当前位置:首页 » 服务存储 » 移动数据存储技术
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

移动数据存储技术

发布时间: 2022-03-05 11:42:23

⑴ 数据存储的原理是什么

数据存储是数据流在加工过程中产生的临时文件或加工过程中需要查找的信息。数据以某种格式记录在计算机内部或外部存储介质上。数据存储要命名,这种命名要反映信息特征的组成含义。数据流反映了系统中流动的数据,表现出动态数据的特征;数据存储反映系统中静止的数据,表现出静态数据的特征。

硬盘储存为例介绍原理:
硬盘是一种采用磁介质的数据存储设备,数据存储在密封于洁净的硬盘驱动器内腔的若干个磁盘片上。这些盘片一般是在以的片基表面涂上磁性介质所形成,在磁盘片的每一面上,以转动轴为轴心、以一定的磁密度为间隔的若干个同心圆就被划分成磁道(track),每个磁道又被划分为若干个扇区(sector),数据就按扇区存放在硬盘上。在每一面上都相应地有一个读写磁头(head),所以不同磁头的所有相同位置的磁道就构成了所谓的柱面(cylinder)。传统的硬盘读写都是以柱面、磁头、扇区为寻址方式的(CHS寻址)。硬盘在上电后保持高速旋转,位于磁头臂上的磁头悬浮在磁盘表面,可以通过步进电机在不同柱面之间移动,对不同的柱面进行读写。所以在上电期间如果硬盘受到剧烈振荡,磁盘表面就容易被划伤,磁头也容易损坏,这都将给盘上存储的数据带来灾难性的后果。

⑵ 海量数据的存储技术属于大数据的关键技术吗

非常多的,问答不能发link,不然我给你link了。有譬如Hadoop等开源大数据项目的,编程语言的,以下就大数据底层技术说下。

简单以永洪科技的技术说下,有四方面,其实也代表了部分通用大数据底层技术:
Z-Suite具有高性能的大数据分析能力,她完全摒弃了向上升级(Scale-Up),全面支持横向扩展(Scale-Out)。Z-Suite主要通过以下核心技术来支撑PB级的大数据:

跨粒度计算(In-DatabaseComputing)
Z-Suite支持各种常见的汇总,还支持几乎全部的专业统计函数。得益于跨粒度计算技术,Z-Suite数据分析引擎将找寻出最优化的计算方案,继而把所有开销较大的、昂贵的计算都移动到数据存储的地方直接计算,我们称之为库内计算(In-Database)。这一技术大大减少了数据移动,降低了通讯负担,保证了高性能数据分析。

并行计算(MPP Computing)
Z-Suite是基于MPP架构的商业智能,她能够把计算分布到多个计算节点,再在指定节点将计算结果汇总输出。Z-Suite能够充分利用各种计算和存储资源,不管是服务器还是普通的PC,她对网络条件也没有严苛的要求。作为横向扩展的大数据,Z-Suite能够充分发挥各个节点的计算能力,轻松实现针对TB/PB级数据分析的秒级响应。

列存储 (Column-Based)
Z-Suite是列存储的。基于列存储的数据集市,不读取无关数据,能降低读写开销,同时提高I/O 的效率,从而大大提高查询性能。另外,列存储能够更好地压缩数据,一般压缩比在5 -10倍之间,这样一来,数据占有空间降低到传统存储的1/5到1/10 。良好的数据压缩技术,节省了存储设备和内存的开销,却大大了提升计算性能。

内存计算
得益于列存储技术和并行计算技术,Z-Suite能够大大压缩数据,并同时利用多个节点的计算能力和内存容量。一般地,内存访问速度比磁盘访问速度要快几百倍甚至上千倍。通过内存计算,CPU直接从内存而非磁盘上读取数据并对数据进行计算。内存计算是对传统数据处理方式的一种加速,是实现大数据分析的关键应用技术。

⑶ 移动数据是什么意思

1、移动数据指手机上网业务,即数据联网。当上网产生的通信就是数据通信,产生的费用就是数据费用。如手机的GPRS 、3G,4G等方式上网。

2、WLAN称之为无线局域网,在有移动WLAN信号覆盖的区域,用户通过支持WLAN功能的笔记本电脑、手机、PDA终端可以便捷快速接入互联网,从而进行信息获取、娱乐、或者移动办公。移动的是CMCC,电信是Chinanet,联通是ChinaUnicom。

