❶ 遥感影像数据格式img,tiff 等表示什么意思
图像格式,一般spot卫星的影像是img格式,tiff格式的影像更多一些。都可以用envi和erdas来处理
❷ ∶遥感影像地图制作
1∶250000遥感影像地图是1∶250000遥感地质解译和其他比例尺遥感专项解译必备的基础图像,它包括1∶250000遥感影像地图和遥感正射影像地图两种。主要应用于地质、矿产及水文等常规地质调查,以及生态环境因子信息的解译提取与分类等工作中。制作过程包括地理数据(资料)处理、全波段数据辐射校正、几何校正、配准、图像镶嵌、数据融合及地理编码等。虽然两种影像地图制作的方法大致相同,由于在正射影像地图制作过程中利用了数字高程模型数据(DEM)进行了高程纠正,因此图像的几何精度较高,适用于地形高差较大的山地地区;而影像地图更加适用于地形高差较小的平原、丘陵地区。为此,在实际工作中,应根据工作区的具体地形高差及切割程度自行选择,以充分满足解译成图的精度为目的。
4.2.1 地理资料处理
包括对以纸介质形式存在的1∶250000、1∶100000地形图和数字高程模型(DEM)、栅格地图(DRG)数据的处理。目的是为遥感影像地图、遥感正射影像图的制作提供地理要素与控制资料,同时为遥感地质解译、野外地质调查提供工作数字化用图。
4.2.1.1 数字高程模型(DEM)制作
DEM数据可直接从国家基础地理信息中心购买,也可从地形图上采集获取。从地形图上获取方法是:首先,将1∶100000地形图扫描,使用人机交互式等高线矢量化的方法,按照一定的等高距由地图快速录成系统对等高线进行细化、矢量化、编辑、赋值、空间坐标定向处理;然后,按内插点的分布范围,将内插分为整体内插、分块内插和逐点内插三类,根据一定的插值方法(如Kriging法等),进行等高线的插值获取,提取高程信息;再根据纠正单元进行DEM镶嵌与数据格式转换,生成全区的镶嵌DEM;最后,检查拼接精度是否满足要求,方法是通过生成DEM晕渲图检查DEM是否存在误差。
4.2.1.2 栅格地图(DRG)制作
DRG是由1∶100000比例尺的地形图经扫描、几何纠正及色彩校正后形成的,其内容、几何精度和色彩与原图保持一致的栅格数据文件。制作方法及步骤如下。
(1)地形图扫描
将纸质地形图按照一定的扫描分辨率(一般150~300dpi)进行扫描,存储为TIF图像格式。
(2)图幅生成控制点
利用用户设置的标准图幅信息,将自动计算公里格网交点作为控制点。在生成图幅控制点前,需要先设置图幅信息,指定内图廓点,其步骤如下:
1)设置图幅信息。
a.图幅号。地图的标准图幅号。
b.格网间距。标准图幅的格网间距,其值应与校正图的格网间距保持一致。
c.坐标系。地图采用的坐标系统,主要是54坐标系和80坐标系。如选择大地坐标,则生成的标准图幅采用大地坐标(单位:m),否则采用图幅坐标。
2)设置生成图幅控制点信息。
a.图幅坐标。通过在影像上选择图幅坐标点,定位内图廓点。
b.最小间隔。生成控制点时舍弃控制点的最小间距。
3)定位内图廓点。
在图像上确定四个内图廓点的位置。完成参数设置和内图廓点信息的输入,自动计算出控制点的理论坐标,并根据理论坐标反算控制点的图像坐标。
(3)顺序修改控制点
由图幅生成控制点的图像坐标是根据相应的公里格网交点理论坐标反算出的图像坐标,但由于原始图像存在一定的扭曲变形。因此,该值和原图上对应的公里格网交点的坐标值并不一定相同,需要对点位进行修正。
(4)逐格网校正
需输入影像范围(即校正影像的逻辑坐标范围)、影像输出分辨率、影像外廓(即相对内图廓的外扩距离,单位与图幅坐标一致)。通过设置外廓距离,可使图幅内廓边界以外一定距离内的影像不会在影像校正过程中发生变形。
