這裡蒐索程式師資訊,查找有用的技術資料
当前位置:首页 » 服务存储 » 示波器实时存储
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

示波器实时存储

发布时间: 2022-04-16 05:59:52

A. 示波器原理与使用

示波器是一种用途十分广泛的电子测量仪器,它能把肉眼看不见的电信号变换成看得见的图像。 示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点。在被测信号的作用下,电子束在屏面上描绘出被测信号的瞬时值的变化曲线。

基本作用
用来测量交流电或脉冲电流波的形状的仪器,由电子管放大器、扫描振荡器、阴极射线管等组成。除观测电流的波形外,还可以测定频率、电压强度等。凡可以变为电效应的周期性物理过程都可以用示波器进行观测

基本原理
波形显示
由示波管的原理可知,一个直流电压加到一对偏转板上时,将使光点在荧光屏上产生一个固定位移,该位移的大小与所加直流电压成正比。如果分别将两个直流电压同时加到垂直和水平两对偏转板上,则荧光屏上的光点位置就由两个方向的位移所共同决定。

如果将一个正弦交流电压加到一对偏转板上时,光点在荧光屏上将随电压的变化而移动。当垂直偏转板上加一个正弦交流电压时,在时间t=0的瞬间,电压为Vo(零值),荧光屏上的光点位置在坐标原点0上,在时间t=1的瞬间,电压为V1(正值),荧光屏上光点在坐标原点0点上方的1上,位移的大小正比于电压V1;在时间t=2的瞬间,电压为V2(最大正值),荧光屏上的光点在坐标原点0点上方的2点上,位移的距离正比于电压V2;以此类推,在时间t=3,t=4,…,t=8的各个瞬间,荧光屏上光点位置分别为3、4、…、8点。在交流电压的第二个周期、第三个周期……都将重复第一个周期的情况。如果此时加在垂直偏转板上的正弦交流电压之频率很低,仅为lHz~2Hz,那么,在荧光屏上便会看见一个上下移动着的光点。这光点距离坐标原点的瞬时偏转值将与加在垂直偏转板上的电压瞬时值成正比。如果加在垂直偏转板上的交流电压频率在10Hz~20Hz以上,则由于荧光屏的余辉现象和人眼的视觉暂留现象,在荧光屏上看到的就不是一个上下移动的点,而是一根垂直的亮线了。该亮线的长短在示波器的垂直放大增益一定的情况下决定于正弦交流电压峰一峰值的大小。如果在水平偏转板上加一个正弦交流电压,则会产生相类似的情况,只是光点在水平轴上移动罢了。

如果将一随时间线性变化的电压(如锯齿波电压)加到一对偏转板上,则光点在荧光屏上又会怎样移动呢?当水平偏转板上有锯齿波电压时,在时间t=0瞬间,电压为Vo(最大负值),荧光屏上光点在坐标原点左侧的起始位置(零点上),位移的距离正比于电压Vo;在时间t=1的瞬间,电压为V1(负值),荧光屏上光点在坐标原点左方的1点上,位移的距离正比于电压V1;以此类推,在时间t=2,t=3,...,t=8的各个瞬间,荧光屏上光点的对应位置是2、3、…、8各点。在t=8这个瞬间,锯齿波电压由最大正值V8跃变到最大负值Vo,则荧光屏上光点从8点极其迅速地向左移到起始位置零点。如果锯齿波电压是周期性的,则在锯齿波电压的第二个周期、第三个周期、……都将重复第一个周期的情形。如果此时加在水平偏转板上的锯齿波电压频率很低,仅为1Hz ~2Hz,在荧光屏上便会看见光点自左边起始位置零点向右边8点处匀速地移动,随后光点又从右边8点处极其迅速地移动到左边起始位置零点。上述这个过程称为扫描。在水平轴加有周期性锯齿波电压时,扫描将周而复始地进行下去。光点距离起始位置零点的瞬时值,将与加在偏转板上的电压瞬时值成正比。如果加在偏转板上的锯齿波电压频率在10Hz~20Hz以上,则由于荧光屏的余辉现象和人眼的视觉暂留现象,就看到一根水平亮线,该水平亮线的长度,在示波器水平放大增益一定的情况下决定于锯齿波电压值,锯齿波电压值是与时间变化成正比的,而荧光屏上光点的位移又是与电压值成正比的,因此荧光屏上的水平亮线可以代表时间轴。在此亮线上的任何相等的线段都代表相等的一段时间。

