当前位置:首页 » 服务存储 » pacs系统存储位
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

pacs系统存储位

发布时间: 2023-03-29 07:35:35

‘壹’ 什么是pacs系统

医学影像报告(PACS)管理系统


从各种医学影像检查设备中获取、存储、处理影像数据,传输到体检信息系统中,生成图文并茂的体检报告,满足体检中心高水准、高效率影像处理的需要。


原始图像经普通边缘增强后的效果

通过多尺度对比度增强技术可成功应用在PACS系统针对X-ray图像的处理过程中。图像中不同尺寸的低对比度细节的视觉质量显着改善,这种处理方式不会产生严重的边界效应(振铃效应),这一优点使得此技术能够广泛应用于CT、MR、DR、CR、数字乳腺诊断等成像。

‘贰’ 成熟完整的PACS系统都有哪些规范和标准知道的大侠请将这些规范和标准罗列出来。标准和包括国内的和国外

1. DICOM 标准问题

PACS是一个传输医学图像的计算机网络,协议是信息传送的先决条件。医学数字影像传输(DICOM)标准是第一个广为接受的全唤咐球性医学数字成像和通信标准,它利用标准的TCP/IP(Transfer Control Protocol/Internet Protocol)网络环境来实现医学影像设备之间直接联网。

DICOM是Digital Imaging and Communications in Medicine(医学数字成像和通讯)的缩写,是由美国放射大学(ACR)和国际电子产品制造商联合会(NEMA)共同研究推出的一种不同电子设备之间传输医学影像和信息的工业标准。

DICOM标准是保证PACS成为全开放式系统的重要的网络标准和协议。现在使用的是DICOM3.0标准,它由九大部分组成:第一部分:介绍和概述;第二部分:遵从性; 第三部分:信息对象定义;第四部分:服务类规范;第五部分:数据结构和语义学; 第六部分:数据字段;第七部分:消息交换;第八部分:消息交换的网络通讯支持;第九部分:消息交换的点对点通讯支持;标准的各部分之间的关系。

2. PACS截取图像的方式

2.1 DICOM直接接入

利用MRI等设备上符合ACR/NEMA的仪器设备标准输出接口,直接读取12Bit的数位影像资料,再通过计算机网络传送至影像中心存储。其特点是:由于直接从设备的DICOM接口读取资料,所以在进行影像的显示与处理时没有失真,同时由于影像资料的基本单元为12Bit,故影像资料的品质较好。

2.2 视频接入

利用CT等设备所配备控制台的视频输出端子,可以截取8Bit的检查影像资料,再通过计算机网络传送至影像中心存储。其特点是:无需再购买专用的医疗仪器DICOM信号输出接口,成本较低,由于存储的影像资料的基本单元为8Bit,会有失真现象发生。

2.3 扫描仪接入

利用专用医用扫描仪的扫描过程,将胶片信息数位化后输入至计算机,通过网络传送至影像中心存储。其特点是:可采集12Bit的数位影像,同时节省片库存储空间及管理困扰。

3. PACS系统规模问题

3.1 科室级PACS:

小型PACS通常在一个科室内部建立,如放射科。它主要针对医疗设备自身功能以及试验目的,小型PACS主要具备图像存档、图像查询、图像提取、图像的共享打印以及辅助诊断等功能。

3.2 全院级PACS:

中型PACS通常在一个医院内部建立,医院各科室之间用网络连接,这样患者先后作了CT扫描、B型超声、X射线检查,这些系统都能将图象和文字报告存入计算机网络。院内任何一个终端显示器上都能十分方便地将病人的文字和图象资料取出来,洞链友将各种资[DICOM工具免费下载]DICOM Anonymizer 3.0.0料和图象集中在一起显示。这样临床科室需要任何图象资料研究诊断和治疗时,坐在自己的显示器前就能够对比地观察几种检查图象的结果,为诊断和手术方案的制定带来极大的方便。

3.3 区域PACS:

大型PACS主要指跨地区之间的网络,它实现各大医院之间、远程医疗等方面的医学影像共享,它依靠Internet网络传送数据。

目前,Internet上的WWW服务是Internet网上最受欢迎的信息检索服务程序,它能够把静态、动态图像、文本、声音和数据等各种类型的信息资源集成在一起,实现网上数据共享。但WWW遵守的网络协议HTTP是Internet上的通用国际标准,而PACS遵守的DICOM是全球性医学数字成像和通信的国际标准,因此,必须设置专门网关是将WWW与DICOM结合起来,利用WWW的方便和通纳槐用性及DICOM在医学信息系统专业领域中应用的广泛性建立起的高层次协议转换服务程序。这样使用浏览器软件就能得到病人的医学图像,医生可对这个图像进行相应操作并作出诊断

嗯 我觉得哈 你可以多在网上搜索下关于这方面的软件公司,也可以打电话问问就装医院的呗

‘叁’ pacs 机房 验收标准、服务器验收标准、存储验收标准、硬件验收标准,总之关于paca 所有的验收标准都需。

结构层次
(一) 物理层次
从物理层次结构上,PACS可以分为4层:网络用户层、接入层、核
PACS应用层次结构示意图

PACS应用层次结构示意图
心层、资源提供层,自下而上构成一个"金字塔"结构。其中:网络用户层是网络中的众多的终端或工作站;接入层是指与网络用户层中的终端或工作站相连接,为这些终端或工作站进行网络互联的网络设备集合(如二级交换机、集线器等);核心层是指将接入层网络设备汇集起来,形成全网互联的网络设备的集合,如(服务器、路由器、防火墙等);资源提供层是指PACS网络中的众多的医疗器械终端,如(CT、US、DR等)。
(二) 应用层次
从应用层次结构上,PACS可以分为3层:MINI-PACS、科室
PACS应用层次结构示意图

PACS应用层次结构示意图
级PACS、全院级PACS,自内而外构成一个"内嵌型"结构。其中:MINI-PACS是指针对小型医疗院所或单一科室规划的系统,MINI-PACS系统也必须包含超声波、内窥镜等图文并茂的专业影像报告系统;科室级PACS是指针对中型医院所提出的科室架构,紧密整合院方已有的HIS/RIS系统 ,建立以患者为中心的科室影像中心;全院级PACS主要是针对大型医院所提出的全院性架构,完全实现全院影像科室数字化读片诊断工作流程、实现全院影像科室电子化管理。
工作流程
现有主流PACS厂商,在研发PACS系统之初,都遵从了以下标准流程。
PACS业务流程图