3、使用WLAN业务请致电相关的运营商开通WLAN流量包,办理相应的套餐资费,要验证手机号和设置WLAN的上网密码才可使用。

4、是否收费要看具体情况,在一些公共场所,运营商会架设一些“热点”,有些是开放性的,也就是免费的,此外就是收费的,请致电需要使用的运营商开通服务。

⑷ 现代信息技术中的存储术分为直接连接存储、移动存储、网络存储,硬盘属于哪一类

你好,按你的分类,硬盘有两种使用方式,一种置于电脑机箱中,在系统运行时不可拆卸,属于第一种直接存储。如果置于可以移动硬盘盒中,就应属于移动存储吧。

⑸ 移动数据库的移动数据库概述

移动数据库作为分布式数据库的延伸和扩展,拥有分布式数据库的诸多优点和独特的特性,能够满足未来人们访问信息的要求,具有广泛的应用前景。 典型的移动数据库原型系统结构如图所示。
移动数据库可以看作是传统数据库系统的扩展。移动数据库系统大致分类如下:
a.移动多数据库系统。
b.移动同构数据库系统。
c.移动异构数据库系统。
d.移动异构多数据库系统。 移动数据库基本上由三种类型的主机组成:移动主机(Mobile Hosts),移动支持站点(Mobile Support Stations)和固定主机(Fixed Hosts)。
固定主机就是通常含义上的计算机,他们之间通过高速固定网络进行连接,不能对移动设备进行管理。移动支持站点具有无线通讯接口,可以和移动设备进行数据通信。移动支持站点和固定主机之间的通信是通过固定网络进行的。一个移动支持站点覆盖的地区区域被称为信元(Cell),在一个信元内的移动主机可以通过无线通信网络与覆盖这一区域的移动支持站点进行通讯,完成信息数据的检索。 (1)复制和缓存技术。移动数据库环境中,通过采用一种弱一致性服务器级复制机制,提高了响应时间。缓存技术是通过在客户机上缓存数据服务器上的部分数据,降低客户访问数据库服务器的频率。
(2)数据广播技术。利用从服务器到移动客户机的下行带宽远远大于从移动客户机到服务器的上行带宽的这种网络非对称性,把大多数移动用户频繁访问的数据组织起来,以周期性的广播形式提供给移动客户机。
(3)位置管理。移动用户的位置管理主要集中在两个方面:一是如何确定移动用户的当前位置,二是如何存储,管理和更新位置信息。可以采用移动计算机都在自己的宿主服务器上作永久登记,当它移动到任何其它区域是,向其宿主服务器通报其当前位置。
(4)查询处理及优化。在移动数据库环境中,由于用户的移动,频繁的断接以及用户所处网络环境的多样性,移动查询优化必须采用动态策略,以适应不断变化的画境。
(5)移动事务处理。 (1)数据的一致性问题。移动数据库的一个显着特点就是移动终端之间以及与服务器之间的连接时一种弱连接,即低带宽,长延迟,不稳定和经常性断开。为了支持用户在弱环境下对数据库的操作,现在普遍采用乐观复制方法,允许用户对本地缓存上的数据副本进行操作,待网络重新连接后再与数据库服务器或其他终端交换数据修改信息,并通过冲突检测机制来协调和恢复数据的一致性。
(2)高效的事务处理。通过采用完善的日志记录策略,事务移动过程中的用户位置属性实时更新等策略来设计和实现新的事务管理策略和算法。
(3)数据的安全性。通过采用对移动终端进行认证,防止非法终端的欺骗性接入;对无线通信进行加密,防止数据信息泄露;对下载的数据副本加密存储,防止移动终端物理丢失后的数据泄密等手段保证数据安全。 (1) 内核结构微小化。
(2) 对标准的SQL支持。
(3) 事务管理功能的强化。
(4) 完善的数据同步机制。
(5) 支持串行通信,TCP/IP通信,红外线,蓝牙等多种连接协议。
(6) 完备的嵌入式数据库管理功能。
(7) 支持Windows CE,Palm OS等多种目前流行的嵌入式操作系统。 (1)数据的分布和复制。数据不均衡的分布在基站和移动单元中。移动数据库的一个显着特点是移动终端之间以及与服务器之间的连接是一种弱连接,即帝宽带、长延时、不稳定和经常性的断开,由于数据库一致性的约束,这增加了管理缓存的难度。现在普遍采用的方法允许移动单元处理其自身的事务,对本地缓存上的数据副本进行操作。在长时间断开连接时,缓存试图为移动单元提供最频繁访问的数据或更新的数据。。带网络重新连接后再与数据库服务器或其他终端交换数据修改信息,并通过冲突检测和协调来恢复数据的一致性。
(2)事务模型。在移动环境中,事务的容错和纠错变得棘手。一个移动事物在几个基站上顺序执行,由于移动设备的移动性,执行过程可能会涉及多个数据集合,此时缺乏对事务执行的集中协调。因此须对事物的传统ACID性质进行修正,并定义新事务管理策略和算法。
(3)查询处理。了解数据的存储位置影响到查询处理的性价比分析。由于移动单元的移动性和快速的资源变化,查询优化变得更复杂。当查询结果返回到移动单元时,这些移动单元可能正处于移动当中,或正在穿越信元边界,但用户接收到的查询结果必须正确而完整的。
(4)回复和容错。移动数据库环境必须解决地址错误、介质失效、事务和通信失效所导致的问题。
(5)移动数据库设计。由于移动性以及频繁的关机,执行查询是全局名字解析问题变得复杂。移动数据库设计必须考虑到元数据的许多管理问题。
(6)基于位置的服务。随着客户机的移动,依赖于位置的高速缓存信息也随之失效。此外,要频繁更新依赖于位置的查询,然后应用这些查询以更新高速缓存,也会带来问题。
(7)安全。移动数据的安全性不如固定位置数据的安全性。