(5)栅格地图控制精度要求
纠正控制点残差小于1m;重采样间隔1m;图廓点、公里格网及其交点坐标偏差不得大于1m。
1∶100000DEM格网间隔与高程中误差要求为:平地DEM格网间距50m,高程中误差6m;丘陵DEM格网间距50m,高程中误差10m;中低山DEM格网间距50m,高程中误差10m;高山及极高山地区的高程中误差按可相应放宽至1.5倍。
(6)精度评价
栅格地图精度评价,包括对原始图质量评估的图幅质量评价,对校正生成DRG的质量评估以及标准图框套合检查。
1)原始图质量评估。该项是对栅格地图制作的原始数据进行质量评价,主要反映的是原始图是否有折皱,扫描时是否置平等。若原始图质量不好,则校正出的栅格地图肯定会受到一定的影响。
要对原始图进行质量评价,首先需要顺序修改控制点,当所有的控制点修改完毕后,图幅质量文件中的数值反映了原始地图影像的质量情况,其文件参数为图像纠正前的最大残差和中误差。其中的中误差值反映了原始图的整体质量,数值越大,质量越差;最大残差值反映了原始图中偏差最大的控制点的点号及偏差值。
2)校正图质量评估。该项用于评估校正生成DRG数据的质量。在完成逐格网校正后,根据图幅信息和按照图幅生成控制点部分中添加内图廓点的方法,定位影像的四个内图廓点,生成反映影像校正情况的质量评估文件,其文件参数为图像纠正后的中误差,中误差值反映了校正后影像的整体质量。图廓边长及对角线尺寸检查(单位:m):上边、下边、左边、右边、对角1、对角2,图廓边长及对角线尺寸检查,通过对图幅图廓边长的检测值与理论值进行比较,检验图廓边长、对角线各条边长是否符合精度要求。
3)图框套合检查。在评估校正生成DRG数据质量时,还可以用生成的理论格网与校正图上公里网进行套合比较的方法检验公里格网精度是否在规定的限差之内。通过检查其套合情况,可判断校正生成的DRG数据质量。
(7)存储格式
利用ENVI软件制作的DRG存储格式是*.tif和*.img;用MapGIS系统制作的DRG存储格式是*.MSI。
(8)用途
栅格地图图件是遥感影像图制作、数字高程模型数据生成以及几何校正的基础地理参照图像。
4.2.2 图像预处理
在保持足够信息量和清晰度的前提下,对噪声和条带较多的图像,需通过邻近像元灰度值替代法、低通滤波法、整行替代法和傅里叶变换法进行去噪声、条带的滤波处理,对辐射度畸变较大的图像进行辐射纠正处理。
4.2.3 纠正与配准
4.2.3.1 纠正与配准模型选取
多采用物理和拟合多项式两种纠正模型。纠正与配准应对所有波段进行。
物理模型适用于能提供严格卫星星历参数的影像数据,要求同时具备DEM数据且控制点整景分布;有理多项式模型适用于难以获得线性传感器的外部几何参数且其姿态十分复杂的卫星数据,要求同时具备DEM数据且控制点整景分布;几何多项式模型适合于平坦地区,通常用于处理难以提供获取影像的卫星星历参数和DEM数据的地区。一般根据数据源情况,对地形高差大的地区优先采用物理模型,其次有理多项式模型利用DEM数据进行正射精校正,平原区利用1∶100000DRG资料和几何多项式模型对图像进行几何校正。
4.2.3.2 控制点选取
控制点应控制影像四周,且分布均匀。控制点个数应根据纠正模型和地形情况等条件确定。物理模型根据卫星星历参数建立严密模型,选9个控制点即可,通常20个以上,该模型要求整景数据均有控制点分布;拟合多项式模型与其纠正阶项(n)相关,当n=1时,要求每景最低不少于7个控制点,一般9个以上;当n=2时,每景选13~16个控制点为宜。该模型要求整景数据均有控制点分布。
