当前位置:首页 » 服务存储 » 计算机存储器电路原理
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

计算机存储器电路原理

发布时间: 2022-11-26 08:45:32

存储电路是如何工作的

存储器分为RAM(数据存储器)和ROM(程序存储器),他们工作原理都是一样的,即实现对电平0和1的存储。

存储电路的工作原理见下图,你可以把它看懂用自己的语言描述出来,这样你的报告就可以写出来了,然后大规模的存储电路集成起来可以构成存储器。

如果是应付写报告,我给你概括下吧,存储电路的工作原理是:存储电路是把送来的地址信号通过地址译码电路,在存储矩阵中选中相应的存储单元,将该单元存储的数据送到输出端口,为了实现存储器的扩展往往在存储器上加使能信号EN.大规模的存储电路集成封装起来就组成存储器。

❷ 存储器的原理是什么

存储器讲述工作原理及作用

介绍

存储器(Memory)是现代信息技术中用于保存信息的记忆设备。其概念很广,有很多层次,在数字系统中,只要能保存二进制数据的都可以是存储器;在集成电路中,一个没有实物形式的具有存储功能的电路也叫存储器,如RAM、FIFO等;在系统中,具有实物形式的存储设备也叫存储器,如内存条、TF卡等。计算机中全部信息,包括输入的原始数据、计算机程序、中间运行结果和最终运行结果都保存在存储器中。它根据控制器指定的位置存入和取出信息。有了存储器,计算机才有记忆功能,才能保证正常工作。计算机中的存储器按用途存储器可分为主存储器(内存)和辅助存储器(外存),也有分为外部存储器和内部存储器的分类方法。外存通常是磁性介质或光盘等,能长期保存信息。内存指主板上的存储部件,用来存放当前正在执行的数据和程序,但仅用于暂时存放程序和数据,关闭电源或断电,数据会丢失。

2.按存取方式分类

(1)随机存储器(RAM):如果存储器中任何存储单元的内容都能被随机存取,且存取时间与存储单元的物理位置无关,则这种存储器称为随机存储器(RAM)。RAM主要用来存放各种输入/输出的程序、数据、中间运算结果以及存放与外界交换的信息和做堆栈用。随机存储器主要充当高速缓冲存储器和主存储器。

(2)串行访问存储器(SAS):如果存储器只能按某种顺序来存取,也就是说,存取时间与存储单元的物理位置有关,则这种存储器称为串行访问存储器。串行存储器又可分为顺序存取存储器(SAM)和直接存取存储器(DAM)。顺序存取存储器是完全的串行访问存储器,如磁带,信息以顺序的方式从存储介质的始端开始写入(或读出);直接存取存储器是部分串行访问存储器,如磁盘存储器,它介于顺序存取和随机存取之间。

(3)只读存储器(ROM):只读存储器是一种对其内容只能读不能写入的存储器,即预先一次写入的存储器。通常用来存放固定不变的信息。如经常用作微程序控制存储器。目前已有可重写的只读存储器。常见的有掩模ROM(MROM),可擦除可编程ROM(EPROM),电可擦除可编程ROM(EEPROM).ROM的电路比RAM的简单、集成度高,成本低,且是一种非易失性存储器,计算机常把一些管理、监控程序、成熟的用户程序放在ROM中。

3.按信息的可保存性分类

非永久记忆的存储器:断电后信息就消失的存储器,如半导体读/写存储器RAM。

永久性记忆的存储器:断电后仍能保存信息的存储器,如磁性材料做成的存储器以及半导体ROM。

4.按在计算机系统中的作用分

根据存储器在计算机系统中所起的作用,可分为主存储器、辅助存储器、高速缓冲存储器、控制存储器等。为了解决对存储器要求容量大,速度快,成本低三者之间的矛盾,目前通常采用多级存储器体系结构,即使用高速缓冲存储器、主存储器和外存储器。

能力影响

从写命令转换到读命令,在某个时间访问某个地址,以及刷新数据等操作都要求数据总线在一定时间内保持休止状态,这样就不能充分利用存储器通道。此外,宽并行总线和DRAM内核预取都经常导致不必要的大数据量存取。在指定的时间段内,存储器控制器能存取的有用数据称为有效数据速率,这很大程度上取决于系统的特定应用。有效数据速率随着时间而变化,常低于峰值数据速率。在某些系统中,有效数据速率可下降到峰值速率的10%以下。

通常,这些系统受益于那些能产生更高有效数据速率的存储器技术的变化。在CPU方面存在类似的现象,最近几年诸如AMD和 TRANSMETA等公司已经指出,在测量基于CPU的系统的性能时,时钟频率不是唯一的要素。存储器技术已经很成熟,峰值速率和有效数据速率或许并不比以前匹配的更好。尽管峰值速率依然是存储器技术最重要的参数之一,但其他结构参数也可以极大地影响存储器系统的性能。