PACS业务流程图
(一) 检查信息登记输入
前台登记工作站录入患者基本信息及检查申请信息,也可通过检索HIS系统(如果存在HIS并与PACS/RIS融合)进行病人信息自动录入,并对病人进行分诊登记、复诊登记、申请单扫描、申请单打印、分诊安排等工作。
(二) WorkList服务
病人信息一经录入,其他工作站可直接从PACS系统主数据库中自动调用,无需重新手动录入;具有WorkList服务的医疗影像设备可直接由服务器提取相关病人基本信息列表,不具备WorkList功能影像设备通过医疗影像设备操作台输入病人信息资料或通过分诊台提取登记信息。
(三) 影像获取
对于标准 DICOM 设备,采集工作站可在检查完成后或检查过程中自动 ( 或手动 ) 将影像转发至PACS主服务器。
(四) 非DICOM转换
对于非DICOM设备,采集工作站可使用MiVideo DICOM网关收到登记信息后,在检查过程中进行影像采集,采集的影像自动(或由设备操作技师手动转发)转发至PACS主服务器。
(五) 图像调阅
患者在检查室完成影像检查后,医师可通过阅片室的网络进行影像调阅、浏览及处理,并可进行胶片打印输出后交付患者。
需要调阅影像时PACS系统自动按照后台设定路径从主服务器磁盘阵列或与之连接的前置服务器中调用。
在图像显示界面,医师一般可以进行一些测量长度、角度、面积等图像后处理,在主流PACS中,除了测量功能外,都会提供缩放、移动、镜像、反相、旋转、滤波、锐化、伪彩、播放、窗宽窗位调节等图像后处理功能。
(六) 报告编辑
患者完成影像检查后由专业人员对影像质量进行评审,并进行质量分析。完成质量评审控制后的影像,诊断医生可进行影像诊断报告编辑,并根据诊断医师权限,分别进行初诊报告、报告审核工作。在书写报告过程中,可使用诊断常用词语模版,以减少医生键盘输入工作量。诊断报告审核过程中可对修改内容进行修改痕迹保留、可获得临床诊断、详细病史、历史诊断等信息、可将报告存储为典型病例供其它类似诊断使用,供整个科室内学习提高使用。
审核完成的报告通过打印机进行输出后由医师签字后提交,同时诊断报告上传至主服务器存储备份。打印完成后的报告不能再进行修改,但可以只读方式调阅参考。
6架构数据
存储技术架构
PACS有别于HIS、LIS等其它医学信息系统的最重要一点就是:海量数据存储。合理设计PACS的数据存储结构,是成功建设PACS的关键。一个大型的医院拥有大批现代化的大型医疗影像设备,每天影像检查产生的数据量多达4个GB左右(未压缩的原始数据),一年数据总量多约(1200GB)。而随着医院的业务飞速发展和新的影像设备的引进,这一数据量还可能进一步增长。此外,如何提高在线数据随机存取的效率也是一个非常关键的问题。
基于这一原因,现有的PACS医疗影像信息系统提供商多采用分级存储(HSM)的策略,将PACS存储分成在线存储和离线存储两级结构。用两种不同性能的存储介质来分别完成高容量和高效率的要求,低速超大容量存储设备(离线存储服务器)用作永久存储;高速存储设备(SAN)用作在线数据存储,确保在线数据的极高效存取。对于2年以上的历史数据保存在离线存储设备里,在线存储设备仅保存最近三年的数据。
文件格式
DICOM文件是指按照DICOM标准而存储的医学文件。
DICOM文件由多个数据集组成。数据集表现了现实世界信息对象的相关属性,如病人姓名、性别、身高和体重等。数据集由数据元素组成,数据元素包含进行编 码的信息对象属性的值,并由数据元素标签(Tag)唯一标识。数据元素具有三种结构,其中两种具有类型表示VR(是否出现由传输语法决定),差别在于其长 度的表达方式,另外一种不包括类型表示。类型表示指明了该数据元素中的数据是哪种类型,它是一个长度为2的字符串,例如一个数据元素的VR为FL,表示该数据元素中存储的数据类型为浮点型。所有数据元素都包含标签、值长度和数据值体。
标签是一个16位无符号整数对,按顺序排列包括组号和元素号。数据集中的数据元素应按数据元素标签号的递增顺序组织,且在一个数据集中最多出现一次。
值长度是一个16或32位(取决于显式VR或隐式VR)无符号整数,表明了准确的数据值的长度,按字节数目(为偶数)记录。此长度不包含数据元素标签、VR、值长度字段。
数据值体表明了数据元素的值,其长度为偶数字节,该字段的数据类型是由数据元素的VR所明确定义。数据元素字段由三个公共字段和一个可选字段组成。
数据结构
以现广东市场上的主流SUPER PACS系统为例。
目前SUPER PACS系统数据库共有36个表,按用途分为:公用表、数字胶片室专用表、放射专用表、超声专用表、远程专用表。其中起到关键性作用的是Patient、Study、Series、Image四个主表。
Patient表用于存放病人的基本信息,应用范围涉及到SUPER PACS的所有子系统;Study表用于存放病人的检查信息,应用范围涉及到SUPER PACS的所有子系统;Series表用于图象序列表的生成,应用范围涉及到SUPERPACSR DICOM放射系统;Image表用于保存系统图象记录。