⑹ 数据的存储方法有哪些

什么是分布式存储

分布式存储是一种数据存储技术,它通过网络使用企业中每台机器上的磁盘空间,这些分散的存储资源构成了虚拟存储设备,数据分布存储在企业的各个角落。

分布式存储系统,可在多个独立设备上分发数据。传统的网络存储系统使用集中存储服务器来存储所有数据。存储服务器成为系统性能的瓶颈,也是可靠性和安全性的焦点,无法满足大规模存储应用的需求。分布式网络存储系统采用可扩展的系统结构,使用多个存储服务器共享存储负载,利用位置服务器定位存储信息,不仅提高了系统的可靠性,可用性和访问效率,而且易于扩展。


分布式存储的优势

可扩展:分布式存储系统可以扩展到数百甚至数千个这样的集群大小,并且系统的整体性能可以线性增长。

低成本:分布式存储系统的自动容错和自动负载平衡允许在低成本服务器上构建分布式存储系统。此外,线性可扩展性还能够增加和降低服务器的成本,并实现分布式存储系统的自动操作和维护。

高性能:无论是针对单个服务器还是针对分布式存储群集,分布式存储系统都需要高性能。

易用性:分布式存储系统需要提供方便易用的界面。此外,他们还需要拥有完整的监控和操作工具,并且可以轻松地与其他系统集成。

杉岩分布式统一存储USP

利用分布式技术将标准x86服务器的HDD、SSD等存储介质抽象成资源池,对上层应用提供标准的块、文件、对象访问接口,

同时提供清晰直观的统一管理界面,减少部署和运维成本,满足高性能、高可靠、高可扩展性的大规模存储资源池的建设需求。

⑺ 数据存储形式有哪几种

【块存储】

典型设备:磁盘阵列,硬盘

块存储主要是将裸磁盘空间整个映射给主机使用的,就是说例如磁盘阵列里面有5块硬盘(为方便说明,假设每个硬盘1G),然后可以通过划逻辑盘、做Raid、或者LVM(逻辑卷)等种种方式逻辑划分出N个逻辑的硬盘。(假设划分完的逻辑盘也是5个,每个也是1G,但是这5个1G的逻辑盘已经于原来的5个物理硬盘意义完全不同了。例如第一个逻辑硬盘A里面,可能第一个200M是来自物理硬盘1,第二个200M是来自物理硬盘2,所以逻辑硬盘A是由多个物理硬盘逻辑虚构出来的硬盘。)