影响有效数据速率的参数

有几类影响有效数据速率的参数,其一是导致数据总线进入若干周期的停止状态。在这类参数中,总线转换、行周期时间、CAS延时以及RAS到CAS的延时(tRCD)引发系统结构中的大部分延迟问题。

总线转换本身会在数据通道上产生非常长的停止时间。以GDDR3系统为例,该系统对存储器的开放页不断写入数据。在这期间,存储器系统的有效数据速率与其峰值速率相当。不过,假设100个时钟周期中,存储器控制器从读转换到写。由于这个转换需要6个时钟周期,有效的数据速率下降到峰值速率的 94%。在这100个时钟周期中,如果存储器控制器将总线从写转换到读的话,将会丢失更多的时钟周期。这种存储器技术在从写转换到读时需要15个空闲周期,这会将有效数据速率进一步降低到峰值速率的79%。表1显示出针几种高性能存储器技术类似的计算结果。

显然,所有的存储器技术并不相同。需要很多总线转换的系统设计师可以选用诸如XDR、RDRAM或者DDR2这些更高效的技术来提升性能。另一方面,如果系统能将处理事务分组成非常长的读写序列,那么总线转换对有效带宽的影响最小。不过,其他的增加延迟现象,例如库(bank)冲突会降低有效带宽,对性能产生负面影响。

DRAM技术要求库的页或行在存取之前开放。一旦开放,在一个最小周期时间,即行周期时间(tRC)结束之前,同一个库中的不同页不能开放。对存储器开放库的不同页存取被称为分页遗漏,这会导致与任何tRC间隔未满足部分相关的延迟。对于还没有开放足够周期以满足tRC间隙的库而言,分页遗漏被称为库冲突。而tRC决定了库冲突延迟时间的长短,在给定的DRAM上可用的库数量直接影响库冲突产生的频率。

大多数存储器技术有4个或者8个库,在数十个时钟周期具有tRC值。在随机负载情况下,那些具有8个库的内核比具有4个库的内核所发生的库冲突更少。尽管tRC与库数量之间的相互影响很复杂,但是其累计影响可用多种方法量化。

存储器读事务处理

考虑三种简单的存储器读事务处理情况。第一种情况,存储器控制器发出每个事务处理,该事务处理与前一个事务处理产生一个库冲突。控制器必须在打开一个页和打开后续页之间等待一个tRC时间,这样增加了与页循环相关的最大延迟时间。在这种情况下的有效数据速率很大程度上决定于I/O,并主要受限于DRAM内核电路。最大的库冲突频率将有效带宽削减到当前最高端存储器技术峰值的20%到30%。

在第二种情况下,每个事务处理都以随机产生的地址为目标。此时,产生库冲突的机会取决于很多因素,包括tRC和存储器内核中库数量之间的相互作用。tRC值越小,开放页循环地越快,导致库冲突的损失越小。此外,存储器技术具有的库越多,随机地址存取库冲突的机率就越小。

第三种情况,每个事务处理就是一次页命中,在开放页中寻址不同的列地址。控制器不必访问关闭页,允许完全利用总线,这样就得到一种理想的情况,即有效数据速率等于峰值速率。

第一种和第三种情况都涉及到简单的计算,随机情况受其他的特性影响,这些特性没有包括在DRAM或者存储器接口中。存储器控制器仲裁和排队会极大地改善库冲突频率,因为更有可能出现不产生冲突的事务处理,而不是那些导致库冲突的事务处理。

然而,增加存储器队列深度未必增加不同存储器技术之间的相对有效数据速率。例如,即使增加存储器控制队列深度,XDR的有效数据速率也比 GDDR3高20%。存在这种增量主要是因为XDR具有更高的库数量以及更低的tRC值。一般而言,更短的tRC间隔、更多的库数量以及更大的控制器队列能产生更高的有效带宽。

实际上,很多效率限制现象是与行存取粒度相关的问题。tRC约束本质上要求存储器控制器从新开放的行中存取一定量的数据,以确保数据管线保持充满。事实上,为保持数据总线无中断地运行,在开放一个行之后,只须读取很少量的数据,即使不需要额外的数据。

另外一种减少存储器系统有效带宽的主要特性被归类到列存取粒度范畴,它规定了每次读写操作必须传输的数据量。与之相反,行存取粒度规定每个行激活(一般指每个RAS的CAS操作)需要多少单独的读写操作。列存取粒度对有效数据速率具有不易于量化的巨大影响。因为它规定一个读或写操作中需要传输的最小数据量,列存取粒度给那些一次只需要很少数据量的系统带来了问题。例如,一个需要来自两列各8字节的16字节存取粒度系统,必须读取总共32字节以存取两个位置。因为只需要32个字节中的16个字节,系统的有效数据速率降低到峰值速率的50%。总线带宽和脉冲时间长度这两个结构参数规定了存储器系统的存取粒度。

