→微米→纳米( 10-9)
4倍原子大小,万分之一头发粗细
纳米科技研究什么问题?
生物科学技术、信息科学技术、纳米科学技术是下一世纪内科学技术发展的主流。生物科学技术中对基因的认识,产生了转基因生物技术,可以治疗顽症,也可以创造出自然界不存在的生物;信息科学技术使人们可以坐在家中便知天下大事,因特网几乎可以改变人们的生活方式。
纳米科学是研究在千万分之一米(10-8)到亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的学问;同时在这一尺度范围内对原子、分子进行操纵和加工又被称为纳米技术。
还原论:把物质的运动都还原到原子、分子这一层面上。原子论和量子力学取得了巨大的成功。有机合成;分子生物学;转基因食品、克隆羊;原子光谱和激光;固体电子论和IC;几何光学到光纤通讯。
宏观世界上经典物理、化学、力学的巨大成就:计算机和网络、宇宙飞船、飞机、汽车、机器人等改变了人们的生活方式
科学技术有认识上的盲区或人类知识大厦上的裂缝。裂缝的一边是以原子、分子为主体的微观世界,另一岸是人类活动的宏观世界。两个世界之间不是直接而简单的联结,存在一个过渡区--纳米世界。
例:分子合成 ≤1.5nm, →活体
微电子技术在0.2μm,
显微外科只能连接大、小、微血管
≤ PM10和PM1.5的微粒
50年代,钱老“物理力学”是企图连接两个世界的前驱工作之一
几十个原子、分子或成千个原子、分子“组合”在一起时,表现出既不同于单个原子、分子的性质,也不同于大块物体的性质。这种“组合”被称为“超分子”或“人工分子”。“超分子”性质,如熔点、磁性、电容性、导电性、发光性和染、颜色及水溶性有重大变化。当“超分子”继续长大或以通常的方式聚集成大块材料时,奇特的性质又会失去,像真是一些长不大的孩子。
在10nm尺度内,由数量不多的电子、原子或分子组成的体系中新规律的认识和如何操纵或组合及探测、应用它们---纳米科学技术的主要问题。
原子和分子的微观世界和宏观世界的过渡区内的新现象和新规律
探测纳米长度内物理、化学生物信息的新原理和新方法
新概念和新理论:强关联、强场、快过程、少粒子的量子体系
应用
新科学还是老理论的翻版?
历史悠久的新科学技术
西汉铜镜和黑漆鼓
徽墨
漆器
图中显示用扫描隧道显微镜的针尖在铜表面上搬运和操纵48个原子,使它们排成圆形。圆形上原子的某些电子向外传播,逐渐减小,同时与相内传播的电子相互干涉形成干涉波。
催化剂材料
感光材料和彩色胶片
含有高岭土颗粒的轮胎
近十年,计算机和材料设计;探测技术STM、AFM、SNOM;IC和生命科学的推动;制备技术发展;理论的发展高强度和高韧性、可自修复、有智能、可再生→新一代纳米材料
为什么小尺寸会有如此重要的影响?
