① 硬盘raid功能是什么意思,有何作用
通过raid 技术可以扩展硬盘容量和提高硬盘数据可靠性 raid分为raid0 1 2 3 4 5 RAID 0: 这是最简单的RAID模式,它仅仅有延展功能而没有数据冗余功能,所以不适于数据稳定性敏感的应用。在各个单一RAID形式中它提供了最快的性能,也是造价最低的——只要两块硬盘、一个RAID控制器,不需要额外存储设备就可以了。不会因为要在硬盘上存储同样的数据而浪费空间。RAID0因为其相对低廉的造价和明显的性能提升在主流市场上已经流行起来。以前多是SCSI接口,对于个人用户价格仍然不菲,不过随着近来价格更低廉的IDE/ATA解决方案的实现,已经为很多个人用户应用了。其实RAID 0(也就是延展技术)其实是通过RAID控制器把多个硬盘当成一个容量更大、速度更快的硬盘来使用,所以最后要声明的是任何一个硬盘出问题都可能造成整个阵列的数据丢失。 RAID 1: RAID 1其实就是镜像技术的实现。简单工作原理就是把相同的数据备份存放在两个驱动器,当一个驱动器出现故障,另一个仍然可以维持系统的正常运转。当然恢复故障驱动器也是非常简单的,只要把数据完好的备份拷贝到正常的硬盘上就可以了。数据冗余的换来的是数据的安全。有的RAID 1通过增加一个RAID控制器来提高容错能力。所以对于关键数据来将,这将是最好的选择。不过RAID 1对于系统的性能提高很小。它的相对低廉的价格和易用的特点使它已经成为RAID控制器的主流之一。 RAID 2: 利用汉明校验码(Hamming code ECC.)实现字节层延展技术。这个技术类似于奇偶校验但是并不完全相同。数据以字节为单位被分割并存储在硬盘以及ECC盘上——每当在阵列上写入数据,利用汉明校验规则生成的汉明码就写在了ECC盘,当从阵列中读取数据的时候,汉明码就被用来检验数据写入阵列之后是否被更改过。单字节的错误也能被简测出来并且立即修正过来。不过这种模式所需的RAID控制器价格昂贵,所以至今这种应用几乎没有。 RAID 3: 利用专门奇偶校验实现的字节层延展技术。换句话说,就是应用延展技术将数据分布到阵列的各个驱动器上,同时用专门的驱动器存储用于校验的冗余信息。这种形式的优点就是既通过延展技术提高了性能,又利用专门奇偶校验驱动器容纳冗余信息,以保证数据的安全。一般至少需要3块硬盘:两块用于延展,一块做为专门奇偶校验驱动器。不过虽然利用延展技术提高的性能,可以因为奇偶校验在写入数据时又抵消了一部分性能——因为校验信息同时也需要写入校验驱动器。因为需要进行大量的计算,所以需要硬件RAID控制器,软件RAID几乎没有什么实际意义。RAID 3因为延展容量小,所以适于经常处理大文件的应用。 RAID 4: RAID 4同RAID 3很相似。唯一的区别就是使用块层延展技术(block level striping),而不是使用的字节层延展技术(byte level striping)。优点是可以通过更改延展容量大小来适用于不同应用。RAID 4也可以看作是RAID 3和RAID 5的混和——既有RAID 3专门奇偶校验驱动器,也有RAID 5的块层延展技术。另外仍然需要硬件RAID控制器。当然专门奇偶校验驱动器还是会降低一些性能。 RAID 5: RAID 5使用块层延展技术和分布式奇偶校验来实现。它主要针对专门奇偶校验驱动器所带来的瓶颈而产生的解决方案。利用分布式奇偶校验运算法则,把数据和校验数据写在所有的驱动器中。本技术的要旨在于相对于块数据产生校验块(parity blocks)同时存储于阵列当中——解决了专么校验驱动器所带来的瓶颈问题。不过,校验信息是在写入过程中计算出来的,所以对于写入性能仍有影响。当一个硬盘驱动器出现故障,可以从其它的驱动器之中的数据块分离出校验信息从而恢复数据。由于分布式校验本身属性,恢复数据会比其它的形式复杂。RAID 5也可以通过更改延展容量的大小来满足不同应用的需要,另外还需要硬件RAID控制器。RAID 5是目前最流行的RAID应用形式,因为它综合最好的性能、冗余能力、存储能力为一体。当然价格也是不菲的。
