当前位置:首页 » 服务存储 » 数据存储内存管理
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

数据存储内存管理

发布时间: 2022-03-07 16:48:56

㈠ 计算机储存管理的功能是

计算机储存管理的功能主要是有效地管理系统的存储资源,特别是对主存储器进行管理。

存储管理的主要功能:(1)内存区域的分配;(2)地址映射;(3)存储共享;(4)存储保护;(5)内存扩充。

存储管理是指主存管理,包括给进程分配主存片段,收回进程释放的主存片段,为分配出去的主存片段提供保护与共享,以及为作业提供一个虚拟的存储空间。存储管理的功能主要分为内存分配、地址转换、存储保护和内存扩充四部分。 与“实存”相对应的另一类存储管理技术称为“虚拟存储”管理技术,简称“虚存”。

(1)数据存储内存管理扩展阅读:

对象存储是一种将数据作为对象进行管理的计算机数据存储体系结构,与其他存储体系结构(例如将数据作为文件层级管理的文件系统)以及将数据作为块和扇区内的块进行管理的块存储相对。每个对象通常包括数据本身,可变数量的元数据和全局独立标识符。

对象存储可以在多个级别实现,包括设备级别(对象存储设备),系统级别和接口级别。在每种情况下,对象存储都试图实现其他存储架构无法解决的功能,例如可以由应用程序直接编程的接口,可以再多个物理硬件实例的命名空间,以及数据管理功能,如数据复制和数据分发在对象级粒度。

相比于数据库这种面向结构化数据存储的技术,对象存储主要面向存储大量的非结构化数据。

㈡ 常用的内存管理机制有哪几种

嵌入式系统所用到的内存管理机制主要有以下两种:
1、虚拟内存管理机制:
有一些嵌入式处理器提供了MMU,在MMU具备内存地址映射和寻址功能,它使操作系统的内存管理更加方便。如果存在MMU ,操作系统会使用它完成从虚拟地址到物理地址的转换, 所有的应用程序只需要使用虚拟地址寻址数据。 这种使用虚拟地址寻址整个系统的主存和辅存的方式在现代操作系统中被称为虚拟内存。MMU 便是实现虚拟内存的必要条件。
虚拟内存的管理方法使系统既可以运行体积比物理内存还要大的应用程序,也可以实现“按需调页”策略,既满足了程序的运行速度,又节约了物理内存空间。
在L inux系统中,虚拟内存机制的实现实现为我们提供了一个典型的例子:在不同的体系结构下, 使用了三级或者两级页式管理,利用MMU 完成从虚拟地址到物理地址之间的转换。基于虚拟内存管理的内存最大好处是:由于不同进程有自己单独的进程空间,十分有效的提高了系统可靠性和安全性。
2、非虚拟内存管理机制:
在实时性要求比较高的情况下,很多嵌入式系统并不需要虚拟内存机制:因为虚拟内存机制会导致不确定性的 I/O阻塞时间, 使得程序运行时间不可预期,这是实时嵌入式系统的致命缺陷;另外,从嵌入式处理器的成本考虑,大多采用不装配MMU 的嵌入式微处理器。所以大多嵌入式系统采用的是实存储器管理策略。因而对于内存的访问是直接的,它对地址的访问不需要经过MMU,而是直接送到地址线上输出,所有程序中访问的地址都是实际的物理地址;而且,大多数嵌入式操作系统对内存空间没有保护,各个进程实际上共享一个运行空间。一个进程在执行前,系统必须为它分配足够的连续地址空间,然后全部载入主存储器的连续空间。
由此可见,嵌入式系统的开发人员不得不参与系统的内存管理。从编译内核开始,开发人员必须告诉系统这块开发板到底拥有多少内存;在开发应用程序时,必须考虑内存的分配情况并关注应用程序需要运行空间的大小。另外,由于采用实存储器管理策略,用户程序同内核以及其它用户程序在一个地址空间,程序开发时要保证不侵犯其它程序的地址空间,以使得程序不至于破坏系统的正常工作,或导致其它程序的运行异常;因而,嵌入式系统的开发人员对软件中的一些内存操作要格外小心。
UCOS就是使用非虚拟内存管理的一个例子,在UCOS中,所有的任务共享所有的物理内存,任务之间没有内存保护机制,这样能够提高系统的相应时间,但是任务内存操作不当,会引起系统崩溃。