4.2.3.3 纠正与配准控制点误差要求
平地地形纠正控制点中误差为1~1.5个像素,丘陵地形纠正控制点中误差为1~1.5个像素,山地地形纠正控制点中误差为1.5~2个像素,纠正控制点最大残差不超过2倍中误差。
平地地形配准控制点中误差为0.5~1个像素,丘陵地形配准控制点中误差为0.5~1个像素,山地地形配准控制点中误差为1~1.5个像素,配准控制点最大残差不超过2倍中误差。
重采样方法:包括邻元法、双线性内插法及立方卷积法。
对于数字正射影像图(DOM)重采样,其重采样间隔应根据成图比例尺确定,1∶250000比例尺重采样间隔30m;1∶100000比例尺重采样间隔15m;DOM接边限差要求平地地形接边限差为0.8mm,丘陵地形接边限差为0.8mm,山地地形接边限差为1.2mm。对于道路、河流等线状地物,即使接边限差符合上述规定,当镶嵌影像出现重影、模糊时,应进行接边处理。DOM影像应清晰、纹理信息丰富,景与景之间影像尽量保持色调均匀、反差适中。
4.2.4 影像融合
影像融合是指采用一种复合模型结构,将不同传感器的遥感数据或与不同类型的数据源所提供的信息加以综合,以获取高质量的影像信息,同时消除各传感器间信息冗余,降低不确定性,提高解译精度和可靠性,以形成对目标相对完整一致的信息显示。对全色数据与多光谱数据、SPOT与TM数据纠正成果进行融合,例如,ETM+(全色)与TM7、4、1,TM5、4、3,TM5、3、2;SPOT与TM5、3、2融合等,形成兼具高分辨率空间信息和多光谱彩色信息的融合影像。融合方法有主成分分析法、加权相乘法、IHS变换法等多种方法。
影像融合匹配精度检查可采用影像融合法或影像叠合法进行,要求平原和丘陵地区匹配精度为0.5个像素,最大不超过1个像素;山地地区可适当放宽至1.5个像素。融合前须对影像进行色调调整,提高高分辨率数据的亮度,增强局部反差,突出纹理细节,降低噪声;对多光谱数据进行色彩增强,拉大不同地类之间的色彩反差,突出其多光谱彩色信息。
融合后检查是否出现重影、模糊等现象。检查影像纹理细节与色彩,判断融合前的处理是否正确,如果存在问题,返回重处理。如果融合后影像亮度偏低、灰阶范围较窄,则可采用线性拉伸、调整亮度对比度等方法进行处理,在处理过程中,应尽量保留融合数据的光谱信息和空间信息。
4.2.5 影像镶嵌
标准图幅涉及多景数据或多个纠正分区,须考虑影像间接边,其接边限差平地和丘陵均为0.8mm;山地为1.2mm。
数字镶嵌方法是在相邻图像重叠区内选择同名点作为镶嵌控制点,要求两景同名地物严格对准,拟合中误差在1个像元左右;两景图像间需进行亮度匹配,以减少亮度差异;镶嵌拼接线的选择无论是采用交互法还是自动选择,均需是一条折线或曲线;在拼接点两旁需选用“加权平均值方法”进行亮度圆滑,进一步提高图像镶嵌的质量。
接边检查可采用影像叠合法或检查点选取法。影像叠合法对接边影像进行叠合,结合目视判读与点位量算提取误差;检查点选取法通过选取DOM影像公共区的同名点,计算其较差的中误差。
当接边误差超过规范要求,应分析原因,并返回上道工序检查和修改控制点;如果接边误差满足要求,但某些特征地物(如道路、河流)错位,导致镶嵌影像出现重影、模糊,应进行接边纠正处理。
镶嵌影像应保证色调均匀、反差适中,接边重叠带不允许出现明显的模糊或重影。为保证接边自然,接边影像要有10~50个像素的重叠。
4.2.6 图幅整饰与信息管理
4.2.6.1 图廓整饰
图廓整饰内容包括内图廓、外图廓及坐标注记,要求如下:
1)内图廓线应是曲线,东西图廓可以绘成直线,南北图廓为弧线,可以分段表示成直线。图廓线宽度为1个像元。
2)图廓线平行于内图廓线,与内图廓线间隔为10mm,主图廓线宽度为1mm,副图廓线宽度为1个像元,两者相互平行,距离为2mm。
3)图廓线坐标注记内容是经纬度和公里网。在外图廓上以经差15'、纬差10'间隔注记经纬度坐标,注记2mm长、1个像元宽的短线在主图廓与副图廓之间,贯通图面的公里网间隔为10km。
图廓四角的经纬度注记标于内图廓四角的延长线两侧,字头朝上。经度注记跨经线的左右,左注“度”,右注“分”“秒”;纬度注记跨纬线上下,上注“度”,下注“分”、“秒”。
公里网注记要求每条方里线在图廓间注出其坐标值的两位数(km),首末方里线及百公里数方里线注记应注出完整数(km),在南、北图廓间的两位公里数注在方里线的右侧,百位以上数字注在方里线的左侧,东、西图廓间的两位公里数注在方里线上方。
坐标注记采用宋体。注记整10km字高为3mm,带号与整千千米字高为2mm。
4.2.6.2 图面整饰与注记
1)图面整饰要求标注图名、图幅接合表、数字比例尺和线比例尺、密级等。
a.图名。用横向注记在北图廓外居中位置,字体采用黑体,字高为10mm,字间距为10mm;图名下方注记图幅编号,字体采用黑体,字高为5mm。
b.比例尺。标注于南图廓外正中位置。应同时绘制数字比例尺和直线比例尺。
c.图例内容。包括地理要素和专题要素。一般配置在东图廓外侧,沿外图廓线从上而下排列,上方与北内图廓线持平。
d.图幅接合表配置。在北图廓外西面。
e.图件密级。划分机密、秘密、内部用图3种。密级标注在北图廓外东面,最后一个字对齐东内图廓线。字体用宋体,字高为5mm。
f.南图廓外西面注记。包括所采用的遥感资料种类、时相和波段组合,控制资料等。字体用宋体,字高为5mm。
g.南图廓外东面注记。作业单位,字体用宋体,字高为8mm。
2)按照应用的要求注记地理名称、矢量要素、专题要素等信息。名称注记用宋体,字高为线划地形图的2倍。
4.2.6.3 信息管理
以1∶100000地形图标准图幅为单元,分幅生成DOM影像。以此为基础,分层叠加图幅整饰内容,形成DOM信息管理文件,各图层内容和顺序为图廓整饰、注记、行政境界和DOM。
4.2.7 检查与验收
1)影像地图需严格符合技术设计和任务书的要求,满足应用的需要。
2)影像地图图面要求影像清晰、反差适中、色调不偏色、信息丰富、层次突出。
3)图廓线尺寸、公里网、经纬度、图幅内外整饰及注记要符合要求。
4)数学精度的检查:在每幅图内随机抽取25个以上均匀分布点位,在1∶100000或以上比例尺的线划地形图、数字地图或影像地图上读取同名地物点的坐标作为真值,计算随机取样点的中误差。
1∶250 000 遥感地质解译技术指南
式中:m为点位中误差,mm;Δx、Δy为随机取样点坐标差,mm;n为随机取样点点数。
随机取样点最大残差不超过2倍中误差为合格。
4.2.8 1∶250000遥感影像地图应用
4.2.8.1 不同波段组合影像地图的应用
遥感影像地图波段组合应根据影像地图的应用目的、制图区地物的情况和图像的信息量大小等因素加以选择。对TM/ETM+和ASTER多光谱数据,要求波段组合应覆盖可见光(B1、B2、B3)、近红外(B4)到中红外(B5、B7)的各个波段,波段之间相关系数最小,地质信息最为丰富,能够具有最大的信息量,对解译岩性和大的构造信息有利,常用的波段组合为B5、B4、B3。在干旱裸露区,选择B7、B4、B1波段组合;在植被覆盖区,首选冬季低植被季节的图像,尽量降低植被的影响,选择B5、B3、B2波段组合,受植被影响比较低,对图像解译的可识别性较好,地质解译效果最佳;ETM+(全色)分别与TM7、4、1,TM5、4、3及TM5、3、2融合后的图像,地质解译效果较好。