② 几种 raid 的区别
RAID技术主要包含RAID 0~RAID 7等数个规范,它们的侧重点各不相同,常见的规范有如下几种:
RAID 0:RAID 0连续以位或字节为单位分割数据,并行读/写于多个磁盘上,因此具有很高的数据传输率,但它没有数据冗余,因此并不能算是真正的RAID结构。RAID 0只是单纯地提高性能,并没有为数据的可靠性提供保证,而且其中的一个磁盘失效将影响到所有数据。因此,RAID 0不能应用于数据安全性要求高的场合。
RAID 1:它是通过磁盘数据镜像实现数据冗余,在成对的独立磁盘上产生互 为备份的数据。当原始数据繁忙时,可直接从镜像拷贝中读取数据,因此RAID 1可以提高读取性能。RAID 1是磁盘阵列中单位成本最高的,但提供了很高的数据安全性和可用性。当一个磁盘失效时,系统可以自动切换到镜像磁盘上读写,而不需要重组失效的数据。
RAID 0+1: 也被称为RAID 10标准,实际是将RAID 0和RAID 1标准结合的产物,在连续地以位或字节为单位分割数据并且并行读/写多个磁盘的同时,为每一块磁盘作磁盘镜像进行冗余。它的优点是同时拥有RAID 0的超凡速度和RAID 1的数据高可靠性,但是CPU占用率同样也更高,而且磁盘的利用率比较低。
RAID 2:将数据条块化地分布于不同的硬盘上,条块单位为位或字节,并使用称为“加重平均纠错码(海明码)”的编码技术来提供错误检查及恢复。这种编码技术需要多个磁盘存放检查及恢复信息,使得RAID 2技术实施更复杂,因此在商业环境中很少使用。
RAID 3:它同RAID 2非常类似,都是将数据条块化分布于不同的硬盘上,区别在于RAID 3使用简单的奇偶校验,并用单块磁盘存放奇偶校验信息。如果一块磁盘失效,奇偶盘及其他数据盘可以重新产生数据;如果奇偶盘失效则不影响数据使用。RAID 3对于大量的连续数据可提供很好的传输率,但对于随机数据来说,奇偶盘会成为写操作的瓶颈。
RAID 4:RAID 4同样也将数据条块化并分布于不同的磁盘上,但条块单位为块或记录。RAID 4使用一块磁盘作为奇偶校验盘,每次写操作都需要访问奇偶盘,这时奇偶校验盘会成为写操作的瓶颈,因此RAID 4在商业环境中也很少使用。
RAID 5:RAID 5不单独指定的奇偶盘,而是在所有磁盘上交叉地存取数据及奇偶校验信息。在RAID 5上,读/写指针可同时对阵列设备进行操作,提供了更高的数据流量。RAID 5更适合于小数据块和随机读写的数据。
RAID 3与RAID 5相比,最主要的区别在于RAID 3每进行一次数据传输就需涉及到所有的阵列盘;而对于RAID 5来说,大部分数据传输只对一块磁盘操作,并可进行并行操作。在RAID 5中有“写损失”,即每一次写操作将产生四个实际的读/写操作,其中两次读旧的数据及奇偶信息,两次写新的数据及奇偶信息。
RAID 6:与RAID 5相比,RAID 6增加了第二个独立的奇偶校验信息块。两个独立的奇偶系统使用不同的算法,数据的可靠性非常高,即使两块磁盘同时失效也不会影响数据的使用。但RAID 6需要分配给奇偶校验信息更大的磁盘空间,相对于RAID 5有更大的“写损失”,因此“写性能”非常差。较差的性能和复杂的实施方式使得RAID 6很少得到实际应用。
RAID 7:这是一种新的RAID标准,其自身带有智能化实时操作系统和用于存储管理的软件工具,可完全独立于主机运行,不占用主机CPU资源。RAID 7可以看作是一种存储计算机(Storage Computer),它与其他RAID标准有明显区别。除了以上的各种标准,我们可以如RAID 0+1那样结合多种RAID规范来构筑所需的RAID阵列,例如RAID 5+3(RAID 53)就是一种应用较为广泛的阵列形式。用户一般可以通过灵活配置磁盘阵列来获得更加符合其要求的磁盘存储系统。
