‘壹’ 数码相机的照相原理是什么
(1)光学镜头:将景物的光汇聚,(这部分的原理是凸透镜成像原理),到达感光器件;
(2)感光器件:通常是CCD或CMOS,将景物的光信号变成电信号;
(3)微处理器:将电信号进行数字化处理(变成以像素为单元的数字信号,一个像素通常由3个或更多的字节存储),再进行一定的压缩和编码,成为不同格式的数字文件(Raw,或Jpg等);
(4)外存储器:将数字文件存储在外存储器上。
‘贰’ 手机摄像,拍照,录音的原理各是什么
这个我知道,1
一种是运用的电子传感原理,这种应用的较多;
另外一种运用的是光学原理,不过这种成本较高,一般不怎么常用。
录音
是将音频信号先转化为数字信号,然后再把这些数字记录到手机的存储器中。从本质上说已经
和记录一个电话号码没啥区别了。
‘叁’ 对着人拍照,为什么能够把人的影像留在照片上
爱尔兰位于欧洲西部,西临大西洋,东靠爱尔兰海,与英国隔海相望。因全国草地遍布,被人们美誉为“绿岛”、“绿宝石”和“翡翠岛国"。这座岛国拥有着迷人的自然美景。天气变化大。这个国家有“翡翠绿岛”可爱的别名,正如爱尔兰由绿色、白色、橙色相间的国旗一般,是个纯净美丽的国家,由于其经济发展速度之快另有“欧洲小虎”的殊荣。“大河之舞”舞出了爱尔兰民族的魂,威士忌和黑啤酒激荡着爱尔兰民族的情。
快门既然是控制曝光时间的,就是有快慢的区分。那我们就分别来认识一下高速快门和低速快门所拍的不同效果的照片。
2、取景器,可分为旁轴取景和单反取景。
旁轴取景:镜头与取景系统分离,通过机身上可透视的取景窗口进行取景,存在视差。
单反取景:单反相机的取景器是由反光镜和棱镜组成的,取景器能够把将要记录的影像近似地显示出来。
3,感光材料:前面已经提到了,就是我们通常说的胶卷或CCD、CMOS等电子感光元件,电子感光元件可直接将光学信号转换为数字电信号,实现图像的获取、存储、传输、处理和复现。
‘肆’ 数码照相机的工作原理是什么
1.胶片相机与数码相机的差异
使用传统的胶卷相机时,按下快门后,光线通过镜头和光圈落在焦点平面位置上的胶卷,胶卷的感光乳剂随之产生化学反应,将图像记录下来。
而数码相机在焦点的平面位置上的用图像传感器取代了胶卷,并通过相应的图像处理与存储部件来完成拍摄。两者最大的区别在于记录光影的方式。
传统相机使用的是模拟介质,数码相机使用的是数字介质,存储到sd卡中。
2.数码相机的工作过程
数码相机的工作过程是感光—转换—存储的过程。
打开相机的电源开关后,主控程序芯片开始检查整个相机,确定各个部分是否正常。如果一切正常,我们对准拍摄目标,并将快门按下一半时,相机内的微处理器开始工作,确定对焦距离,快门速度,光圈大小。
按下快门后,通过光学镜头的的光线聚焦在原来位于胶卷相机的影像传感器上,由影像传感器把光信号转为电信号,此时相机得到了电子图像。
但这时图像文件只是模拟信号,还不能被计算机识别,所以需通过A/D转化为数字信号。接下来微处理器对数字信号进行压缩,并转化为待定的图像格式,例如JPEG格式,raw格式。然后将图像文件存储到存储卡中。
至此一张数码照片就拍摄好了,通过相机背后的LCD屏幕,即可查看所拍摄的照片。
3.数码相机的成像过程
数码相机的成像过程主要分为如下4个步骤:
1.拍摄景物时,景物反射的光线通过数码相机的镜头透射到图像传感器上。
2.图像传感器上的光电二极管收到光线的激发而释放出电荷,生成电信号。