㈢ 数据库内存不足,如何设置内存管理

1、
主要设置min
server
memory

max
server
memory
,如果同台服务器有多台吃内存大户服务,
max
server
memory
给设置一个值稍大的值出来,别让SQL
server把WINDOWS内存都吃完了也别让其他的服务把WINDOWS内存吃完了,这样才会相安无事2.设置方法可以通过命令方式的,楼上的挺好,还有就是通过SQL
SERVER企业管理器进行:鼠标右键服务器\属性\内存
可以看多最大内存和最小内存设置选项。

㈣ 什么是大数据存储管理

1.分布式存储

传统化集中式存储存在已有一段时间。但大数据并非真的适合集中式存储架构。Hadoop设计用于将计算更接近数据节点,同时采用了HDFS文件系统的大规模横向扩展功能。

虽然,通常解决Hadoop管理自身数据低效性的方案是将Hadoop 数据存储在SAN上。但这也造成了它自身性能与规模的瓶颈。现在,如果你把所有的数据都通过集中式SAN处理器进行处理,与Hadoop的分布式和并行化特性相悖。你要么针对不同的数据节点管理多个SAN,要么将所有的数据节点都集中到一个SAN。

但Hadoop是一个分布式应用,就应该运行在分布式存储上,这样存储就保留了与Hadoop本身同样的灵活性,不过它也要求拥抱一个软件定义存储方案,并在商用服务器上运行,这相比瓶颈化的Hadoop自然更为高效。

2.超融合VS分布式

注意,不要混淆超融合与分布式。某些超融合方案是分布式存储,但通常这个术语意味着你的应用和存储都保存在同一计算节点上。这是在试图解决数据本地化的问题,但它会造成太多资源争用。这个Hadoop应用和存储平台会争用相同的内存和CPU。Hadoop运行在专有应用层,分布式存储运行在专有存储层这样会更好。之后,利用缓存和分层来解决数据本地化并补偿网络性能损失。

3.避免控制器瓶颈(Controller Choke Point)

实现目标的一个重要方面就是——避免通过单个点例如一个传统控制器来处理数据。反之,要确保存储平台并行化,性能可以得到显着提升。

此外,这个方案提供了增量扩展性。为数据湖添加功能跟往里面扔x86服务器一样简单。一个分布式存储平台如有需要将自动添加功能并重新调整数据。

4.删重和压缩

掌握大数据的关键是删重和压缩技术。通常大数据集内会有70%到90%的数据简化。以PB容量计,能节约数万美元的磁盘成本。现代平台提供内联(对比后期处理)删重和压缩,大大降低了存储数据所需能力。

5.合并Hadoop发行版

很多大型企业拥有多个Hadoop发行版本。可能是开发者需要或是企业部门已经适应了不同版本。无论如何最终往往要对这些集群的维护与运营。一旦海量数据真正开始影响一家企业时,多个Hadoop发行版存储就会导致低效性。我们可以通过创建一个单一,可删重和压缩的数据湖获取数据效率

6.虚拟化Hadoop

虚拟化已经席卷企业级市场。很多地区超过80%的物理服务器现在是虚拟化的。但也仍有很多企业因为性能和数据本地化问题对虚拟化Hadoop避而不谈。

7.创建弹性数据湖

创建数据湖并不容易,但大数据存储可能会有需求。我们有很多种方法来做这件事,但哪一种是正确的?这个正确的架构应该是一个动态,弹性的数据湖,可以以多种格式(架构化,非结构化,半结构化)存储所有资源的数据。更重要的是,它必须支持应用不在远程资源上而是在本地数据资源上执行。

不幸的是,传统架构和应用(也就是非分布式)并不尽如人意。随着数据集越来越大,将应用迁移到数据不可避免,而因为延迟太长也无法倒置。

理想的数据湖基础架构会实现数据单一副本的存储,而且有应用在单一数据资源上执行,无需迁移数据或制作副本

8.整合分析

分析并不是一个新功能,它已经在传统RDBMS环境中存在多年。不同的是基于开源应用的出现,以及数据库表单和社交媒体,非结构化数据资源(比如,维基网络)的整合能力。关键在于将多个数据类型和格式整合成一个标准的能力,有利于更轻松和一致地实现可视化与报告制作。合适的工具也对分析/商业智能项目的成功至关重要。

9. 大数据遇见大视频

大数据存储问题已经让人有些焦头烂额了,现在还出现了大视频现象。比如,企业为了安全以及操作和工业效率逐渐趋于使用视频监控,简化流量管理,支持法规遵从性和几个其它的使用案例。很短时间内这些资源将产生大量的内容,大量必须要处理的内容。如果没有专业的存储解决方案很可能会导致视频丢失和质量降低的问题。