表面效应
小尺寸效应
量子限域效应
研究目标和可能的应用
材料和制备:更轻、更强和可设计;长寿命和低维修费;以新原理和新结构在纳米层次上构筑特定性质的材料或自然界不存在的材料;生物材料和仿生材料;材料破坏过程中纳米级损伤的诊断和修复;
微电子和计算机技术:2010年实现线条为100nm的芯片,纳米技术的目标为:纳米结构的微处理器,效率提高一百万倍;10倍带宽的高频网络系统;兆兆比特的存储器(提高1000倍);集成纳米传感器系统;
医学与健康:快速、高效的基因团测序和基因诊断和基因治疗技术;用药的新方法和药物'导弹'技术;耐用的人体友好的人工组织和器官;复明和复聪器件;疾病早期诊断的纳米传感器系统
航天和航空:低能耗、抗辐照、高性能计算机;微型航天器用纳米测试、控制和电子设备;抗热障、耐磨损的纳米结构涂层材料
环境和能源:发展绿色能源和环境处理技术,减少污染和恢复被破坏的环境;孔径为1nm的纳孔材料作为催化剂的载体;MCM-41有序纳孔材料(孔径10-100nm)用来祛除污物;纳米颗粒修饰的高分子材料
生物技术和农业在纳米尺度上,按照预定的大小、对称性和排列来制备具有生物活性的蛋白质、核糖、核酸等。在纳米材料和器件中植入生物材料产生具有生物功能和其他功能的综合性能。,生物仿生化学药品和生物可降解材料,动植物的基因改善和治疗,测定DNA的基因芯片等。
㈦ 纳米技术怎样制作纳米芯片
2002年7月份,曾在几年前宣布摩尔定律死刑的这一定律的创始人戈登·摩尔接受了记者的采访。不过,这次他表现得很乐观,他表示:“芯片上晶体管数量每18个月增加二倍的速度虽然目前呈下降趋势,但随着纳米技术的发展,未来摩尔定律依然会继续生效。”看来,摩尔本人也把希望放到了纳米技术上。下面就让我们来看看纳米技术怎样制造纳米芯片。
我们知道目前的计算机芯片是用半导体材料做的。20世纪可以说是半导体的世纪,也可以说是微电子的世纪,微电子技术是指在半导体单晶材料(目前主要是硅单晶)薄片上,利用微米和亚微米精细结构技术,研制由成千上万个晶体管和电子元件构成的微缩电子电路(称为芯片),并由不同功能的芯片组装成各种微电子仪器、仪表和计算机。芯片可以看做是集成电路块。集成电路块从小规模向大规模发展的历程,可以看做是一个不断向微型化发展的过程。20世纪50年代末发展起来的小规模集成电路,集成度(一个芯片包含的元件数)为10个元件;20世纪60年代发展成中规模集成电路,集成度为1000个元件;20世纪70年代又发展了大规模集成电路,集成度达到10万个元件;20世纪肋年代更发展了特大规模集成电路,集成度超过100万个元件。1988年,美国国际商用机器公司(1BM)已研制成功存储容量达64兆的动态随机存储器,集成电路的条宽只有0.35微米。目前实验室研制的新产品为0.25微米,并向0.1微米进军。到2001年已降到0.1微米,即100纳米。这是电子技术史上的第四次重大突破。今天,芯片的集成度已进一步提高到1000万个元件。集成电路的条宽再缩小,将出现一系列物理效应,从而限制了微电子技术的发展。为了解决这个挑战,已经提出纳米电子学的概念。这一现象说明了:随着集成电路集成度的提高,芯片中条宽越来越小,因此对制作集成电路的单晶硅材料的质量要求越来越高,哪怕是一粒灰尘也可能毁掉一个甚至几个晶体管,这也是为什么摩尔本人几年前宣判摩尔定律“死刑”的原因。
据有关专家预测,在21世纪,人类将开发出徽处理芯片与活细胞相结合的电脑。这种电脑的核心元件就是纳米芯片。芯片是电脑的关键器件。生命科学和材料科学的发展,科学家们正在开发生物芯片,包括蛋白质芯片及DNA芯片。
蛋白质芯片,是用蛋白质分子等生物材料,通过特殊的工艺制备成超薄膜组织的积层结构。例如把蛋白质制备成适当浓度的液体,使之在水面展开成单分子层膜,再将其放在石英层上,以同样方法再制备——层有机薄膜,即可得到80~480纳米厚的生物薄膜。这种薄膜由两种有机物薄膜组成。当一种薄膜受紫外光照射时,电阻上升约40%左右,而用可见光照射时,又恢复原状。而另一种薄膜则不受可见光影响,但它受到紫外光照射时,电阻便减少6%左右。据介绍,日本三菱电机公司把两种生物材料组合在一起,制成了可以光控的新型开关器件。这种薄膜为进一步开发生物电子元件奠定了实验基础,并创造了良好的条件。