总线带宽是指连接存储器控制器和存储器件之间的数据线数量。它设定最小的存取粒度,因为对于一个指定的存储器事务处理,每条数据线必须至少传递一个数据位。而脉冲时间长度则规定对于指定的事务处理,每条数据线必须传递的位数量。每个事务处理中的每条数据线只传一个数据位的存储技术,其脉冲时间长度为1。总的列存取粒度很简单:列存取粒度=总线宽度×脉冲时间长度。

很多系统架构仅仅通过增加DRAM器件和存储总线带宽就能增加存储系统的可用带宽。毕竟,如果4个400MHz数据速率的连接可实现 1.6GHz的总峰值带宽,那么8个连接将得到3.2GHz。增加一个DRAM器件,电路板上的连线以及ASIC的管脚就会增多,总峰值带宽相应地倍增。

首要的是,架构师希望完全利用峰值带宽,这已经达到他们通过物理设计存储器总线所能达到的最大值。具有256位甚或512位存储总线的图形控制器已并不鲜见,这种控制器需要1,000个,甚至更多的管脚。封装设计师、ASIC底层规划工程师以及电路板设计工程师不能找到采用便宜的、商业上可行的方法来对这么多信号进行布线的硅片区域。仅仅增加总线宽度来获得更高的峰值数据速率,会导致因为列存取粒度限制而降低有效带宽。

假设某个特定存储技术的脉冲时间长度等于1,对于一个存储器处理,512位宽系统的存取粒度为512位(或者64字节)。如果控制器只需要一小段数据,那么剩下的数据就被浪费掉,这就降低了系统的有效数据速率。例如,只需要存储系统32字节数据的控制器将浪费剩余的32字节,进而导致有效的数据速率等于50%的峰值速率。这些计算都假定脉冲时间长度为1。随着存储器接口数据速率增加的趋势,大多数新技术的最低脉冲时间长度都大于1。

选择技巧

存储器的类型将决定整个嵌入式系统的操作和性能,因此存储器的选择是一个非常重要的决策。无论系统是采用电池供电还是由市电供电,应用需求将决定存储器的类型(易失性或非易失性)以及使用目的(存储代码、数据或者两者兼有)。另外,在选择过程中,存储器的尺寸和成本也是需要考虑的重要因素。对于较小的系统,微控制器自带的存储器就有可能满足系统要求,而较大的系统可能要求增加外部存储器。为嵌入式系统选择存储器类型时,需要考虑一些设计参数,包括微控制器的选择、电压范围、电池寿命、读写速度、存储器尺寸、存储器的特性、擦除/写入的耐久性以及系统总成本。

选择存储器时应遵循的基本原则

1、内部存储器与外部存储器

一般情况下,当确定了存储程序代码和数据所需要的存储空间之后,设计工程师将决定是采用内部存储器还是外部存储器。通常情况下,内部存储器的性价比最高但灵活性最低,因此设计工程师必须确定对存储的需求将来是否会增长,以及是否有某种途径可以升级到代码空间更大的微控制器。基于成本考虑,人们通常选择能满足应用要求的存储器容量最小的微控制器,因此在预测代码规模的时候要必须特别小心,因为代码规模增大可能要求更换微控制器。目前市场上存在各种规模的外部存储器器件,我们很容易通过增加存储器来适应代码规模的增加。有时这意味着以封装尺寸相同但容量更大的存储器替代现有的存储器,或者在总线上增加存储器。即使微控制器带有内部存储器,也可以通过增加外部串行EEPROM或闪存来满足系统对非易失性存储器的需求。

2、引导存储器

在较大的微控制器系统或基于处理器的系统中,设计工程师可以利用引导代码进行初始化。应用本身通常决定了是否需要引导代码,以及是否需要专门的引导存储器。例如,如果没有外部的寻址总线或串行引导接口,通常使用内部存储器,而不需要专门的引导器件。但在一些没有内部程序存储器的系统中,初始化是操作代码的一部分,因此所有代码都将驻留在同一个外部程序存储器中。某些微控制器既有内部存储器也有外部寻址总线,在这种情况下,引导代码将驻留在内部存储器中,而操作代码在外部存储器中。这很可能是最安全的方法,因为改变操作代码时不会出现意外地修改引导代码。在所有情况下,引导存储器都必须是非易失性存储器。

可以使用任何类型的存储器来满足嵌入式系统的要求,但终端应用和总成本要求通常是影响我们做出决策的主要因素。有时,把几个类型的存储器结合起来使用能更好地满足应用系统的要求。例如,一些PDA设计同时使用易失性存储器和非易失性存储器作为程序存储器和数据存储器。把永久的程序保存在非易失性ROM中,而把由用户下载的程序和数据存储在有电池支持的易失性DRAM中。不管选择哪种存储器类型,在确定将被用于最终应用系统的存储器之前,设计工程师必须仔细折中考虑各种设计因素。