10.没有绝对的赢家

Hadoop的确取得了一些进展。那么随着大数据存储遍地开花,它是否会成为赢家,力压其它方案,其实不然。

比如,基于SAN的传统架构在短期内不可取代,因为它们拥有OLTP,100%可用性需求的内在优势。所以最理想的办法是将超融合平台与分布式文件系统和分析软件整合在一起。而成功的最主要因素则是存储的可扩展性因素。

㈤ 内存的数据存储机制

1.寄存器(register)。这是最快的存储区,寄存器的数量极其有限,所以寄存器由编译器根据需求进行分配,你不能直接控制。

2.堆栈(Stack)。位于通用RAM(random-access memory,随机访问存储器)中,通过它的“堆栈指针”可以从处理器那里获得。堆栈指针若向

下移动,则分配新的内存空间,若向上移动,则释放内存。创建程序时,Java编译器必须知道存储在堆栈内所有数据的大小和生命周期,

因为它必须生成相应的代码,以便上下移动堆栈指针。由于约束性质,所以一般存储的是Java的对象引用和变量。

优点:快速分配的存储,仅次于寄存器。
缺点:限制了程序的灵活性。

3.堆(heap)。通用性内存池,用于存放所有的Java对象。堆的好处是:编辑器不需要知道堆里要分配多少存储区域,也不必知道存储的数

据在堆里的存活多长时间。在Java中,创建一个对象,只需要用new,当执行这行代码,会自动在堆里进行存储分配。

优点:在堆里分配存储有很大的灵活性。
缺点是:用堆进行存储分配比用堆栈进行存储需要更多的时间。

4.静态存储(static storage)。是指在固定位置(也在RAM里)。静态存储里存放程序运行时一直存在的数据。通常是Java的静态变量,但

Java对象本身从来不会放在静态存储空间里。

5.常量存储(constant storage)。通常是存放在ROM(read-only memory,只读存储器)中,因为常量本身他们永远不会被改变。

㈥ 简述存储管理的主要功能

1、寻址空间

操作系统让系统看上去有比实际内存大得多的内存空间。虚拟内存可以是系统中实际物理空间的许多倍。每个进程运行在其独立的虚拟地址空间中。

这些虚拟空间相互之间都完全隔离开来,所以进程间不会互相影响。同时,硬件虚拟内存机构可以将内存的某些区域设置成不可写。这样可以保护代码与数据不会受恶意程序的干扰。

2、存储管理内存映射

内存映射技术可以将映象文件和数据文件直接映射到进程的地址空间。在内存映射中,文件的内容被直接连接到进程虚拟地址空间上。

3、存储管理物理内存分配

内存管理子系统允许系统中每个运行的进程公平地共享系统中的物理内存。

4、存储管理共享虚拟内存

尽管虚拟内存允许进程有其独立的虚拟地址空间,但有时也需要在进程之间共享内存。 例如有可能系统中有几个进程同时运行BASH命令外壳程序。为了避免在每个进程的虚拟内存空间内都存在BASH程序的拷贝,较好的解决办法是系统物理内存中只存在一份BASH的拷贝并在多个进程间共享。

(6)数据存储内存管理扩展阅读:

相关延伸:存储管理存储知识结构

1、系统管理:UNIX/Linux/Windows操作系统管理。

2、开发技术:C/C++,网络编程,多进程/多线程,进程间通信。

3、存储基础:磁盘、RAID阵列、文件系统等存储相关硬件和软件的安装、配置、调试。

4、存储系统:RAID,DAS,SAN,NAS, CAS等。

5、存储协议:TCP/IP,SCSI,iSCSI,NFS/CIFS等。

6、文件系统:VFS, EXTx/NTFS/FAT32等磁盘文件系统,NFS/CIFS网络文件系统,Lustre/GFS/AFS等分布式文件系统。

7、存储技术:Deplication,SSD,HSM,Virtualization,Snapshot,Replication,CDP, VTL,Thin Provision等等。

8、存储架构:掌握不同行业的存储需求,能够根据实际需求提出存储解决方案,并进行存储系统架构、设计和实现

㈦ 段页式管理每一次数据要访问几次内存

一般需要访问三次以上的内存:
第一次是由段表地址寄存器得段表始址后访问段表,由此取出对应段的页表在内存中的地址。 第二次则是访问页表得到所要访问的物理地址。 第三次才能访问真正需要访问的物理单元。