这种蛋白质芯片,体积小、元件密度高,据测每平方厘米,可达1015~1016个,比硅芯片集成电路高上万倍,表明这种芯片制成的装置其运行速度要比目前的集成电路快得多。由于这种芯片是由蛋白质分子组成的,在一定程度上具有自我修复能力,即成为一部活体机器,因此可以直接与生物体结合,如与大脑、神经系统有机地连接起来,可以扩展脑的延伸。有人设想,将蛋白质芯片植入大脑,将会出现奇迹。如视觉先天缺陷或后天损伤可以得到修复,使之重现光明等。
虽然目前生产与装配上述分子元件还处于探索阶段,而且天然蛋白质等生物材料不能直接成为分子元件,必须在分子水平上进行加工处理,这有很大难度,但前途是光明的。据介绍,日本已制定了开发生物芯片的10年计划,政府计划投入100亿日元做各项研究。世界上一些大公司,如日立、夏普等都看好生物芯片的前景,十分重视这项研究工作。
人的大脑约有140亿个神经细胞,掌管着思维、感觉及全身的活动。虽然电脑已面世多年;但其精细程度和人脑相比,仍然差一大截。为了使电脑早日具有人脑的功能和效率,科学家近年致力研究开发人工智能电脑,并已取得不少进展。人工智能电脑是以生物芯片为基础的。生物芯片有多种,血红蛋白集成电路就是新型的生物芯片之一。
美国生物化学家詹姆士·麦克阿瑟,首先构想把生物技术与电子技术结合起来。他根据电脑的二进制工作原理,发现血红蛋白也具有类似“开”和“关”的双稳态特性。当改变血红蛋白携带的电荷时,它会出现上述两种变化,这就有可能利用生物的血红蛋白构成像硅电子电路那样的逻辑电路。麦克阿瑟首先利用生物工程的重组DNA技术,制成了血红蛋白“生物集成电路”,使研制“人造脑袋”取得了突破性进展。此后,生物集成电路的研究便逐步展开。美国科学家在硅晶片上重组活细胞组织获得成功。它具有硅晶片的强度,又有生物分子活细胞那样的灵活和智能。德国科学家所研制成的聚赖氨酸立体生物晶片,在1立方毫米晶片上可含100亿个数据点,运算速度更达到10皮秒(一千亿分之一秒),比现有的电脑快近100万倍。
DNA芯片又称基因芯片,DNA是人类的生命遗传物质脱氧核糖核酸的简称。因为DNA分子链是以ATGC(A-T、G-C)为配对原则的,它采用一种叫做“在位组合合成化学”和微电子芯片的光刻技术或者用其他方法,将大量特定顺序的稤NA片段,有序地固化在玻璃或者硅片上,从而构成储存有大量生命信息的DNA芯片。DNA芯片,是近年来在高新科技领域出现的具有时代特征的重大技术创新。
每一个DNA就是一个微处理器。DNA计算速度是超高速的,理论上计算,它的运算速度每小时可达1015次数,是硅芯片运算速度的1000倍。而且,DNA的存储量是很大的,每克DNA可以储存上亿个光盘的信息。不过,目前的主要难点是解决DNA的数据输出问题。
DNA芯片有可能将人类的全部约8万个基因集约化地固定在1平方厘米的芯片上。在与待测样品的DNA配对后,DNA芯片即可检测出大量相应的生命信息。例如寻找基因与癌症、传染病、常见病和遗传疾病的关系,进一步研究相应药物。目前已知有6000多种遗传病与基因相关,还有环境对人体的影响,例如花粉过敏和对环境污染的反应等都与基因有关。已知有200多个与环境影响相关的基因,对这些基因的全面监测,对生态、环境控制及人类健康均有重要意义。
DNA芯片技术既是人类基因组研究的重要应用课题,又是功能基因研究的崭新手段。例如单核苷酸的多态性,是非常重要的生命现象,科学家认为,人体的多样性和个性取决于基因的差异,正是这种单核苷酸多态性的表现,如人的体形、长相与500多个基因相关。通过DNA芯片,原则上可以断定人的特征,甚至脸形、长相、外貌特点,生长发育差异等。