开始时RAID方案主要针对SCSI硬盘系统,系统成本比较昂贵。1993年,HighPoint公司推出了第一款IDE-RAID控制芯片,能够利用相对廉价的IDE硬盘来组建RAID系统,从而大大降低了RAID的“门槛”。
从此,个人用户也开始关注这项技术,因为硬盘是现代个人计算机中发展最为“缓慢”和最缺少安全性的设备,而用户存储在其中的数据却常常远超计算机的本身价格。在花费相对较少的情况下,RAID技术可以使个人用户也享受到成倍的磁盘速度提升和更高的数据安全性,现在个人电脑市场上的IDE-RAID控制芯片主要出自HighPoint和Promise公司,此外还有一部分来自AMI公司。
面向个人用户的IDE-RAID芯片一般只提供了RAID 0、RAID 1和RAID 0+1(RAID 10)等RAID规范的支持,虽然它们在技术上无法与商用系统相提并论,但是对普通用户来说其提供的速度提升和安全保证已经足够了。
随着硬盘接口传输率的不断提高,IDE-RAID芯片也不断地更新换代,芯片市场上的主流芯片已经全部支持ATA 100标准,而HighPoint公司新推出的HPT 372芯片和Promise最新的PDC20276芯片,甚至已经可以支持ATA 133标准的IDE硬盘。在主板厂商竞争加剧、个人电脑用户要求逐渐提高的今天,在主板上板载RAID芯片的厂商已经不在少数,用户完全可以不用购置RAID卡,直接组建自己的磁盘阵列,感受磁盘狂飙的速度。
③ 存储与磁盘阵列的异同
1存储-是一个面很大的词它包括这几个方面(磁盘阵列,磁带库,网络附加存储,虚拟磁带库,光纤交换机等)
2存储-并不不单指 软件
3他也有操作系统吗? 有(各品牌的不一样)
4单控和双控是什么意思? 磁盘阵列上有一个主要的部件叫控制器,也是它最贵的部件。单控指有一个控制器。双控指有两个控制器(当然价格贵,多一个麻,呵呵)。
双控制器存在的意义:如果磁盘阵列上的数据非常重要,一秒都不能停止,例如金融业,医疗业等。双控就是一个双保险,正常工作中只有一个是工作的,一个是带电待机的。
5存储上的硬盘的分区都是怎么划分的呀? 通电脑超级终端用console线连接磁盘阵列,每个品牌的连接频率不一样,我家做XYRATEX磁盘阵列的,他是15200的。登陆进去之后可以设置IP,化RAID,也就是分区。
6存储和阵列柜一般是怎么和服务器相连的? 如果公司规模较小,例如一台磁盘阵列,一台服务器,直接用多模光纤连接就可以。如果规模较大,就要加入光纤交换机。
《大话存储》 实用性大吗? 半年前 简单看了看这本书,写的挺有意思。
但毕竟还是一本书,存储这个东西只有在实战中才会长见识,连厂家给的说
明书都有错的。 多看看书没什么坏处。
④ 存储磁盘阵列专用硬盘和普通电脑用的硬盘有什么区别
一个是企业服务器使用的,一个是个人使用的。。。
存储磁盘阵列专用硬盘的意思是企业服务器内部有好几十个高性能硬盘,都存有资料,坏了一个,不影响其他硬盘工作。。。当加入新硬盘,还能还原资料。。。
个人电脑的硬盘,坏了就坏了。。。没得救。。。
⑤ 磁盘阵列与存储的区别有哪些
通俗的讲:存储是指数据保存下来的统称。而保存的介质有很多种类型,如磁盘、磁带、硬盘、光盘、U盘等;
磁盘阵列是把多块硬盘连接在一起组成一个磁盘组,提供一个廉价、海量、高性能的逻辑硬盘,磁盘阵列采用多种RAID技术,提高数据冗余度和提升I/O读写性能。磁盘阵列发展到如今,已经成为数据中心不可或缺的产品,可应用在数据存储、备份容灾、数据归档、安全存储、高性能存储等多个方面。
⑥ 谁能告诉我RAID分几种 区别都在那里!