3.图像传感器利用感光元件中的信号控制线路对发光二极管产生的电流进行控制,由电流传输电路输出,有一次成像产生的电信号收集起来,经过放大和滤波后的电信号传送到ADC,由ADC将电信号(模拟信号)转化为数字信号,数值的大小和电信号的强度,电压的高度成正比,这些数值其实也就是图像的数据。
4.此时这些图像数据还不能直接生成图像,需要输出到数字信号处理器(DSP)中。在DSP中将会对这些图像数据进行色彩校正,白平衡处理,并将其编码为数码相机所支持的图像格式,分辨率,然后才会被存储为图像文件。
‘伍’ 手机拍照的原理是什么
手机拍照的原理是感光器件工作原理。
它使用一种高感光度的半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,数字信号经过压缩以后由相机内部的闪速存储器或内置硬盘卡保存,因而可以轻而易举地把数据传输给计算机,并借助于计算机的处理手段,根据需要和想象来修改图像。
CCD由许多感光单位组成,通常以百万像素为单位。当CCD表面受到光线照射时,每个感光单位会将电荷反映在组件上,所有的感光单位所产生的信号加在一起,就构成了一幅完整的画面。
‘陆’ 单反相机的储存原理是什么
数码单反相机记录数据的流程分为3个阶段。透过镜头的光线照射在图像感应器上,转换成电子信号。然后由数字影像处理器进行多种图像处理,完成信号的数据化并传输至存储卡保存。到数字影像处理器为止的阶段用于完成成像,存储卡仅起到储存数据的作用。
‘柒’ 我们用相机拍照是根据什么原理在电影院看电影又是根据什么原理
照相机的工作过程,概略地说是应用光学成像原理,通过照相镜头将被摄物体成像在感光材料上。下面将粗略地介绍摄影光学成像原理:人类对于光的本性的认识,光线的传播及透镜成像原理。
人类对于光的本性的认识经历了漫长而又曲折的过程。在整个18世纪中,光的微粒流理论在光学中仍占优势,人们普遍认为光是微小的粒子组成的,从点光源发出并以直线向四面八方辐射。19世纪初,以杨氏(Young)和菲涅耳(Fresnel)的着作为代表逐步发展成今天的波动光学体系。如今对光的本性认识是:光和实物一样,是物质的一种,它同时具有波的性质和微粒(量子)的性质,但从整体来说,它既不是波,也不是微粒,也不是它们的混合物。
电影是人类史上的重要发明,它借助了照相化学、光学、机械学、电子学等多门学科的知识和原理。
电影最重要的原理是“视觉暂留”。科学实验证明,人眼在某个视像消失后,仍可使该物像在视网膜上滞留0.1-0.4秒左右。电影胶片以每秒24格画面匀速转动,一系列静态画面就会因视觉暂留作用而造成一种连续的视觉印象,产生逼真的动感。 电影是人类史上的重要发明,它借助了照相化学、光学、机械学、电子学等多门学科的知识和原理。 电影最重要的原理是“视觉暂留”。科学实验证明,人眼在某个视像消失后,仍可使该物像在视网膜上滞留0.1-0.4秒左右。电影胶片以每秒24格画面匀速转动,一系列静态画面就会因视觉暂留作用而造成一种连续的视觉印象,产生逼真的动感。 电影是人类史上的重要发明,它借助了照相化学、光学、机械学、电子学等多门学科的知识和原理。 电影最重要的原理是“视觉暂留”。科学实验证明,人眼在某个视像消失后,仍可使该物像在视网膜上滞留0.1-0.4秒左右。电影胶片以每秒24格画面匀速转动,一系列静态画面就会因视觉暂留作用而造成一种连续的视觉印象,产生逼真的动感。
1895年,法国的奥古斯特·卢米埃尔和路易·卢米埃尔兄弟在爱迪生的“电影视镜”和他们自己研制的“连续摄影机”的基础上,研制成功了“活动电影机”。
他们的电影机由一个暗箱组成,里面装有35毫米凿孔胶片间歇运动的牵引机构和遮光旋转机构,并装有一个摄影镜头和放映镜头。