接着块存储会采用映射的方式将这几个逻辑盘映射给主机,主机上面的操作系统会识别到有5块硬盘,但是操作系统是区分不出到底是逻辑还是物理的,它一概就认为只是5块裸的物理硬盘而已,跟直接拿一块物理硬盘挂载到操作系统没有区别的,至少操作系统感知上没有区别。

此种方式下,操作系统还需要对挂载的裸硬盘进行分区、格式化后,才能使用,与平常主机内置硬盘的方式完全无异。

优点:

1、 这种方式的好处当然是因为通过了Raid与LVM等手段,对数据提供了保护。

2、 另外也可以将多块廉价的硬盘组合起来,成为一个大容量的逻辑盘对外提供服务,提高了容量。

3、 写入数据的时候,由于是多块磁盘组合出来的逻辑盘,所以几块磁盘可以并行写入的,提升了读写效率。

4、 很多时候块存储采用SAN架构组网,传输速率以及封装协议的原因,使得传输速度与读写速率得到提升。

缺点:

1、采用SAN架构组网时,需要额外为主机购买光纤通道卡,还要买光纤交换机,造价成本高。

2、主机之间的数据无法共享,在服务器不做集群的情况下,块存储裸盘映射给主机,再格式化使用后,对于主机来说相当于本地盘,那么主机A的本地盘根本不能给主机B去使用,无法共享数据。

3、不利于不同操作系统主机间的数据共享:另外一个原因是因为操作系统使用不同的文件系统,格式化完之后,不同文件系统间的数据是共享不了的。例如一台装了WIN7/XP,文件系统是FAT32/NTFS,而Linux是EXT4,EXT4是无法识别NTFS的文件系统的。就像一只NTFS格式的U盘,插进Linux的笔记本,根本无法识别出来。所以不利于文件共享。


【文件存储】

典型设备:FTP、NFS服务器

为了克服上述文件无法共享的问题,所以有了文件存储。

文件存储也有软硬一体化的设备,但是其实普通拿一台服务器/笔记本,只要装上合适的操作系统与软件,就可以架设FTP与NFS服务了,架上该类服务之后的服务器,就是文件存储的一种了。

主机A可以直接对文件存储进行文件的上传下载,与块存储不同,主机A是不需要再对文件存储进行格式化的,因为文件管理功能已经由文件存储自己搞定了。

优点:

1、造价交低:随便一台机器就可以了,另外普通以太网就可以,根本不需要专用的SAN网络,所以造价低。

2、方便文件共享:例如主机A(WIN7,NTFS文件系统),主机B(Linux,EXT4文件系统),想互拷一部电影,本来不行。加了个主机C(NFS服务器),然后可以先A拷到C,再C拷到B就OK了。(例子比较肤浅,请见谅……)

缺点:

读写速率低,传输速率慢:以太网,上传下载速度较慢,另外所有读写都要1台服务器里面的硬盘来承担,相比起磁盘阵列动不动就几十上百块硬盘同时读写,速率慢了许多。


【对象存储】

典型设备:内置大容量硬盘的分布式服务器

对象存储最常用的方案,就是多台服务器内置大容量硬盘,再装上对象存储软件,然后再额外搞几台服务作为管理节点,安装上对象存储管理软件。管理节点可以管理其他服务器对外提供读写访问功能。

之所以出现了对象存储这种东西,是为了克服块存储与文件存储各自的缺点,发扬它俩各自的优点。简单来说块存储读写快,不利于共享,文件存储读写慢,利于共享。能否弄一个读写快,利 于共享的出来呢。于是就有了对象存储。

首先,一个文件包含了了属性(术语叫metadata,元数据,例如该文件的大小、修改时间、存储路径等)以及内容(以下简称数据)。

以往像FAT32这种文件系统,是直接将一份文件的数据与metadata一起存储的,存储过程先将文件按照文件系统的最小块大小来打散(如4M的文件,假设文件系统要求一个块4K,那么就将文件打散成为1000个小块),再写进硬盘里面,过程中没有区分数据/metadata的。而每个块最后会告知你下一个要读取的块的地址,然后一直这样顺序地按图索骥,最后完成整份文件的所有块的读取。