‘肆’ PACS系统的架构数据

PACS有别于HIS、LIS等其它医学信息系统的最重要一点就是:海量数据存储。合理设计PACS的数据存储结构,是成功建设PACS的关键。一个大型的医院拥有大批现代化的大型医疗影像设备,每天影像检查产生的数据量多达4个GB左右(未压缩的原始数据),一年数据总量大约1200GB。而随着医院的业务飞速发展和新的影像设备的引进,这一数据量还可能进一步增长。此外,如何提高在线数据随机存取的效率也是一个非常关键的问题。
基于这一原因,现有的PACS医疗影像信息系统提供商多采用分级存储(HSM)的策略,将PACS存储分成在线存储和离线存储两级结构。用两种不同性能的存储介质来分别完成高容量和高效率的要求,低速超大容量存储设备(离线存储服务器)用作永久存储;高速存储设备(SAN)用作在线数据存储,确保在线数据的极高效存取。对于2年以上的历史数据保存在离线存储设备里,在线存储设备仅保存最近三年的数据。 DICOM文件是指按照DICOM标准而存储的医学文件。
DICOM文件由多个数据集组成。数据集表现了现实世界信息对象的相关属性,如病人姓名、性别、身高和体重等。数据集由数据元素组成,数据元素包含进行编 码的信息对象属性的值,并由数据元素标签(Tag)唯一标识。数据元素具有三种结构,其中两种具有类型表示VR(是否出现由传输语法决定),差别在于其长 度的表达方式,另外一种不包括类型表示。类型表示指明了该数据元素中的数据是哪种类型,它是一个长度为2的字符串,例如一个数据元素的VR为FL,表示该数据元素中存储的数据类型为浮点型。所有数据元素都包含标签、值长度和数据值体。
标签是一个16位无符号整数对,按顺序排列包括组号和元素号。数据集中的数据元素应按数据元素标签号的递增顺序组织,且在一个数据集中最多出现一次。
值长度是一个16或32位(取决于显式VR或隐式VR)无符号整数,表明了准确的数据值的长度,按字节数目(为偶数)记录。此长度不包含数据元素标签、VR、值长度字段。
数据值体表明了数据元素的值,其长度为偶数字节,该字段的数据类型是由数据元素的VR所明确定义。数据元素字段由三个公共字段和一个可选字段组成。 以现广东市场上的主流SUPER PACS系统为例。
目前SUPER PACS系统数据库共有36个表,按用途分为:公用表、数字胶片室专用表、放射专用表、超声专用表、远程专用表。其中起到关键性作用的是Patient、Study、Series、Image四个主表。
Patient表用于存放病人的基本信息,应用范围涉及到SUPER PACS的所有子系统;Study表用于存放病人的检查信息,应用范围涉及到SUPER PACS的所有子系统;Series表用于图象序列表的生成,应用范围涉及到SUPERPACSR DICOM放射系统;Image表用于保存系统图象记录。
数据库表间关系如右:

‘伍’ 怎么调用Pacs中存储的数据

PACS系统任务主要就是把日常产生的各种医学影像(包括核磁,CT,超声,各种X光机,各种红外仪、显微仪等设备产生的图像)通过各种接口(模拟,DICOM,网络)以数字化的方式海量保存起来,当需要的时候在一定的授权下能够很快的调回使用,同时增加一些辅助诊断管理功能。由于医疗影像设备接口类别众多,同时每天产生大量数据,所以如何在各种影像设备间传输数据和如何组织存储数据对于系统至关重要的。

PACS真正的技术在于接口技术和存储技术。PACS存储技术都已经比较成熟:大容量分级存储,预提取机制。但是在接口技术方面,由于接口标准日新月异,接口技术也不断发展。在接口方面主要有一下几种:
1) 模拟接口
2) 网络接口
3) DICOM接口
5. 超声介绍