装上摄影镜头时,可以以每秒12幅的频率摄影,获得负片。取下摄影镜头,将曝光后的负片与另一条未曝光的胶卷贴在一起曝光后转成正片。
放映时,正片装入机内。点燃灯泡后,光束穿过胶片和镜头,静止的画面以极短的间隔次高速地通过片窗,使影像在观看者的视网膜上暂留,观众便可看到一组活动的画面。
不过现在国内也有了数字影院
数字电影节目的发行不再需要洗印大量的胶片
它是存储在计算机/服务器中,由其"作为"数字放映机播放影片
有数字传输技术的保障,使整部电影在传输过程中不会出现质量损失,从而使观众可以与影片的导演看到"相同"的电影。也就是说,一旦数字电影信号发出,无论多少家数字影院,也不管它位于地球的什么位置,都可以同时映出同一个节目。同时数字放映设备还可以为影院提供增值服务,如实时播放重大体育比赛、文艺演出、远程教育等等,改变了影院胶片放映的单一模式
比如上海的IMAX立体巨幕影院
上海科技馆立体巨幕影院是目前世界上最先进的影院之一,也是全中国最大的立体巨幕影院。
立体巨幕影院银幕巨大,它高18.3米,宽24.3米(相当于6层楼房的高度),可容纳观众441位。立体巨幕影院的放映设备采用当今世界上技术含量最高、画格最大的70毫米15齿孔IMAX双机放映系统。放映立体电影时,2台放映机同步放出映像,当观众戴上特制的立体眼镜时,映像通过光的偏振原理,使画面产生强烈的立体效果,犹如景物就在眼前,有伸手可触的感觉。6层楼高的巨大画面和6+1声道的音响系统,使观众产生强烈的震撼。
‘捌’ 手机拍照的原理
数码相机功能
手机的数码相机功能指的是手机是否可以通过内置或是外接的数码相机进行拍摄静态图片或短片拍摄,作为手机的一项新的附加功能,手机的数码相机功能得到了迅速的发展。
外置数码相机型号
外置数码相机型号即手机通过数据线与数码相机相连,来完成数码相机的一切拍摄功能。外置数码相机的优点在于可以减轻手机的重量,而且外置数码相机重量轻,携带方便,使用方法简单。
数码相机感光元件
作为手机新型的拍摄功能,内置的数码相机功能与我们平时所见到的低端的(10万--130万像素)数码相机相同。与传统相机相比,传统相机使用“胶卷”作为其记录信息的载体,而数码相机的“胶卷”就是其成像感光器件,而且是与相机一体的,是数码相机的心脏。感光器是数码相机的核心,也是最关键的技术。目前数码相机的核心成像部件有两种:一种是广泛使用的CCD(电荷藕合)元件;另一种是CMOS(互补金属氧化物导体)器件。由于手机中的拍照功能是新兴起的,所以目前用于手机中数码相机的感光元件基本上都是CMOS的。
感光器件工作原理
电荷藕合器件图像传感器CCD(Charge Coupled Device),它使用一种高感光度的半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,数字信号经过压缩以后由相机内部的闪速存储器或内置硬盘卡保存,因而可以轻而易举地把数据传输给计算机,并借助于计算机的处理手段,根据需要和想象来修改图像。CCD由许多感光单位组成,通常以百万像素为单位。当CCD表面受到光线照射时,每个感光单位会将电荷反映在组件上,所有的感光单位所产生的信号加在一起,就构成了一幅完整的画面。
CCD和传统底片相比,CCD 更接近于人眼对视觉的工作方式。只不过,人眼的视网膜是由负责光强度感应的杆细胞和色彩感应的锥细胞,分工合作组成视觉感应。 CCD经过长达35年的发展,大致的形状和运作方式都已经定型。CCD 的组成主要是由一个类似马赛克的网格、聚光镜片以及垫于最底下的电子线路矩阵所组成。目前有能力生产 CCD 的公司分别为:SONY、Philips、Kodak、Matsushita、Fuji和Sharp,大半是日本厂商。