CEBRS数据通常选择B2、B3和B4组合。
4.2.8.2 不同数据源、不同比例尺影像地图的应用
1)为了满足1∶250000比例尺遥感地质调查的精度要求,其影像地图比例尺应为1∶100000。
2)1∶50000比例尺融合图像是1∶250000遥感地质调查的重要遥感资料。
3)TM/ETM+和ASTER影像图层次多、色彩丰富、信息量大,不同地质现象上均有较好的反映。因此TM/ETM+和ASTER数据应是1∶250000遥感地质调查的最佳数据源。
4)SPOT与TM所形成的融合图像由于分辨率高、立体感强,在解译古火山机构方面作用突出,但其色调没有TM本身图像丰富,而且阴影偏大,所以在岩性划分方面只能起辅助作用。
5)Radar与TM融合图像在色调层次方面没有TM丰富,与雷达图像相比,在立体效果和影纹方面没有更大的优势,该片种不是1∶250000遥感填图的优选图像。
6)从数据的可获取性、综合应用效果和解决地质问题的能力角度出发,1∶250000遥感地质调查中遥感地质解译应以1∶250000比例尺影像地图为主,1∶100000为辅,进行交互解译以确保解译结果具有重现性。
7)室内解译应充分利用遥感正射影像地图与GIS系统相整合的优势,进行多源数据的复合处理与解释。
8)正射遥感影像地图及三维可视化遥感影像图能够更好地突出地形地貌的景观特征,能更加直观地提取构造、岩性分区、生态地质因子,进行地貌单元划分等,因此地质解译效果更加突出。
❸ 数字图像的存储格式
遥感数据以磁带、光盘等为存储介质,由一个或多个文件组成,每个文件又以若干个记录组成。记录是作为一个单位来处理的一组相连的数据,分为物理记录和逻辑记录; 文件是由若干个逻辑记录构成的在目的、形式和内容上彼此相似的信息项的集合。逻辑记录的排列方式决定了文件的结构方式,加之不同的辅助说明信息而构成了不同的遥感数据格式。对于遥感数字图像而言,它必须以一定的格式存储,才能有效地进行分发和利用。
多波段图像具有空间的位置和光谱的信息。多波段图像的数据格式根据在二维空间的像元配置中如何存储各种波段的信息可分为四类。
1. BSQ,BIL,BIP 格式
BSQ ( Band Sequential) 格式,又称为波段序贯格式,在一个遥感数据文件内各像元DN 值相当于以 “波段” 为主要关键字、以 “行” 为次要关键字、以 “列” ( 像元号) 为第三关键字对像元 DN 值进行排序存放。
BIL ( Band Interleaved by Line) 格式,又称为波段行交叉格式,在一个遥感数据文件内各像元 DN 值相当于以 “行”为主要关键字、以 “波段”为次要关键字、以 “列”( 像元号) 为第三关键字对像元 DN 值进行排序存放。
BIP ( Band Interleaved by Pixels) 格式,又称为波段像元交叉格式,在一个遥感数据文件内各像元 DN 值相当于以 “行”为主要关键字、以 “列” ( 像元号) 为次要关键字、以 “波段”为第三关键字对像元 DN 值进行排序存放。
上述遥感数据基本格式具有不同的特点和适用范围。BSQ 格式最适合于对单个波段的整个或部分图像空间区域进行存储和读取等处理操作,如图像对比度增强、平滑、锐化等; BIP 格式为图像数据单个像元波谱特性的存储与读取提供最佳性能,如在最大似然比分类法、波段之间的加减乘除代数运算等亦宜采用该格式; BIL 方式具有以上两种方式的中间特征,提供了图像空间和像元波谱处理之间的一种折中的方式,适用于以行 ( 图像扫描行) 为单位的处理操作,如水平方向的线性影像特征增强处理等。