7. PACS接口技术
1. 视频接口:分为标准视频和非标准视频(连接视频信号的时候一定要注意共地)
标准视频:彩色主要有PAL(768×576)和NTSC(640×480)两种制式
黑白对应于PAL和NTSC有CCIR和RS170两种
非标准视频:对应于CT,MRI主要是512×512
2. 网络接口:
有些公司没有实力开发DICOM接口,而又有网卡,这样就可以通过网络协议(比如FTP)访问文件,通过解码,可以得到图象
3. DICOM接口:
一种国际标准的接口,一般讨论的时候都是指基于TCP/IP协议的以太网情况。通过DICOM 接口可以访问DICOM服务。DICOM服务多种多样,主要使用的有存储服务,查询/回送服务,胶片打印服务
4. 激光相机接口:
一般来说激光相机都有两种接口,3M952协议和DICOM协议。3M952主要是通过串口(命令口)和并口(数据口)协同工作实现照像。DICOM打印则通过访问DICOM打印服务实现打印。

‘陆’ pacs名词解释

pacs一般指PACS系统。PACS系统是Picture Archiving and Communication Systems的缩写,意为影像归档和通信系统。

(6)pacs系统存储位扩展阅读

它是应用在医院影像科室的系统,主要的任务就是把日常产生的各种医学影像(包括核磁,CT,超声,各种X光机,各种红外仪、显微仪等设备产生的图像)通过各种接口(模拟,DICOM,网络)以数字化的方式海量保存起来,当需要的时候在一定的授权下能够很快的调回使用,同时增加一些辅助诊断管理功能。它在各种影像设备间传输数据和组织存储数据具有重要作用。

主要优点:

1)减少物料成本:引入PACS系统后,图像均采用数字化存储,节省了大量的介质(纸张,胶片等)。

2)减少管理成本:数字化存储带来的'另外一个好处就是不失真,同时占地小,节省了大量的介质管理费用。

3)提高工作效率:数字化使得在任何有网络的地方调阅影像成为可能,比如借片和调阅病人以往病历等。原来需要很长周期和大量人力参与的事情现只需轻答亮松点击即可实现,大大提高了医生的工作效率。医生工作效率的提高就意味着每天能接待的病人数增加,给医院带来效益。

4)提高医院的医疗水平:通过数字化,可以大大简化医生的工作流程,把更多的时间和精力放在诊断上,有助于提高医院的诊断水平。同时各种图像处理技术的引进使得以往难以察觉的病变变得清晰可见。方便棚春的以往病历的调阅还使得医生能够参考借鉴以前的经验作出更准确的诊断。数字化存储还使得远程医疗成为可能。