如果将被测信号电压加到垂直偏转板上,锯齿波扫描电压加到水平偏转板上,而且被测信号电压的频率等于锯齿波扫描电压的频率,则荧光屏上将显示出一个周期的被测信号电压随时间变化的波形曲线(如图5-6所示)。由图5-6所示可见,在时间t=0的瞬间,信号电压为Vo(零值),锯齿波电压为V0′(负值),荧光屏上光点在坐标原点左面,位移的距离正比于电压V0′;在时间t=1的瞬间,交流电压为V1(正值),锯齿波电压为V1′(负值),荧光屏上光点在坐标的第Ⅱ象限中。同理,在时间t=2,t=3,…,t=8的瞬间,荧光屏上光点分别位于2,3,…,8点。在t=8瞬间,锯齿波电压由最大正值V8′跳变到最大负V0′,因而荧光屏上的光点也从8点极其迅速地向左移到起始位置0点。以后,在被测周期信号的第二个周期、第三个周期……都重复第一个周期的情形,光点在荧光屏上描出的轨迹也都重叠在第一次描出的轨迹上。所以,荧光屏上显示出来的被测信号电压是随时间变化的稳定波形曲线。

由上述可见,为使荧光屏上的图形稳定,被测信号电压的频率应与锯齿波电压的频率保持整数比的关

SHS1000
系,即同步关系。为了实现这一点,就要求锯齿波电压的频率连续可调,以便适应观察各种不同频率的周期信号。其次,由于被测信号频率和锯齿波振荡信号频率的相对不稳定性,即使把锯齿波电压的频率临时调到与被测信号频率成整倍数关系,也不能使图形一直保持稳定。因此,示波器中都设有同步装置。也就是在锯齿波电路的某部分加上一个同步信号来促使扫描的同步,对于只能产生连续扫描(即产生周而复始连续不断的锯齿波)一种状态的简易示波器(如国产SB-10型示波器等)而言,需要在其扫描电路上输入一个与被观察信号频率相关的同步信号,当所加同步信号的频率接近锯齿波频率的自主振荡频率(或接近其整数倍)时,就可以把锯齿波频率“拖入同步”或“锁住”。对于具有等待扫描(即平时不产生锯齿波,当被测信号来到时才产生一个锯齿波进行一次扫描)功能的示波器(如国产ST-16型示波器、SBT-5型同步示波器、SR-8型双踪示波器等等)而言,需要在其扫描电路上输入一个与被测信号相关的触发信号,使扫描过程与被测信号密切配合。这样,只要按照需要来选择适当的同步信号或触发信号,便可使任何欲研究的过程与锯齿波扫描频率保持同步。

双线示波
在电子实践技术过程中,常常需要同时观察两种(或两种以上)信号随时间变化的过程。并对这些不同信号进行电量的测试和比较。为了达到这个目的,人们在应用普通示波器原理的基础上,采用了以下两种同时显示多个波形的方法:一种是双线(或多线)示波法;另一种是双踪(或多踪)示波法。应用这两种方法制造出来的示波器分别称为双线(或多线)示波器和双踪(或多踪)示波器。

双线(或多线)示波器是采用双枪(或多枪)示波管来实现的。下面以双枪示波管为例加以简单说明。双枪示波管有两个互相独立的电子枪产生两束电子。另有两组互相独立的偏转系统,它们各自控制一束电子作上下、左右的运动。荧光屏是共用的,因而屏上可以同时显示出两种不同的电信号波形,双线示波也可以采用单枪双线示波管来实现。这种示波管只有一个电子枪,在工作时是依靠特殊的电极把电子分成两束。然后,由管内的两组互相独立的偏转系统,分别控制两束电子上下、左右运动。荧光屏是共用的,能同时显示出两种不同的电信号波形。由于双线示波管的制造工艺要求高,成本也高,所以应用并不十分普遍。

双踪示波
双踪(或多踪)示波是在单线示波器的基础上,增设一个专用电子开关,用它来实现两种(或多种)波形的分别显示。由于实现双踪(或多踪)示波比实现双线(或多线)示波来得简单,不需要使用结构复杂、价格昂贵的“双腔”或“多腔”示波管,所以双踪(或多踪)示波获得了普遍的应用。

B. 示波器数据存储到u盘

示波器的数据都是电路中电压,电流的实时情况,是在示波器上实时显示出来的,以便判断电路是否运行正常的判断手段。这些数据需要示波器有U盘存储功能,才能把这些数据存储到U盘。也可以把示波器的显示波形拍成照片或视频,保存到U盘。

C. 示波器的存储深度大有什么好处

存储深度等于采样率*采样时间
1.在存储深度一定的情况下,存储速度越快,存储时间就越短,他们之间是一个反比关系。
2.提高示波器的存储深度可以间接提高示波器的采样率:当要测量较长时间的波形时,由于存储深度是固定的,所以只能降低采样率来达到,但这样势必造成波形质量的下降;如果增大存储深度,则可以以更高的采样率来测量,以获取不失真的波形。