这种情况下读写速率很慢,因为就算你有100个机械手臂在读写,但是由于你只有读取到第一个块,才能知道下一个块在哪里,其实相当于只能有1个机械手臂在实际工作。

而对象存储则将元数据独立了出来,控制节点叫元数据服务器(服务器+对象存储管理软件),里面主要负责存储对象的属性(主要是对象的数据被打散存放到了那几台分布式服务器中的信息),而其他负责存储数据的分布式服务器叫做OSD,主要负责存储文件的数据部分。当用户访问对象,会先访问元数据服务器,元数据服务器只负责反馈对象存储在哪些OSD,假设反馈文件A存储在B、C、D三台OSD,那么用户就会再次直接访问3台OSD服务器去读取数据。

这时候由于是3台OSD同时对外传输数据,所以传输的速度就加快了。当OSD服务器数量越多,这种读写速度的提升就越大,通过此种方式,实现了读写快的目的。

另一方面,对象存储软件是有专门的文件系统的,所以OSD对外又相当于文件服务器,那么就不存在文件共享方面的困难了,也解决了文件共享方面的问题。

所以对象存储的出现,很好地结合了块存储与文件存储的优点。

最后为什么对象存储兼具块存储与文件存储的好处,还要使用块存储或文件存储呢?

1、有一类应用是需要存储直接裸盘映射的,例如数据库。因为数据库需要存储裸盘映射给自己后,再根据自己的数据库文件系统来对裸盘进行格式化的,所以是不能够采用其他已经被格式化为某种文件系统的存储的。此类应用更适合使用块存储。

2、对象存储的成本比起普通的文件存储还是较高,需要购买专门的对象存储软件以及大容量硬盘。如果对数据量要求不是海量,只是为了做文件共享的时候,直接用文件存储的形式好了,性价比高。

⑻ 移动硬盘存储、移动原理

不是你想的那样,存储,是将电子数据以电信号传入硬盘,硬盘会将电信号转换为磁信息进行存储,磁信息是存储介质的性质,就像磁铁一样,有磁性就是有数据,无磁性就是没数据

⑼ 哪些技术属于大数据的关键技术海量数据的存储技术

非常多的,问答不能发link,不然我给你link了。有譬如Hadoop等开源大数据项目的,编程语言的,以下就大数据底层技术说下。

简单以永洪科技的技术说下,有四方面,其实也代表了部分通用大数据底层技术:
Z-Suite具有高性能的大数据分析能力,她完全摒弃了向上升级(Scale-Up),全面支持横向扩展(Scale-Out)。Z-Suite主要通过以下核心技术来支撑PB级的大数据:

跨粒度计算(In-DatabaseComputing)
Z-Suite支持各种常见的汇总,还支持几乎全部的专业统计函数。得益于跨粒度计算技术,Z-Suite数据分析引擎将找寻出最优化的计算方案,继而把所有开销较大的、昂贵的计算都移动到数据存储的地方直接计算,我们称之为库内计算(In-Database)。这一技术大大减少了数据移动,降低了通讯负担,保证了高性能数据分析。

并行计算(MPP Computing)
Z-Suite是基于MPP架构的商业智能平台,她能够把计算分布到多个计算节点,再在指定节点将计算结果汇总输出。Z-Suite能够充分利用各种计算和存储资源,不管是服务器还是普通的PC,她对网络条件也没有严苛的要求。作为横向扩展的大数据平台,Z-Suite能够充分发挥各个节点的计算能力,轻松实现针对TB/PB级数据分析的秒级响应。

列存储 (Column-Based)
Z-Suite是列存储的。基于列存储的数据集市,不读取无关数据,能降低读写开销,同时提高I/O 的效率,从而大大提高查询性能。另外,列存储能够更好地压缩数据,一般压缩比在5 -10倍之间,这样一来,数据占有空间降低到传统存储的1/5到1/10 。良好的数据压缩技术,节省了存储设备和内存的开销,却大大了提升计算性能。

内存计算
得益于列存储技术和并行计算技术,Z-Suite能够大大压缩数据,并同时利用多个节点的计算能力和内存容量。一般地,内存访问速度比磁盘访问速度要快几百倍甚至上千倍。通过内存计算,CPU直接从内存而非磁盘上读取数据并对数据进行计算。内存计算是对传统数据处理方式的一种加速,是实现大数据分析的关键应用技术。