5)为医院提供资源积累:对于一个医院而言,典型的病历图像和报告是非常宝贵的资源,而无失真的数字化存储和在专家系统下做出的规清和宽范的报告是医院的宝贵的技术积累。

6)充分利用本院资源和其他医院资源:通过远程医疗,可以促进医院之间的技术交流,同时互补互惠互利,促进双方发展。

‘柒’ PACS系统 的结构组成、原理、预期用途的说明及产品标准怎么来写有经办的人士请指教一下~非常感谢

PACS系统是通过计算机网络来实现医学图像的获取、存储、传送和管理的综合系统。它基本上替代了传统上对影像胶片的各种繁复操作。该系统在国外于80年代开始起步,在90年代初趋于成熟,目前已在临床中广泛应用。
一、简 介
PACS系统分为八个部分:影像实时采集,影像分析,影像查询、管理、存储,图文编辑及打印、会诊中心、远程会诊和系统管理。其中以影像实时采集最为关键,目前国外产品在影像采集方面基本上都是采用基于国际标准的DICOM3接口的医疗设备或者CR设备,而我国大部分医院的现状是仅有相当少的一部分设备具有DICOM3接口,其余绝大部分都是模拟信号设备或者照相设备。基于这种情况,力争能使现有的设备尽可能多地上网。我们的PACS系统制定如下的方案:对于具有DICOM3接口的采用数字方式无损采集:对于非DICOM3接口的模拟设备,采用模拟视频的方式采集:对于X光照相设备以及外来胶片、历史胶片,采用扫描的方式采集,将这三种方式综合在整个系统中。这样在有效地支持DICOM3的同时覆盖所有医学影像设备。
二、系统方案
本系统包括七个子系统,分别如下:
1.影像实时采集子系统
该系统把各种医疗设备中的图像信息采集到计算机中。根据系统设计,我院采用数字(DICOM3、Ethernet)、模拟视频和扫描三种采集方式。在数字方式下,本系统实现了不用人工操作的情况下实时自动采集的功能,采集到的基于DICOM3图像没有任何损失,图像的显方式、操作方式也与医疗设备中的一致。在模拟视频采集方式下,电脑实时捕获的影像视频信号,经过转换将医疗设备的模拟图像转换成统一格式的电脑数字图像。
在扫描方式下,我们发现扫描仪本身的应用程序并不能很好地适合医疗影像的操作,为此我院与北京化元技术有限公司合作设计专门针对医疗影像的扫描应用,使得扫描操作完全嵌入整个系统,不用人工分别操作;对一张胶片多张图像的情况能够通过计算机自动切图;对于尺寸超过扫描仪幅面的胶片,能够在计算机中自动拼接,不会产生缝隙。这样有效地减少了扫描操作的工作量。
2.影像分析处理子系统
这个子系统是对计算机采集到的图像(包括三种方式),根据需要进行分析和处理,帮助医生诊断,功能包括灰度/对比度调节、窗宽/窗位调节、单幅/多幅显示、放大/缩小、局部放大、定量测量(CT值、长度、角度和任意曲线面积等)、图像比例尺测量、图像旋转、图像打印和各种图像标注等,其中窗宽/窗位调节、CT值的测量与CT机的操作完全一样。
3.影像的查询、管理和存储子系统
这一子系统是对计算机采集到的医疗图像建立数据库存储管理,这样无论是放射科还是临床大夫都可以通过网络随时对病人的诊断信息和图像进行调用,为各级医务人员提供较好的诊断、科研工作学习条件。系统提供多种关键字对病人影像信息进行综合检索,关键字包括姓名、年龄、性别、检查号、门诊号、诊断医生和就诊时间等,检索过程和方式设计得非常灵活,便于医生操作。在存储方面则采用先进的无损压缩算法,实时压缩存储。
4.图文编辑及打印子系统
本系统可以通过字典帮助医生输入病人资料,如姓名、年龄、性别、检查号、门诊号、住院号、诊断工医师、就诊时间和诊断结果等,若病人做过放射科检查(不分类型),则可直接调出不必重新录入;资料录入后提供标准的诊断报告,进行图文编辑,并通过激光或彩喷打印机输出。除诊断报告外,本系统还可以帮助临床医生编辑科研教学文章。
5.数字图像回写子系统
本系统不仅能够从医疗设备中采集图像,而且在需要时还能够将计算机中的图像数据写回CT和MRI这样的数字影像设备,供照相或做进一步图像后处理使用。回写功能分两部分操作,效果与原设备直接出片时一样,对于模拟视频和扫描的图像在本系统中经过程序的特殊处理,也可以回写,效果也比较理想。
6.会诊中心子系统
本系统由高亮、高清晰度集合显示设备、投影仪和特种扫描设备组成。其主要的功能在将各种检查的数据和图像根据诊断的需求进行有机的组合以帮助医生进行对比分析。有效的突破了以往PACS系统由于显示能力不足,不能充分显示诊断图像和数据的瓶颈。从而有效的提高了PACS系统在诊断方面的使用效果。
7.远程会诊子系统
本系统以医院局域网和外部的Internet网、电话线为通信介质,实现医院之间的原始图像数据和病人其他信息的传递,能够为病人方便地提供远程会诊服务,使远在异地的病人可享受到高水平专家的诊断。
8.系统管理子系统
三、总 结
由这8个子系统构成的PACS系统主体,能够有效地提高各级医生使用医疗影像的效率,对手术病人的术前准备、临床诊断以及医生的科研教学非常有帮助;通过加强系统管理力度以及在符合医疗法规的前提下,可以逐步做到减少出胶片的数量,从而降低出胶片所耗费的大量人工和财力,实现较好的经济效益;通过使用电子存档不存在胶片老化和原始信息损失问题,提高了医疗影像的持续运行它将为医院带来更多的效益。
</DIV>