D. 示波器 如何自动存储数据

示波器的分段存储功能可以解决你的问题:

分段存储其实就是让示波器只记录我们想要的片段,从而可以更高效地利用示波器的存储深度且保证波形细节。在足够的采样率下捕获多个波形事件,以便进行有效的分析。分段存储还可以帮助测试者捕获偶发信号和更优化地保存和显示所需的数据。

我们来看看如何设置分段存储以记录上图中I2C总线信号的有用片段,以及如何用分段存储来捕获偶发信号和更优化地保存所需的数据。

首先,我们调整示波器的时基,设置好触发方式,使得有用信息部分占满整个示波器屏幕,如下图所示,可见此时的采样率为1GSa/s

E. 示波器大存储深度有什么优势

一个公式可以说明,采样率 = 存储深度÷ 波形记录时长

存储深度和波形记录时长都是随设置固定的,而采样率会因此发生变化,采样率太低信号就有可能失真。所以大存储的优势就是记录长时间波形的时候依然可以保持高采样率,从而保证波形不失真。

举个例子来说明吧:

有位深圳福田华强北的工程师是专门研发生产屏幕的,需要用示波器测量出苹果平板电脑 ipad 给屏幕上电时的一串脉冲信号,示波器捕捉下来后,他就可以对照着模拟出这段信号。但是这位朋友测了好几次都不成功,或者对捕捉到的信号不满意

F. 示波器如何保存波形数据,保存下来的怎么看

有一篇文章专门讲解这个的:了解示波器的多种文件存储方式WAV:数据文件保存的第一种方式,将屏幕上显示的波形数据进行抽样后保存为二进制文件,以WAV格式保存到本地或者外部存储器中,可在本机调用打开查看、缩放等。CSV:数据文件保存的第二种方式,它会保存示波器当前通道的波形数据,以CSV格式存到示波器内部存储或外部存储器U盘中,是一种逗号分隔值文件格式,其文件以纯文本形式存储表格数据,它会将需要的二进制数据转换成ASCII码,以ASCII码数据进行保存,可用Excel、Access或者文本文件打开,本机不可调用。下图是用Excel打开一CSV文件后的界面,下部分是以E、F两项为坐标合成的折线图:由于保存时间的原因,以WAV和CSV保存的数据文件也是经过取样的(下图中有87500个数据点坐标),在保证可以看到信号大部分信息的同时,又将数据保存的时间控制在2秒以内.那么对于个别需要将一屏28M的波形数据完整保存下来的用户,面对这几千万的庞大数据量,难道真的要等示波器存储几个小时吗?不用着急,TO1000系列平板示波器为这种需求提供第三种保存方式:BIN具体操作流程如下图所示,前后的操作不到60S的时间,即可获得这几千万的庞大数据量。Data2csv.exe小工具下载地址:

G. 数字存储示波器与模拟示波器相比有哪些优点有何实际应用

摘要 您好,数字存储示波器便携能存储,能方便读数,方便计算,可以与计算机通讯,方便分析,缺点是运算需要时间;模拟示波器的优点是实时,反应快于数字。

H. 数字存储示波器的工作原理是怎样的

数字存储示波器的工作原理:输入的电压信号经耦合电路后送至前端放大器,前端放大器将信号放大,以提高示波器的灵敏度和动态范围。放大器输出的信号由取样/保持电路进行取样,并由A/D转换器数字化,经过A/D转换后,信号变成了数字形式存入存储器中,微处理器对存储器中的数字化信号波形进行相应的处理,并显示在显示屏上。
数字示波器是数据采集,A/D转换,软件编程等一系列的技术制造出来的高性能示波器。数字示波器一般支持多级菜单,能提供给用户多种选择,多种分析功能。还有一些示波器可以提供存储,实现对波形的保存和处理。 目前高端数字示波器主要依靠美国技术,对于300MHz带宽之内的示波器,目前国内品牌的示波器在性能上已经可以和国外品牌抗衡,且具有明显的性价比优势。

I. 示波器的存储深度大简单来说有什么好处

存储深度的理论可能说了以后还有点迷惑,直接给个实例:

有位深圳福田华强北的工程师是专门研发生产屏幕的,需要用示波器测量出苹果平板电脑 ipad 给屏幕上电时的一串脉冲信号,示波器捕捉下来后,他就可以对照着模拟出这段信号。但是这位朋友测了好几次都不成功,或者对捕捉到的信号不满意

J. 示波器如何保存波形

只要选择存储格式为二进制格式,即可对波形进行保存。需要注意的是保存路径和U盘大小。如果需要重新导入波形文件,只需要选择导入即可。