互补性氧化金属半导体CMOS(Complementary Metal-Oxide Semiconctor)和CCD一样同为在数码相机中可记录光线变化的半导体。CMOS的制造技术和一般计算机芯片没什么差别,主要是利用硅和锗这两种元素所做成的半导体,使其在CMOS上共存着带N(带–电) 和 P(带+电)级的半导体,这两个互补效应所产生的电流即可被处理芯片纪录和解读成影像。然而,CMOS的缺点就是太容易出现杂点, 这主要是因为早期的设计使CMOS在处理快速变化的影像时,由于电流变化过于频繁而会产生过热的现象。
感光器件的发展
CCD是1969年由美国的贝尔研究室所开发出来的。进入80年代,CCD影像传感器虽然有缺陷,由于不断的研究终于克服了困难,而于80年代后半期制造出高分辨率且高品质的CCD。到了90年代制造出百万像素之高分辨率CCD,此时CCD的发展更是突飞猛进,算一算CCD 发展至今也有二十多个年头了。进入90年代中期后,CCD技术得到了迅猛发展,同时,CCD的单位面积也越来越小。但为了在CCD面积减小的同时提高图像的成像质量,SONY与1989年开发出了SUPER HAD CCD,这种新的感光器件是在CCD面积减小的情况下,依靠CCD组件内部放大器的放大倍率提升成像质量。以后相继出现了NEW STRUCTURE CCD、EXVIEW HAD CCD、四色滤光技术(专为SONY F828所应用)。而富士数码相机则采用了超级CCD(Super CCD)、Super CCD SR。
对于CMOS来说,具有便于大规模生产,且速度快、成本较低,将是数字相机关键器件的发展方向。目前,在CANON等公司的不断努力下,新的CMOS器件不断推陈出新,高动态范围CMOS器件已经出现,这一技术消除了对快门、光圈、自动增益控制及伽玛校正的需要,使之接近了CCD的成像质量。另外由于CMOS先天的可塑性,可以做出高像素的大型CMOS感光器而成本却不上升多少。相对于CCD的停滞不前相比,CMOS作为新生事物而展示出了蓬勃的活力。作为数码相机的核心部件,CMOS感光器以已经有逐渐取代CCD感光器的趋势,并有希望在不久的将来成为主流的感光器。
影像感光器件因素
对于数码相机来说,影像感光器件成像的因素主要有两个方面:一是感光器件的面积;二是感光器件的色彩深度。
感光器件面积越大,成像较大,相同条件下,能记录更多的图像细节,各像素间的干扰也小,成像质量越好。但随着数码相机向时尚小巧化的方向发展,感光器件的面积也只能是越来越小。
除了面积之外,感光器件还有一个重要指标,就是色彩深度,也就是色彩位,就是用多少位的二进制数字来记录三种原色。非专业型数码相机的感光器件一般是24位的,高档点的采样时是30位,而记录时仍然是24位,专业型数码相机的成像器件至少是36位的,据说已经有了48位的CCD。对于24位的器件而言,感光单元能记录的光亮度值最多有2^8=256级,每一种原色用一个8位的二进制数字来表示,最多能记录的色彩是256x256x256约16,77万种。对于36位的器件而言,感光单元能记录的光亮度值最多有2^12=4096级,每一种原色用一个12位的二进制数字来表示,最多能记录的色彩是4096x4096x4096约68.7亿种。举例来说,如果某一被摄体,最亮部位的亮度是最暗部位亮度的400倍,用使用24位感光器件的数码相机来拍摄的话,如果按低光部位曝光,则凡是亮度高于256倍的部位,均曝光过度,层次损失,形成亮斑,如果按高光部位来曝光,则某一亮度以下的部位全部曝光不足,如果用使用了36位感光器件的专业数码相机,就不会有这样的问题。