PACS的影像存储及传递形式·

1、 医学影像的类型可以分成8bit黑白12bit黑白24bit彩色等。 8bit黑白和 24bit彩色可以使用WINDOWS标准的存储格式,12bit黑白无法用任何现有的文件格式表达,也无法使用标准的图像浏览软件观看。即使打开也丢失很多的信息,例如,现在有的数字影像板能产生12位的TIFF文件格式的图像,尽管有的软件能打开,但是打开的图像仍然是8位的图像,在图像的信息量上丢失了很多的信息。

2、 说起医学影像的传递,不能不提到DICOM。DICOM规定了影像传递的标准,包括标准的存储介质和标准的网络通讯。标准的存储介质叫做DICOM STORAGE,是一种文件系统的结构标准。主要是用于在UNIX/MAC/WINDOWS等不同平台的PACS系统之间直接兼容存储介质。这种介质可以是CD、MO,也可以是DVD或者TAPE。DICOM网络通讯标准主要用于局域网内的通讯。在网络上,DICOM十分类似于TCP/IP,不管两端的机器和操作系统如何,都可以透明地进行影像传递,就如同两个国家之间用美元做生意一样。DICOM网络通讯有缺乏安全认证的缺点,所以只适用于局域网中。DICOM存储和通讯中的影像可以按约定的方式进行压缩,但不是所有的PACS系统都支持这些压缩,所以大部分DICOM存储和通讯中的影像数据都是完全展开的,占据很大的空间。

3、为了解决存储和节省空间,PACS系统内部通常使用自己独特的文件格式。这并不影响系统的兼容性,因为到了网上,大家都用DICOM协议通讯。就如同各个国家有自己的货币,但是作国际贸易时都使用美元一样。

4、支持PACS的数据库系统比较简单。只有病人—检查—序列和诊断、登记信息放在数据库中,大小不一的影像存储成文件交给文件系统去管理。为了保证图像的可浏览性,各PACS通常提供了独特的小程序,用于在自己的文件结构上进行影像检索、浏览和处理。

5、理想中的PACS影像信息全部存在SERVER上,进行集中备份和管理。但是海量存储设备和管理软件的费用太高,所以目前还不能进入普及阶段。替代方案是分布存储,即在每个采集工作站上进行光盘刻录,独立进行检索。当然,为了检索同一个病人的全部信息的代价要高于集中存储。

6、影像数据可能分布在不同的机器的不同的数据库中,不同的目录中,不同结构的文件中。PACS的用途就是屏蔽掉系统的复杂性,使得不同地方存储的影像在安全机制认可的前提下自由地流动。

‘捌’ pacs系统是什么

PACS系统是影像归档和通信系统。

它是应用在医院影像科室的系统,主要的任务就是把日常产生的各种医学影像(包括核磁,CT,超声,各种X光机,各种红外仪、显微仪等设备产生的图像)通过各种接口(模拟,DICOM,网络)以数字化的方式海量保存起来。

PACS系统的好处:

1、减少物料成本:引入PACS系统后,图像均采用数字化存储,节省了大量的介质(纸张,胶片等)。

2、减少管理成本:数字化存储带来的另外一个好处就是不失真,同时占地小,节省了大量的介质管理费用。

3、提高工作效率:数字化使得在任何有网络的地方调阅影像成为可能,大大提高了医生的工作效率。医生工作效率的提高就意味着每天能接待的病人数增加,给医院带来效益。

(8)pacs系统存储位扩展阅读

PACS有别于HIS、LIS等其它医学信息系统的最重要一点就是:海量数据存储。

合理设计PACS的数据存储结构,是成功建设PACS的关键。一个大型的医院拥有大批现代化的大型医疗影像设备,每天影像检查产生的数据量多达4个GB左右(未压缩的原始数据),一年数据总量大约1200GB。