“芯片巨人”英特尔公司于2000年12月公布,英特尔公司用最新纳米技术研制成功30纳米晶体管芯片。这一突破将使电脑芯片速度在今后5~10年内提高到2000年的10倍,同时使硅芯片技术向物理极限更近一步。新型芯片的运算速度已达目前运算速度最快芯片的7倍。它能在子弹飞行30厘米的时间内运算2000万次,或在子弹飞行25毫米的时间内运算200万次。晶体管门是计算机芯片进行运算的开关,新芯片是以3个原子厚度的晶体管“门”为基础,比目前计算机使用的180纳米晶体管薄很多。要制造这种芯片的障碍是控制它产生的热量。芯片的运行速度越快,产生的热量就越多。过多的热量会使制造计算机芯片所用的材料受到损坏。英特尔公司经过了长期的研究,解决了这一问题。这种原子级晶体管是用新的化学合成物制成的,这种新材料可以使芯片在运行时温度不会过高。这种芯片的出现将为研制模拟以人的方式,可以和人进行交流的电脑创造条件。英特尔公司说,他们开发出的这种迄今世界上最小最快的晶体管,厚度仅为30纳米。这将使英特尔公司可以在未来5~10年内生产出集成有4亿个晶体管、运行速度为每秒10亿次,工作电压在1伏以下的新型芯片。而目前市场上出售的速度最快的芯片“奔腾4代”集成了4200万个晶体管。英特尔公司称,用这种新处理器制造的产品最早将在2005年以后投放市场。
英特尔公司的一位工程师说:“30纳米晶体管的研制成功使我们对硅的物理极限有了新看法。硅也许还可以使用15年,此后会有什么材料取代硅,那是谁也说不准的事。”他又说:“更小的晶体管意味着更快的速度,而运行速度更快的晶体管是构筑高速电脑芯片的核心模块,电脑芯片则是电脑的‘大脑’。”英特尔公司预测,利用30纳米晶体管设计出的电脑芯片可以使“万能翻译器”成为现实。比如说英语的人到中国旅游,就可以通过随身携带的翻译器,将英语实时翻译成中文,在机场、旅馆或商店不会有语言障碍。在安全设施方面,这种芯片可以使警报系统识别人的面孔。此外,将来用几千元人民币就可以买一台高速台式电脑,其运算能力可以跟现在价值上千万元的大型主机媲美。
单位面积上晶体管的个数是电脑芯片集成度的标志,晶体管数量越多,说明集成度越高,而集成度越高,处理速度就越快。30纳米晶体管将开始出现在用0.07微米技术产品上,目前英特尔公司使用的是0.18微米技术,而1993年的“奔腾”处理器使用的是0.35微米技术。在芯片上“刻画”电路,0.07微米技术用的是超紫外线光刻技术,比2001年最先进的深紫外线光刻技术更为先进。如果在纸上画线,深紫外线光刻使用的是钝铅笔,而超紫外线光刻使用的是削尖了的铅笔。
晶体管越来越小的好处主要有两方面:一是可以用较低,的成本提高现有产品性能;二是工程师可以设计原来不可能的新产品。这两个好处正是推动半导体技术发展的动力,因为企业提高了利润,就有可能在研发上投入更多。看来,纳米技术的确可以延长摩尔定律的寿命,这也正是摩尔本人和众多技术人员把目光放到纳米技术之上的原因所在。
㈧ 纳米技术对人类的生活有什么影响
如今纳米洗衣机、纳米冰箱已经出现在广告词中,看来纳米真的离我们的生活越来越近了。事实也正是如此,纳米科技正在走进我们的生活,同时也将会改变我们的生活。
美国科学家尼尔·莱思说:“纳米技术是最可能在未来取得突破的科学和工程领域”。这项技术并不只是向小型化迈进了一步,而是跨入了一个崭新的微观世界,在这个世界中物质的运动受量子原理的主宰。
传统的解释材料性质的理论,只适用于大于临界长度100纳米的物质。如果一个结构的某个维度小于临界长度,那么物质的性质就无法用传统理论解释。在20世纪末,世界各国的科学家正试图在中等级别领域,即单个分子或原子级别到数十万个分子级别之内,发现新奇的现象。这一基础理论的研究,对我们今天对纳米科学研究的进程起了一定的积极促进作用。
我们知道,构成物质的基本单元是原子,因此,当今的纳米科学与技术的研究实际上就是人们在原子层次上认识世界。