连拍功能
连拍功能英文学名为continuous shooting,是通过节约数据传输时间来捕捉摄影时机。连拍模式通过将数据装入数码相机内部的高速存储器(高速缓存),而不是向存储卡传输数据,可以在短时间内连续拍摄多张照片。由于数码相机拍摄要经过光电转换,a/d转换及媒体记录等过程,其中无论转换还是记录都需要花费时间,特别是记录花费时间较多。因此,所有数码相机的连拍速度都不很快。
连拍一般以帧为计算单位,好像电影胶卷一样,每一帧代表一个画面,每秒能捕捉的帧数越多,连拍功能越快。目前,数码相机中最快的连拍速度为7帧/秒,而且连拍3秒钟后必须再过几秒才能继续拍摄。当然,连拍速度对于摄影记者和体育摄影受好者是必须注意的指标,而普通摄影场合可以不必考虑。一般情况下,连拍捕捉的照片,分辨率和质量都会有所减少。有些数码相机在连拍功能上可以选择,拍摄分辨率较小的照片,连拍速度可以加快,反之,分辨率 大的照片的连拍速度会相对减缓。
通过连续快拍模式,只须轻按按钮,即可连续拍摄,将连续动作生动地记录下来。
短片拍摄功能
短片拍摄功能即数码相机具备拍摄视频文件的功能。有别于DV(数码摄像机),数码相机只可以把视频文件存放在记忆卡里面,由于记忆体的空间有限,所以视频文件的质量跟大小都比较差。
集中用于数码相机拍摄短片的文件多为AVI,有少数的照相机可以MPEG4来储存视频文件。以AVI格式记录的视频文件分辨率为320 x 240,每秒16帧的速度记录图片,这样的视频文件非常大,10分钟就可以消耗2G的空间。另一种是MPEG4格式的视频文件,以分辨率为320x 240,每秒16帧的速度记录,以这种格式记录视频,体积较小。因为画质高,占容量少,MPEG4的记录模式已经在多款数码相机上使用。
索尼推出的数码相机,可以分辨率为640 x 480,每秒16帧的速度记录短片,在分辨率上已经接近DV短片的720 x 576 (PAL制),但在记录速度上,还是有所不及DV的25帧每秒。而另一种记录格式是以160 x 112的分辨率,每秒30帧的速度记录短片,在记录速度上超过了DV带,而分辨率上有所差距。
一些数码相机在拍摄短片的时候,可以通过自带的麦克风进行现场录音。大部分的其它功能,例如变焦、白平衡调节等,在拍摄短片的时候都不可以使用。
白平衡调节
白平衡英文名称为White Balance。物体颜色会因投射光线颜色产生改变,在不同光线的场合下拍摄出的照片会有不同的色温。例如以钨丝灯(电灯泡)照明的环境拍出的照片可能偏黄,一般来说,CCD没有办法像人眼一样会自动修正光线的改变。下面一些图片,就显示了在不同颜色光线下的不同图象。
此图为原色图
此图为在正常光源下使用白平衡的图片
第一幅图片采用自然光,强加白平衡后,图像偏蓝。若在灯光底下用白平衡,图片的色调就会恢复到原色状态,白平衡会按目前画像中图像特质,立即调整整个图像红绿蓝三色的强度,以修正外部光线所造成的误差。有些相机除了设计自动白平衡或特定色温白平衡功能外,也提供手动白平衡调整。