Patient表用于存放病人的基本信息,应用范围涉及到SUPER PACS的所有子系统;Study表用于存放病人的检查信息,应用范围涉及到SUPER PACS的所有子系统;Series表用于图象序列表的生成,应用范围涉及到SUPERPACSR DICOM放射系统;Image表用于保存系统图象记录。

‘玖’ 医院PACS 谁能给详细解说一下呢

一、PACS的发展历史
PACS的概念提出于80年代初。建立PACS的想法主要是由两个主要因素引起的:一是数字化影像设备,如CT设备等的产生使得医学影像能够直接从检查设备中获取;另一个是计算机技术的发展,使得大容量数字信息的存储、通讯和显示都能够实现。在80年代初期,欧洲、美国等发达国家基于大型计算机的医院管理信息系统已经基本完成了研究阶段而转向实施,研究工作在80年代中就逐步转向为医疗服务的系统,如临床信息系统,PACS等方面。在欧洲、日本和美国等相继建立起研究PACS的实验室和实验系统。随着技术的发展,到90年代初期已经陆续建立起一些实用的PACS。
在80年代中后期所研究的医学影像系统主要采用的是专用设备,整个系统的价格非常昂贵。到90年代中期,计算机图形工作站的产生和网络通讯技术的发展,使得PACS的整体价格有所下降。进入90年代后期,微机性能的迅速提高,网络的高速发展,使得PACS可以建立在一个能被较多医院接受的水平上。
二、PACS的功能配置
PACS(医院影像存储与通讯系统)在医院影像科室中迅速普及开来,如同计算机与互联网日益深入地影响我们的日常生活。PACS也在改变着影像科室的运作方式,一种高效率、无胶片化影像系统正在悄然兴起。在这些变化中,PACS的主要作用有:
1) PACS联接功能
为了能将影像设备联网,其先决条件是将影像本身数字化。目前,新生产的CT、MR、数字X光机、核医学设备上都有DICOM图像输出接口,可以直接与PACS联接。对于那些没有DICOM接口的设备,接入PACS的方式则较为复杂,要用专门的设备将起影像转换为DICOM标准后再接入PACS。 对于旧型号的CT、MR,一般需要增加专用升级模块来实现,使用这种方法图像的质量有保证,数据的完整性也较好,但价格通常较高。对于非数字化的X光机,通常采用的方式有用数字化感光屏(CR)或通过将胶片直接通过扫描仪转换成数字化图像。另外常用的转换方式还有视频捕捉(Screen Capture),既对有视频信号的设备(如超声、核医学设备),可将其视频信号转换为DICOM图像。
2) PACS的影像存储与管理功能
医学影像的数据量通常很大,常规一次CT扫描为10MB量级,而X光机的胸片可以到20MB,心血管造影的图像可达80MB以上,128排三维重建CT图像可达1GB。存储与管理影像为PACS系统的一个重要功能,实现这一功能的成本占系统总成本的20%-60%.小型的PACS工作站可以用100GB的服务器来存储图像,并用光盘刻录机来将图像永久保存。大中型的PACS则用不同类型的存储设备来实现不同的要求,通常以TB为存储单位,三甲级别医院,存储容量可高达几十TB。
3) 图像的调用与后处理功能
所有PACS图像资料最终目的都是为了对其进行调用和处理。数字化图像可直接在计算机的监示器上显示出来。监视器的分辨率、对比度、亮度、噪声及失真等性能直接影响数字化图像的质量,从而影响着最终诊断结果。由于医学图像信息量大,为了便于存贮和传输,提高PACS的效率,有必要对图像进行压缩处理,特别是对高分辨率的彩色图像更有必要压缩。