早在1993年,中国科学院北京真空物理实验室的科研人员在显微镜下,将一个个原子像下棋那样自如地操纵着,写出了“中国”二字标志着中国在国际纳米领域开始有一席之地。这仅仅是一次实验,但人类可以从中发现和看到纳米世界存在的奇迹;人类将在新的纳米技术领域获得更多、更大的好处。
科学家对纳米级产品应用的前景进行了描述,预计在不久的将来会出现特种新奇的新材料。这些材料将具有多种功能,能够感知环境变化以及做出相应的反应。纳米技术的专家们预计还会出现强度是钢铁。10倍的材料,其重量只有纸张的1/10,并具有超导电性,而且透明,熔点更高。
细微之处显神奇的纳米技术将会在我们的生活是有什么用途呢?事例有很多,例如,碳纳米管,其尺寸不到人的头发直径的万分之一,它可用作极细的导线或用于超小型电子器件,将纳米技术用于存储器,可以大大提高电子器件的储存功能,可以将一个有几百万册书的图书馆的信息放人一个只有糖块大小的装置中。
再如,有人把纳米称为“工业味精”,因为把它“撒”入许多传统材料中,老产品就会重新显露出崭新的新面貌。砧板、抹布、瓷砖、地铁磁卡,这些挺爱干净的小东西上一旦加入纳米微粒,就可以除味杀菌。用“拌”人纳米微粒的水泥、混凝土建成楼房,可以吸收降解空气中的有害物质,钢筋水泥也能和森林一样“深呼吸”。现有的硅质芯片将被体积缩小数百倍的纳米管元件所替代,而那占据几个房间的巨型计算机现在可以小到可以随手放进口袋。
在实际生活中最诱人的莫过于未来的“纳米机器人”,它可以进入人体并摧毁各个癌细胞又不损害健康细胞;可以在人体内来回送药,清扫动脉,修复心脏、大脑和其他器官而不用外科手术。
1999年,美国政府在纳米科技的报告中呼吁加快纳米科学和工程的基础研究乙美国总统认为,纳米技术对保持美国科学技术和经济的领先地位非常重要,并建议把联邦纳米技术研究预算增加一倍,即2001年达到4?95亿美元。美国国家纳米技术计划的研究工作将会由一个委员会协调,该委员会的成员是来自政府各个研究和开发项目的高级代表。能源部、国防部、商务部、航天局、全国科学基金会和国家卫生研究所将在国家科学和技术委员会的指导下发挥它的重要作用。美国国家纳米技术计划在初期研究的重点,是在分子层次上具有新奇特性并且物理和化学性能有显着提高的材料。这次计划的目的,不仅在于提供美国顶尖的仪器、设备,还在于训练出一批专精于最先进纳米科技研究人员。
各国纳米技术研究人员感兴趣的一些纳米技术尖端领域,归纳起来有以下5个方面:
——在纳米层次上,电子和原子的交互作用会受到变化因素的影响。这样,有可能使科学家在不改变材料化学成分的前提下,控制物质的基本特性,比如磁性、蓄电能力和催化能力等。
——在纳米层次上,生物系统具有一成套系统的组织,这使科学家能够把人造组件和装配系统很轻易地放入细胞中,有可能使人类模拟自然创造出分子机器。
——纳米组件具有很大的表面积,这能够使它们成为理想的催化剂和吸收剂等,并且在释放电能和向人体细胞施药方面派上用场。
——利用纳米技术制造的材料与一般材料相比,在成分不变的情况下体积会大大缩小而且强度和韧性得到提高。由于纳米颗粒非常小,因此表面缺陷是不能够出现的,另外由于纳米颗粒具有很高的表面能量,所以强度会提高。这对制造强度大的复合材料将非常有用。
——与宏观结构相比,纳米结构在各个维度上的数量级都较小,所以互动作用将更快地发生,这将给人们带来能效更高、性能更好的系统,使人类逐步走向一个高端的科技领域。
纳米时代在各国纳米专家的努力下,正在向我们招手。有科学家预计,这场纳米技术的革命,可以与用微电子设备取代晶体管而引发的革命相提并论。以后出现的微型纳米晶体管和纳米存储器芯片,将使计算机的速度和效率提高数百万倍,使磁盘存储的容量达到今天的成百上千倍,并且使能耗降低到现在的几十万分之一。还可以使通信带宽会增大几百倍,可以折叠的显示器将比现在的显示器明亮10倍。另外,一个纳米层次上有可能办到的事,是生物的和非生物的部件将结合成交互作用的传感器和处理器,这便更加有利于服务人类。