分别为2、2、3次,因为他的检索方法不同,段页式访问次数多,但是效率高。

三 段页式管理的实现原理

1 虚地址的构成
一个进程中所包含的具有独立逻辑功能的程序或数据仍被划分为段,并有各自的段号s。这反映相继承了段式管理的特征。其次,对于段s中的程序或数据,则按照一定的大小将其划分为不同的页。和页式系统一样,最后不足一页的部分仍占一页。这反映了段页式管理中的页式特征。从而,段页式管理时的进程的虚拟地址空间中的虚拟地址由三部分组成:即段号s,页号P和页内相对地址d。虚拟空间的最小单位是页而不是段,从而内存可用区也就被划分成为着干个大小相等的页面,且每段所拥有的程序和数据在内存中可以分开存放。分段的大小也不再受内存可用区的限制。
2 段表和页表
为了实现段页式管理,系统必须为每个作业或进程建立一张段表以管理内存分配与释放、缺段处理、存储保护相地址变换等。另外,由于一个段又被划分成了若干页,每个段又必须建立一张页表以把段中的虚页变换成内存中的实际页面。显然,与页式管理时相同,页表中也要有相应的实现缺页中断处理和页面保护等功能的表项。另外,由于在段页式管理中,页表不再是属于进程而是属于某个段,因此,段表中应有专项指出该段所对应页表的页表始址和页表长度。
3 动态地址变换过程
在一般使用段页式存储管理方式的计算机系统中,都在内存中辟出一块固定的区域存放进程的段表和页表。因此,在段页式管理系统中,要对内存中指令或数据进行一次存取的话,至少需要访问三次以上的内存:

第一次是由段表地址寄存器得段表始址后访问段表,由此取出对应段的页表在内存中的地址。

第二次则是访问页表得到所要访问的物理地址。

第三次才能访问真正需要访问的物理单元。

㈧ 简述数据管理的三种方法

1、单个云包括存储和应用程序
2、应用程序在云端,存储在本地
3、应用程序在云端,而且数据缓存也在云端,存储在本地

在第一种情况下,通过将所有的内容都放在单个云服务商来节省带宽成本,但是这会产生一些(供应商)锁定,这个通常与 CIO 的云战略或者风险防范计划所冲突。
第二种方案是仅仅保留应用程序在云端所收集的数据,并且以最小的方式传输到本地存储。这就需要仔细的考虑策略,其中只有最少使用数据的应用程序部署在云端。
第三种情况就是将数据缓存在云端,应用程序和存储的数据被存储在本地。这也就意味着分析、人工智能、机器学习可以在内部运行而无需把数据向云服务商上传,然后处理之后再返回。缓存的数据仅仅基于应用程序对云的需求,甚至进行跨多云的部署缓存。
企业应根据数据量以及数据的敏感度去进行衡量,判断是选择哪一种储存方式更适合,这样才能做出对企业发展有益的决策。

㈨ 内存数据存储原理

不需要,操作系统等具有存储管理模式,利用这种功能可以实现存储的管理。
内存属于动态存储介质,断电内存里的文件就会丢失,不可能有东西存储的。
具体的解答属于微机原理或者是硬件基础的内容。

㈩ 内存管理的基本问题

内存管理是指软件运行时对计算机内存资源的分配和使用的技术。其最主要的目的是如何高效,快速的分配,并且在适当的时候释放和回收内存资源。一个执行中的程式,譬如网页浏览器在个人电脑或是图灵机(Turing machine)里面,为一个行程将资料转换于真实世界及电脑内存之间,然后将资料存于电脑内存内部(在计算机科学,一个程式是一群指令的集合,一个行程是电脑在执行中的程式)。一个程式结构由以下两部分而成:“本文区段”,也就是指令存放,提供CPU使用及执行; “资料区段”,储存程式内部本身设定的资料,例如常数字串。

技术简介
内存可以通过许多媒介实现,例如磁带或是磁盘,或是小阵列容量的微芯片。 从1950年代开始,计算机变的更复杂,它内部由许多种类的内存组成。内存管理的任务也变的更加复杂,甚至必须在一台机器同时执行多个进程。

虚拟内存是内存管理技术的一个极其实用的创新。它是一段程序(由操作系统调度),持续监控着所有物理内存中的代码段、数据段,并保证他们在运行中的效率以及可靠性,对于每个用户层(user-level)的进程分配一段虚拟内存空间。当进程建立时,不需要在物理内存件之间搬移数据,数据储存于磁盘内的虚拟内存空间,也不需要为该进程去配置主内存空间,只有当该进程被被调用的时候才会被加载到主内存。

可以想象一个很大的程序,当他执行时被操作系统调用,其运行需要的内存数据都被存到磁盘内的虚拟内存,只有需要用到的部分才被加载到主内存内部运行。