一.Raid定义
RAID(Rendant Array of Independent Disk 独立冗余磁盘阵列)技术是加州大学伯克利分校1987年
提出,最初是为了组合小的廉价磁盘来代替大的昂贵磁盘,同时希望磁盘失效时不会使对数据的访问受损
失而开发出一定水平的数据保护技术。RAID就是一种由多块廉价磁盘构成的冗余阵列,在操作系统下是作
为一个独立的大型存储设备出现。RAID可以充分发挥出多块硬盘的优势,可以提升硬盘速度,增大容量,
提供容错功能够确保数据安全性,易于管理的优点,在任何一块硬盘出现问题的情况下都可以继续工作,
不会受到损坏硬盘的影响。
二、RAID的几种工作模式
1、RAID0
即Data Stripping数据分条技术。RAID 0可以把多块硬盘连成一个容量更大的硬盘群,可以提高磁
盘的性能和吞吐量。RAID 0没有冗余或错误修复能力,成本低,要求至少两个磁盘,一般只是在那些对数
据安全性要求不高的情况下才被使用。
(1)、RAID 0最简单方式
就是把x块同样的硬盘用硬件的形式通过智能磁盘控制器或用操作系统中的磁盘驱动程序以软件的方
式串联在一起,形成一个独立的逻辑驱动器,容量是单独硬盘的x倍,在电脑数据写时被依次写入到各磁盘
中,当一块磁盘的空间用尽时,数据就会被自动写入到下一块磁盘中,它的好处是可以增加磁盘的容量。
速度与其中任何一块磁盘的速度相同,如果其中的任何一块磁盘出现故障,整个系统将会受到破坏,可靠
性是单独使用一块硬盘的1/n。
(2)、RAID 0的另一方式
是用n块硬盘选择合理的带区大小创建带区集,最好是为每一块硬盘都配备一个专门的磁盘控制器,在
电脑数据读写时同时向n块磁盘读写数据,速度提升n倍。提高系统的性能。
2、RAID 1
RAID 1称为磁盘镜像:把一个磁盘的数据镜像到另一个磁盘上,在不影响性能情况下最大限度的保证
系统的可靠性和可修复性上,具有很高的数据冗余能力,但磁盘利用率为50%,故成本最高,多用在保存
关键性的重要数据的场合。RAID 1有以下特点:
(1)、RAID 1的每一个磁盘都具有一个对应的镜像盘,任何时候数据都同步镜像,系统可以从一组
镜像盘中的任何一个磁盘读取数据。
(2)、磁盘所能使用的空间只有磁盘容量总和的一半,系统成本高。
(3)、只要系统中任何一对镜像盘中至少有一块磁盘可以使用,甚至可以在一半数量的硬盘出现问
题时系统都可以正常运行。
(4)、出现硬盘故障的RAID系统不再可靠,应当及时的更换损坏的硬盘,否则剩余的镜像盘也出现
问题,那么整个系统就会崩溃。
(5)、更换新盘后原有数据会需要很长时间同步镜像,外界对数据的访问不会受到影响,只是这时
整个系统的性能有所下降。
(6)、RAID 1磁盘控制器的负载相当大,用多个磁盘控制器可以提高数据的安全性和可用性。
3、RAID0+1
把RAID0和RAID1技术结合起来,数据除分布在多个盘上外,每个盘都有其物理镜像盘,提供全冗余能
力,允许一个以下磁盘故障,而不影响数据可用性,并具有快速读/写能力。RAID0+1要在磁盘镜像中建立
带区集至少4个硬盘。
4、RAID2
电脑在写入数据时在一个磁盘上保存数据的各个位,同时把一个数据不同的位运算得到的海明校验码
保存另一组磁盘上,由于海明码可以在数据发生错误的情况下将错误校正,以保证输出的正确。但海明码
使用数据冗余技术,使得输出数据的速率取决于驱动器组中速度最慢的磁盘。RAID2控制器的设计简单。
5、RAID3:带奇偶校验码的并行传送