科学家对将来的预见能够达到多远?美国半导体工业协会制定了一个处理器、传感器、存储器和传输设备的开发路线图,但是这个路线图只延伸到了2010年,并且只达到了大小为100纳米的结构,这比全部是纳米结构的装置要大。这个协会解释说,科学发现变成商业上可行的技术需要时间,预计纳米技术要到2010~2015年才能成熟。
由此可见,纳米级产品将在不久大量出现已是不容置疑的事实。随着对纳米技术和产品研究的深入,十几年后纳米、技术专利将商业化,看来纳米真的要成为我们日常生活的一员了,它将使人类社会、生存环境和科学技术变得更加美好。我们渴望着那一天早日到来。
㈨ 纳米技术
纳米技术
纳米是长度单位,原称毫微米,就是10的-9次方米(10亿分之一米)。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。从具体的物质说来,人们往往用细如发丝来形容纤细的东西,其实人的头发一般直径为20-50微米,并不细。单个细菌用肉眼看不出来,用显微镜测出直径为5微米,也不算细。极而言之,1纳米大体上相当于4个原子的直径。 纳米技术包含下列四个主要方面:
⒈纳米材料:当物质到纳米尺度以后,大约是在1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,象铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。
⒉纳米动力学,主要是微机械和微电机,或总称为微型电动机械系统,用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等.用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。
⒊纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,dna的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。
⒋纳米电子学,包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷,更小,是指响应速度要快。更冷是指单个器件的功耗要小。但是更小并非没有限度。 纳米技术是建设者的最后疆界,它的影响将是巨大的。
在1998年的四月,总统科学技术顾问,Neal Lane 博士评论到,如果有人问我哪个科学和工程领域将会对未来产生突破性的影响,我会说该个启动计划建立一个名为纳米科技大挑战机构,资助进行跨学科研究和教育的队伍,包括为长远目标而建立的中心和网络。一些潜在的可能实现的突破包括:
把整个美国国会图书馆的资料压缩到一块像方糖一样大小的设备中,这通过提高单位表面储存能力1000倍使大存储电子设备储存能力扩大到几兆兆字节的水平来实现。由自小到大的方法制造材料和产品,即从一个原子、一个分子开始制造它们。这种方法将节约原材料和降低污染。生产出比钢强度大10倍,而重量只有其几分之一的材料来制造各种更轻便,更省燃料的陆上、水上和航空用的交通工具。通过极小的晶体管和记忆芯片几百万倍的提高电脑速度和效率,使今天的奔腾?处理器已经显得十分慢了。运用基因和药物传送纳米级的mri对照剂来发现癌细胞或定位人体组织器官去除在水和空气中最细微的污染物,得到更清洁的环境和可以饮用的水。提高太阳能电池能量效率两倍。
什么是纳米科技?
纳米科学技术是研究在千万分之一米(10-8)到亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的学问;同时在这一尺度范围内对原子、分子进行操纵和加工又被称为纳米技术。
纳米科技的研究内容
创造和制备优异性能的纳米材料
设计、制备各种纳米器件和装置
探测和分析纳米区域的性质和现象
什么是纳米?
纳米是尺寸或大小的度量单位:
千米(103 )→米→厘米→毫米→微米→纳米( 10-9)
4倍原子大小,万分之一头发粗细
纳米科技研究什么问题?