平衡就是无论环境光线如何,让数码相机默认“白色”,就是让他能认出白色,而平衡其他颜色在有色光线下的色调。颜色实质上就是对光线的解释,在正常光线下看起来是白颜色的东西在较暗的光线下看起来可能就不是白色,还有荧光灯下的"白"也是"非白"。对于这一切如果能调整白平衡,则在所得到的照片中就能正确地以"白"为基色来还原其他颜色。现在大多数的商用级数码相机均提供白平衡调节功能。正如前面提到的白平衡与周围光线密切相关,因而,启动白平衡功能时闪光灯的使用就要受到限制,否则环境光的变化会使得白平衡失效或干扰正常的白平衡。一般白平衡有多种模式,适应不同的场景拍摄,如:自动白平衡、钨光白平衡、荧光白平衡、室内白平衡、手动调节。
自动白平衡
自动白平衡通常为数码相机的默认设置,相机中有一结构复杂的矩形图,它可决定画面中的白平衡基准点,以此来达到白平衡调校。这种自动白平衡的准确率是非常高的,但是在光线下拍摄时,效果较差,而在多云天气下,许多自动白平衡系统的效果极差,它可能会导致偏蓝。
钨光白平衡
钨光白平衡也称为“白炽光”或者“室内光”。设置一般用于由灯泡照明的环境中(如家中)当相机的白平衡系统知道将不用闪光灯在这种环境中拍摄时,它就会开始决定白平衡的位置,不使用闪光灯在室内拍照时,一定要使用这个设置。
荧光白平衡
适合在荧光灯下作白平衡调节,因为荧光的类型有很多种,如冷白和暖白,因而有些相机不只一种荧光白平衡调节。各个地方使用的荧光灯不同,因而“荧光”设置也不一样,摄影师必须确定照明是哪种“荧光”,使相机进行效果最佳的白平衡设置。在所有的设置当中,“荧光”设置是最难决定的,例如有一些办公室和学校里使用多种荧光类型的组合,这里的“荧光”设置就非常难以处理了,最好的办法就是“试拍”了。
室内白平衡
室内白平衡或称为多云、阴天白平衡,适合把昏暗处的光线调置原色状态。并不是所有的数码相机都有这种白平衡设置,一般来说,白平衡系统在室外情况时处于最优状态,无需这些设置。但有些制造商在相机上添加了这些特别的白平衡设置,这些白平衡的使用依相机的不同而不同。
手动调节
这种白平衡在不同地方有各不相同的名称,它们描述的是某些普通灯光情况下的白平衡设置。一般来说,用户需要给相机指出白平衡的基准点,即在画面中哪一个“白色”物体作为白点。但问题是什么是“白色”,譬如不同的白纸会有不同的白色,有些白纸可能稍微偏黄些,有些白纸可能稍稍偏白,而且光线会影响我们对“白色”色感,那么怎样确定“真正的白色”?解决这种问题的一种方法是随身携带一张标准的白色的纸,拍摄时拿出来比较一下被摄体就行了。这个方法的效果非常好,那么在室内拍摄中很难决定此种设置时,不妨根据“参照”白纸设置白平衡。在没有白纸的时候,让相机对准眼球认为是白色的物体进行调节。
闪光灯
闪光灯的英文学名为Flash Light。闪光灯也是加强曝光量的方式之一,尤其在昏暗的地方,打闪光灯有助于让景物更明亮。使用闪光灯也会出现弊端,例如在拍人物时,闪光灯的光线可能会在眼睛的瞳孔发生残留的现象,进而发生“红眼”的情形,因此许多相机商都将"消除红眼"这项功能加入设计,在闪光灯开启前先打出微弱光让瞳孔适应,然后再执行真正的闪光,避免红眼发生。中低档数码相机一般都具备三种闪光灯模式,即自动闪光、消除红眼与关闭闪光灯。再高级一点的产品还提供“强制闪光”,甚至“慢速闪光”功能。
自动闪光
通常传统胶卷相机与数码相机在不作任何设定变动的时候,闪光灯模式都预设在“自动闪光”模式下。此时,相机会自动判断拍摄场景的光线是否充足。如果不足,就会自动在拍摄时打开闪光灯进行闪光,以弥补光线。我们大部分的拍摄情况下,“自动闪光”模式都足以应付。
防红眼
防红眼英文学名为Redeye rection,在数码相机上的标志一般为一只“眼睛”。“红眼”现象在拍摄人像照片(尤其是比较近的距离、环境较阴暗)时常会发生。这是由于眼睛视网膜反射闪光而引起的。如果你不想让拍摄出来的人或动物的眼睛出现“红眼”,可以利用数码相机的“消除红眼”模式先让闪光灯快速闪烁一次或数次,使人的瞳孔适应之后,再进行主要的闪光与拍摄。以下为开不开防红眼和开防红眼两种模式下拍出来的不同图片。