RAID 3使用一个专门的磁盘存放所有的校验数据,而在剩余的磁盘中创建带区集分散数据的读写操作
。当一个完好的RAID 3系统中读取数据,只需要在数据存储盘中找到相应的数据块进行读取操作即可。但
当向RAID 3写入数据时,必须计算与该数据块同处一个带区的所有数据块的校验值,并将新值重新写入到
校验块中,这样无形虽增加系统开销。当一块磁盘失效时,该磁盘上的所有数据块必须使用校验信息重新
建立,如果所要读取的数据块正好位于已经损坏的磁盘,则必须同时读取同一带区中的所有其它数据块,
并根据校验值重建丢失的数据,这使系统减慢。当更换了损坏的磁盘后,系统必须一个数据块一个数据块
的重建坏盘中的数据,整个系统的性能会受到严重的影响。RAID 3最大不足是校验盘很容易成为整个系统
的瓶颈,对于经常大量写入操作的应用会导致整个RAID系统性能的下降。RAID 3适合用于数据库和WEB服
务器等。
6、 RAID4
RAID4即带奇偶校验码的独立磁盘结构,RAID4和RAID3很象,它对数据的访问是按数据块进行的,也
就是按磁盘进行的,每次是一个盘,RAID4的特点和RAID3也挺象,不过在失败恢复时,它的难度可要比
RAID3大得多了,控制器的设计难度也要大许多,而且访问数据的效率不怎么好。
7、 RAID5
RAID 5把校验块分散到所有的数据盘中。RAID 5使用了一种特殊的算法,可以计算出任何一个带区校
验块的存放位置。这样就可以确保任何对校验块进行的读写操作都会在所有的RAID磁盘中进行均衡,从而
消除了产生瓶颈的可能。RAID5的读出效率很高,写入效率一般,块式的集体访问效率不错。RAID 5提高
了系统可靠性,但对数据传输的并行性解决不好,而且控制器的设计也相当困难。
8、RAID6
RAID6即带有两种分布存储的奇偶校验码的独立磁盘结构,它是对RAID5的扩展,主要是用于要求数据
绝对不能出错的场合,使用了二种奇偶校验值,所以需要N+2个磁盘,同时对控制器的设计变得十分复杂
,写入速度也不好,用于计算奇偶校验值和验证数据正确性所花费的时间比较多,造成了不必须的负载,
很少人用。
9、 RAID7
RAID7即优化的高速数据传送磁盘结构,它所有的I/O传送均是同步进行的,可以分别控制,这样提高
了系统的并行性和系统访问数据的速度;每个磁盘都带有高速缓冲存储器,实时操作系统可以使用任何实
时操作芯片,达到不同实时系统的需要。允许使用SNMP协议进行管理和监视,可以对校验区指定独立的传
送信道以提高效率。可以连接多台主机,当多用户访问系统时,访问时间几乎接近于0。但如果系统断电
,在高速缓冲存储器内的数据就会全部丢失,因此需要和UPS一起工作,RAID7系统成本很高。
10、 RAID10
RAID10即高可靠性与高效磁盘结构它是一个带区结构加一个镜象结构,可以达到既高效又高速的目的。这
种新结构的价格高,可扩充性不好。
11、 RAID53
RAID7即高效数据传送磁盘结构,是RAID3和带区结构的统一,因此它速度比较快,也有容错功能。但价格
十分高,不易于实现。
三、应用RAID技术
要使用磁盘RAID主要有两种方式,第一种就是RAID适配卡,通过RAID适配卡插入PCI插槽再接上硬盘
实现硬盘的RAID功能。第二种方式就是直接在主板上集成RAID控制芯片,让主板能直接实现磁盘RAID。这
种方式成本比专用的RAID适配卡低很多。
此外还可以用2k or xp or linux系统做成软raid.