生物科学技术、信息科学技术、纳米科学技术是下一世纪内科学技术发展的主流。生物科学技术中对基因的认识,产生了转基因生物技术,可以治疗顽症,也可以创造出自然界不存在的生物;信息科学技术使人们可以坐在家中便知天下大事,因特网几乎可以改变人们的生活方式。
纳米科学是研究在千万分之一米(10-8)到亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的学问;同时在这一尺度范围内对原子、分子进行操纵和加工又被称为纳米技术。
还原论:把物质的运动都还原到原子、分子这一层面上。原子论和量子力学取得了巨大的成功。有机合成;分子生物学;转基因食品、克隆羊;原子光谱和激光;固体电子论和IC;几何光学到光纤通讯。
宏观世界上经典物理、化学、力学的巨大成就:计算机和网络、宇宙飞船、飞机、汽车、机器人等改变了人们的生活方式
科学技术有认识上的盲区或人类知识大厦上的裂缝。裂缝的一边是以原子、分子为主体的微观世界,另一岸是人类活动的宏观世界。两个世界之间不是直接而简单的联结,存在一个过渡区--纳米世界。
例:分子合成 ≤1.5nm, →活体
微电子技术在0.2μm,
显微外科只能连接大、小、微血管
≤ PM10和PM1.5的微粒
50年代,钱老“物理力学”是企图连接两个世界的前驱工作之一
图中显示用扫描隧道显微镜
的针尖在铜表面上搬运和操
纵48个原子,使它们排成圆
形。圆形上原子的某些电子
向外传播,逐渐减小,同时
与相内传播的电子相互干涉
形成干涉波。
几十个原子、分子或成千个原子、分子“组合”在一起时,表现出既不同于单个原子、分子的性质,也不同于大块物体的性质。这种“组合”被称为“超分子”或“人工分子”。“超分子”性质,如熔点、磁性、电容性、导电性、发光性和染、颜色及水溶性有重大变化。当“超分子”继续长大或以通常的方式聚集成大块材料时,奇特的性质又会失去,像真是一些长不大的孩子。
在10nm尺度内,由数量不多的电子、原子或分子组成的体系中新规律的认识和如何操纵或组合及探测、应用它们---纳米科学技术的主要问题。
原子和分子的微观世界和宏观世界的过渡区内的新现象和新规律
探测纳米长度内物理、化学生物信息的新原理和新方法
新概念和新理论:强关联、强场、快过程、少粒子的量子体系
应用
新科学还是老理论的翻版?
历史悠久的新科学技术
西汉铜镜和黑漆鼓
徽墨
漆器
催化剂材料
感光材料和彩色胶片
含有高岭土颗粒的轮胎
WHY?不清楚
近十年,计算机和材料设计;探测技术STM、AFM、SNOM;IC和生命科学的推动;制备技术发展;理论的发展
高强度和高韧性、可自修复、有智能、可再生→新一代纳米材料
为什么小尺寸会有如此重要的影响?
表面效应
小尺寸效应
量子限域效应
研究目标和可能的应用
材料和制备:更轻、更强和可设计;长寿命和低维修费;以新原理和新结构在纳米层次上构筑特定性质的材料或自然界不存在的材料;生物材料和仿生材料;材料破坏过程中纳米级损伤的诊断和修复;
微电子和计算机技术:2010年实现线条为100nm的芯片,纳米技术的目标为:纳米结构的微处理器,效率提高一百万倍;10倍带宽的高频网络系统;兆兆比特的存储器(提高1000倍);集成纳米传感器系统;
医学与健康
快速、高效的基因团测序和基因诊断和基因治疗技术;用药的新方法和药物'导弹'技术;耐用的人体友好的人工组织和器官;复明和复聪器件;疾病早期诊断的纳米传感器系统
航天和航空
低能耗、抗辐照、高性能计算机;微型航天器用纳米测试、控制和电子设备;抗热障、耐磨损的纳米结构涂层材料
环境和能源
发展绿色能源和环境处理技术,减少污染和恢复被破坏的环境;
孔径为1nm的纳孔材料作为催化剂的载体;MCM-41有序纳孔材料(孔径10-100nm)用来祛除污物;纳米颗粒修饰的高分子材料
生物技术和农业
在纳米尺度上,按照预定的大小、对称性和排列来制备具有生物活性的蛋白质、核糖、核酸等。在纳米材料和器件中植入生物材料产生具有生物功能和其他功能的综合性能。,生物仿生化学药品和生物可降解材料,动植物的基因改善和治疗,测定DNA的基因芯片等