2. Fast - L7A 格式
该格式是美国 EDC 在沿用了以往 Landsat 数据产品快速格式的基础上而选用的记录Landsat-7 / ETM + 数据的格式之一。Fast - L7A 格式的数据由 3 个头文件及 8 个数据文件组成,3 个头文件对应 Landsat-7 数据的三个波段组: 全色波段组、可见光及近红外波段组、热红外波段组; 8 个数据文件对应 Landsat-7 数据的 8 个波段。
3 个头文件中,每个头文件包含 3 个 1536 字节的记录,分别是管理记录、辐射记录和几何记录,它们记录了产品标识信息、图像标识信息、辐射校正系数、地图投影、地球模型、太阳高度角和方位角等图像数据辅助信息。8 个数据文件中,每个文件仅含一个波段的数据而不含头尾记录,图像数据按行顺序排列,并以 8 bit 无符号整数表示。
3. GeoTIFF 格式
GeoTIFF 是包含地理信息的一种 TIFF 格式的文件。GeoTIFF 格式的数据由 1 个头文件及相应的数据文件组成。其头文件与 Fast - L7A 头文件相似,8 个数据文件分别对应于Landsat-7 数据的 8 个波段数据。
4. HDF 格式
HDF ( Hierarchical Data Format,层次数据格式) 是由美国伊利诺伊大学 ( the Univer-sity of Illinois) 的国家超级计算应用中心 ( The National Center for Supercomputing Applica-tions,NCSA) 于 1987 年研制开发的一种软件和函数库,它使用 C 语言和 Fortran 语言编写,是一种超文本文件格式,能够存储不同种类的科学数据,包括图像、多维数组、指针及文本数据。HDF 格式还提供命令方式,分析现存 HDF 文件的结构,并即时显示图像内容。科学家可以用这种标准数据格式快速熟悉文件结构,摆脱不同数据格式之间相互转换的繁琐,而将更多的时间和精力用于数据管理和分析。目前,在国外各种卫星传感器上,已经广泛使用了这种标准数据格式,如 Landsat-7,EOS - TERRA,EOS - AQUA 等。
在物理存储结构上,一个 HDF 文件包括一个文件头 ( File Header) ,一个或多个描述块 ( Data Descriptor Block) ,若干个数据对象 ( Data Object) 。文件头位于 HDF 文件的头四个字节,其内容为四个控制字符的 ASCII 码值,四个控制字符为 N,C,S,A,可用于判断一个文件是否为 HDF 文件格式。数据对象是 HDF 文件最基本的存储元素,包括一个描述符和一个对应的数据元素。描述符长度为 12 个字节,主要用来描述这个数据元素的数据类型、位置偏移量、数据元素字节数。在实际的 HDF 文件中,描述符并不是和它对应的数据元素连在一起,而是把相关的许多描述符放在一起而构成一个描述块,在这个块的后面顺序存储了各个描述符所对应的数据元素。数据元素是数据对象中的裸数据部分,也就是数据本身,可以是字符、整数、浮点数、数组等。
1993 年美国航空航天局 ( NASA) 把 HDF 格式作为存储和发布 EOS ( Earth Observa-tion System,对地观测系统) 数据的标准格式,此后又在 HDF 标准的基础上共同开发了一种专门化的 HDF 格式———HDF - EOS,专门用于处理各种 EOS 产品。HDF - EOS 使用标准的 HDF 数据类型定义了点、条带、网格这三种特殊数据类型,并且引入了元数据( Metadata) ,简化了空间数据的访问过程,提高了科学研究和用户对 EOS 数据的访问速度。