个人使用磁盘RAID主要是用RAID0、 RAID1或RAID0+1工作模式。
四、以HP XW4200 Workstation为例详述如何配置RAID(企业用)
产品信息
HP XW4200 Workstation 使用了 Intel 925X Express北桥 + ICH6R南桥。
需要软件
配置RAID时需要先安装软件,即独立RAID卡驱动,该软件的下载方法为:
打开惠普中文网站首页 http://www.hp.com.cn/;
点击“支持及驱动程序”;
选择“下载驱动程序和软件”并在搜索产品空行中输入产品名称“xw4200”,点击“>>”按钮;
选择Intel Application Accelerator 应用程序加速器,文件名 SP28501.EXE,文件大小 3.6MB。
使用方法:
下载驱动到本地硬盘。
运行下载的程序,按照屏幕提示安装驱动。
调试步骤
进入bios设置,选择storage menu—storage option---SATA Emulation---打开RAID,存盘退出;
在机器post之后会出现按Ctrl+I进入SATA RAID设置,XW4200集成的是ICH6R的SATA RAID;
安装系统需要加载RAID驱动程序,下载IAA软件,解压缩后有个Driver目录,把Driver里面的东西拷到一张软盘内;
安装系统时按F6加载,选择ICH6R第一项驱动程序之后就按正常安装了。
详细步骤
开机看到hp或COMPAQ标志时按F10,选择bios菜单中的Advanced 选项,打开Device Options,选择SATA RAID项,将Option ROM值设置为Enabled;
重新开机时按CTRL+I,即可进入RAID控制器配置选项,屏幕 会有如下显示:
create raid volume
delete raid voleme
reset disks to non-raid
exit
最下面一行会显示出“physical disks: SATA 0 硬盘型号 SATA 1 硬盘型号”,例如:“physical disks: SATA 0
st380012as SATA 1 WDC WD800JD-60J”。
选择第一项create raid volume后,在“NAME”处输入raid名称,比如“RAID 1”,确认后将“RAID LEVEL”改为“RAID 1(MERROR)”。下面“CAPACITY”处输入要用来做RAID 1的空间大小,这里采用默认的最大值。最后在“CREAT VOLUME”处确认后创建完毕。
从光盘启动安装XP。出现按F6加载驱动提示时,按F6—>“S”确认—>插入存有raid驱动的软盘—>选择第一项“Intel 82801 FR Sata Raid Controller(Desktop ICH6R)”,之后开始安装WINDOWS XP操作系统。
安装好主板芯片组和Intel Application Accelerator 应用程序加速器后可以看到 intel RAID Contrllers--intel ®820801FR SATA RAID --Arrays Vlumes-raid1 为硬盘标为绿色符号。RAID Hard drivers看到两个硬盘 ,且在“磁盘管理”中只能看到50%的磁盘容量(即一块硬盘的容量)。
各种测试对已有系统的影响
做好RAID 1 后,拔下任意一个硬盘后,可以看到RAID 1没有变化,可以顺利进入系统,但系统会提示“a raid volume is degrader”(because of missing hard drives),且在INTEL 加速工具中可以看到变化,intel RAID Contrllers--intel®820801FR SATA RAID --Arrays 0 Vlumes-RAID1 为硬盘标为黄色符号。RAID Hard drivers里只看到一个硬盘。
按CTRL+I进入RAID控制器配置选项后选择第二项delete raid voleme(即删除建立的RAID 1) 后,对任意一块硬盘中的系统都没有影响,保存的数据也不会丢失。但在“磁盘管理”里面可以显示出两块硬盘。
做完上面的第2项测试后,在“磁盘管理”中删除第二块硬盘的分区,再重新启动 。做RAID 1后,机器提示没有操作系统,即删除RAID 1后再重做RAID 1会破坏硬盘的现有数据。
总结
做好RAID 1 后,拔下任意一个硬盘启动后,两块硬盘数据不会受到任何影响 ,在出现相关提示信息后,可以正常进入系统。
在做好RAID 1后删除RAID 1,对任意一块硬盘中的系统都没有影响。
删除RAID 1后再重做RAID 1会破坏硬盘的现有数据。
⑦ 存储服务器和磁盘阵列有什么区别
1、性质不同:
磁盘阵列是一种方法,存储服务器是物理设备。独立磁盘冗余阵列(RAID)是把相同的数据存储在多个硬盘的不同的地方的方法。存储服务器是指为特定目标而设计,因此配置方式也不同。它可能是拥有一点额外的存储,也可能拥有很大的存储空间的服务器。
2、用途不同:
存储服务器用于提供存储数据的服务。RAID技术用于高了数据存取速度、实现了对数据的冗余保护。
3、组成不同:
磁盘阵列通过把数据放在多个硬盘上,输入输出操作能以平衡的方式交叠,改良性能。因为多个硬盘增加了平均故障间隔时间(MTBF),储存冗余数据也增加了容错。
存储服务器通常是独立的单元。有的时候它们会被设计成4U机架式。或者也可以由两个箱子组成一个存储单元以及一个位于附近的服务器。