强制不闪光
强迫数码相机关闭闪光灯。不管拍摄环境的光线条件如何,都不准闪光。此功能最适宜于禁止使用闪光灯的地方进行拍摄。
强制闪光
不管在明亮或弱光的环境中,都开启闪光灯进行闪光。通常用在对背对光源的人物进行拍摄,可以增强人物的亮度,但是容易造成噪点增加和曝光过度。
慢速同步
不管在明亮或弱光的环境中,都开启闪光灯进行闪光。通常用在对背对光源的人物进行拍摄,可以增强人物的亮度,但是容易造成噪点增加和曝光过度。在光线昏暗的环境下拍照时,如果使用闪光灯加较高的快门速度进行拍摄,很容易造成前景主体太亮,甚至是白晃晃的一片,而背景却依旧灰暗,无法辨别细节。而“慢速闪光同步”会延迟数码相机的快门释放速度,以闪光灯照明前景,配合慢速快门(如1/5秒)为弱光背景曝光。这样,就能够拍摄出前后景均得到和谐曝光的照片。
前/后帘同步闪光
在弱光的情况下,快门速度比较慢,而前/后帘同步闪光,基本上不会提高快门速度。比如正常测光,最大光圈的时候,快门速度是1秒。开启前三种闪光模式后,快门速度能提高到1/90秒。而前帘同步闪光,在快门开启的同时闪光1/90秒,然后继续曝光到1秒或1/2秒。后帘同步闪光和前帘同步闪光相反,快门开启后,直到快门关闭的最后,才开始闪光。
使用后帘同步闪光,手动设置最小光圈F8,快门2秒。前后景都能照顾到了。
‘玖’ 摄像头存储原理
你好:
——★1、商店,超市,单位里安装的摄像头,属于监控摄像头,录像数据通过视频采集卡输入到计算机,存储在硬盘上的。受硬盘容量限制,采取了两个措施:①、使用压缩软件进行录制;②、根据硬盘容量,设置视频数据的保存日期,循坏录制(大容量硬盘可以保存数月之久)。
——★2、摄像头有两种结构,即单方向的固定摄像头,以及带旋转云台的、可调节焦距的摄像头(也称作监控摄像机)。两种结构的摄像头,本身都不带存储装置,是依赖计算机的存储设备记录数据的(摄像头都挂在高处,假如本身带存储卡等设备,观看也不方便,需要爬上爬下......所以都需要计算机管理、存储数据的)。
——★3、 “如果电脑关着,摄像头亮着 ,摄像头是在监控状态吗” ......摄像头是视频采集设备,电脑是数据管理和录制设备。摄像头(指示灯)亮着,会采集视频数据的,但如果电脑是关机状态,采集的监控数据就不会被记录。
——★4、需要注意的是,监控摄像头是由计算机管理的,包括摄像头的供电管理。一般情况下,如果不是刻意关掉电脑,监控摄像头和电脑基本上是同步工作的。
——★5、即使使用一个摄像头,也需要电脑(硬盘)记录监控数据的,没有电脑(硬盘)做记录,摄像头是不能记录监控录像的,没有电脑,也看不到影像。
‘拾’ 数码相机图形存储卡的基本工作原理
数码相机中的工作原理如下:当按下快门时,镜头将光线会聚到感光器件CCD(电荷耦合器件)上, CCD是半导体器件,它代替了普通相机中胶卷的位置,它的功能是把光信号转变为电信号。这样,我们就得到了对应于拍摄景物的电子图像,但是它还不能马上被送去计算机处理,还需要按照计算机的要求进行从模拟信号到数字信号的转换,ADC(模数转换器)器件用来执行这项工作。接下来MPU(微处理器)对数字信号进行压缩并转化为特定的图像格式,例如JPEG格式。最后,图像文件被存储在内置存储器中。至此,数码相机的主要工作已经完成,剩下要做的是通过LCD(液晶显示器)查看拍摄到的照片。