遥感技术被应用以来,遥感数据采用过很多格式,以 Landsat-7 卫星的数据产品为例,该数据产品由美国地球观测系统数据中心 ( EDC) 提供,按照产品处理级别可分为 三类,即 Level 0R,Level 1R 和 Level 1G。三种产品的定义如下 :
Level 0R: 未经辐射校正和系统级几何校正的数据产品。
Level 1R: 经过辐射校正但未经系统级几何校正的数据产品。
Level 1G: 经过辐射校正和系统级几何校正的数据产品。
EDC 的各类产品所采用的数据格式共有三种,分别是 HDF,Fast - L7A 和 GeoTIFF,产品类型和数据格式之间的对应关系见表 4-1。
表 4-1 Landsat-7 数据产品类型及数据格式
在遥感数据中,除图像信息以外还附带有各种注记信息。这是提供数据结构在进行数据分发时,对存储方式用注记信息的形式来说明所提供的格式。以往曾使用多种格式,但从 1982 年起逐渐以世界标准格式的形式进行分发。因为这种格式是由 Landsat TechnicalWorking Group 确定的,所以也称 LTWG 格式。世界标准格式具有超结构 ( Super Struc-ture) 的构造,在它的描述符、文件指针、文件说明符的三种记录中记有数据的记录方法。其图像数据部分为 BSQ 方式或 BIL 方式。
❹ 遥感图像的数据格式有那些
如果是原始的卫星影像,有可能是磁带存储的二进制格式,即*.bin。
如果是从地面站买到的数据,多半是Geo-Tiff的格式,即带有坐标的Tiff图。
如果是已经格式调整完成,等待分类、分析的影像,一般为*.img格式
❺ 多波段遥感数字图像的存贮与分发采用的格式有哪些
bsq,bil,bip
按波段顺序,行交叉,像素交叉
❻ 遥感图像文件格式有那几种
如果是原始的卫星影像,有可能是磁带存储的二进制格式,即*.bin。
如果是从地面站买到的数据,多半是Geo-Tiff的格式,即带有坐标的Tiff图。
如果是已经格式调整完成,等待分类、分析的影像,一般为*.img格
❼ 遥感文件类型分类
遥感数据包括很多种类,一般的最原始的数据是正射影像。一般情况下,影像都是栅格数据,比如.img格式。而带有几何、拓扑参数的数据,是矢量数据,如.shp,.e00格式的。矢量数据一般是进过处理数据,如地形图,专题地图等等。矢量和栅格的分别,可以网络一下。
另外,栅格数据显示和分析的时候,是可以多波段叠加的,如红、红外、绿的叠加,进行ndvi计算,提取植被。同样的,矢量数据分析时也可以多波段共同处理,当然单波段也是可以的。
一般情况下,由于传感器特性的不同,空间分辨率不同,我们是根据传感器数据来分类的。同时,根据处理目标地物范围,以及操作目的的不同,往往需要多个卫星的数据协同使用,这就是以地物范围来处理了。
❽ 遥感是以什么数据结构存储的
遥感图像是以栅格数据结构存储的。
❾ 遥感影像的图像格式
各波段的二维图像数据按波段顺序排列。
(((像元号顺序),行号顺序),波段顺序) 对每一行中代表一个波段的光谱值进行排列,然后按波段顺序排列该行,最后对各行进行重复。
(((像元号顺序),波段顺序),行号顺序) 在一行中,每个像元按光谱波段次序进行排列,然后对该行的全部像元进行这种波段次序排列,最后对各行进行重复。
((波段次序,像元号顺序),行号顺序)