❸ 简述SRAM,DRAM型存储器的工作原理

个人电脑的主要结构:
显示器
主机板
CPU
(微处理器)
主要储存器
(记忆体)
扩充卡
电源供应器
光盘机
次要储存器
(硬盘)
键盘
鼠标
尽管计算机技术自20世纪40年代第一台电子通用计算机诞生以来以来有了令人目眩的飞速发展,但是今天计算机仍然基本上采用的是存储程序结构,即冯·诺伊曼结构。这个结构实现了实用化的通用计算机。
存储程序结构间将一台计算机描述成四个主要部分:算术逻辑单元(ALU),控制电路,存储器,以及输入输出设备(I/O)。这些部件通过一组一组的排线连接(特别地,当一组线被用于多种不同意图的数据传输时又被称为总线),并且由一个时钟来驱动(当然某些其他事件也可能驱动控制电路)。
概念上讲,一部计算机的存储器可以被视为一组“细胞”单元。每一个“细胞”都有一个编号,称为地址;又都可以存储一个较小的定长信息。这个信息既可以是指令(告诉计算机去做什么),也可以是数据(指令的处理对象)。原则上,每一个“细胞”都是可以存储二者之任一的。
算术逻辑单元(ALU)可以被称作计算机的大脑。它可以做两类运算:第一类是算术运算,比如对两个数字进行加减法。算术运算部件的功能在ALU中是十分有限的,事实上,一些ALU根本不支持电路级的乘法和除法运算(由是使用者只能通过编程进行乘除法运算)。第二类是比较运算,即给定两个数,ALU对其进行比较以确定哪个更大一些。
输入输出系统是计算机从外部世界接收信息和向外部世界反馈运算结果的手段。对于一台标准的个人电脑,输入设备主要有键盘和鼠标,输出设备则是显示器,打印机以及其他许多后文将要讨论的可连接到计算机上的I/O设备。
控制系统将以上计算机各部分联系起来。它的功能是从存储器和输入输出设备中读取指令和数据,对指令进行解码,并向ALU交付符合指令要求的正确输入,告知ALU对这些数据做那些运算并将结果数据返回到何处。控制系统中一个重要组件就是一个用来保持跟踪当前指令所在地址的计数器。通常这个计数器随着指令的执行而累加,但有时如果指令指示进行跳转则不依此规则。
20世纪80年代以来ALU和控制单元(二者合成中央处理器,CPU)逐渐被整合到一块集成电路上,称作微处理器。这类计算机的工作模式十分直观:在一个时钟周期内,计算机先从存储器中获取指令和数据,然后执行指令,存储数据,再获取下一条指令。这个过程被反复执行,直至得到一个终止指令。
由控制器解释,运算器执行的指令集是一个精心定义的数目十分有限的简单指令集合。一般可以分为四类:1)、数据移动(如:将一个数值从存储单元A拷贝到存储单元B)2)、数逻运算(如:计算存储单元A与存储单元B之和,结果返回存储单元C)3)、条件验证(如:如果存储单元A内数值为100,则下一条指令地址为存储单元F)4)、指令序列改易(如:下一条指令地址为存储单元F)
指令如同数据一样在计算机内部是以二进制来表示的。比如说,10110000就是一条Intel
x86系列微处理器的拷贝指令代码。某一个计算机所支持的指令集就是该计算机的机器语言。因此,使用流行的机器语言将会使既成软件在一台新计算机上运行得更加容易。所以对于那些机型商业化软件开发的人来说,它们通常只会关注一种或几种不同的机器语言。
更加强大的小型计算机,大型计算机和服务器可能会与上述计算机有所不同。它们通常将任务分担给不同的CPU来执行。今天,微处理器和多核个人电脑也在朝这个方向发展。
超级计算机通常有着与基本的存储程序计算机显着区别的体系结构。它们通常由者数以千计的CPU,不过这些设计似乎只对特定任务有用。在各种计算机中,还有一些微控制器采用令程序和数据分离的哈佛架构(Harvard
architecture)。

❹ 各种存储器的工作原理是什么

1.按用途分类 ⑴内部存储器 内部存储器又叫内存,是主存储器。用来存储当前正在使用的或经常使用的程序和数据。CPU可以对他直接访问,存取速度较快。 ⑵外部存储器 外部存储器又叫外存,是辅助寄存器。外存的特点是容量大,所存的信息既可以修改也可以保存。存取速度较慢,要用专用的设备来管理。 计算机工作时,一般由内存ROM中的引导程序启动程序,再从外存中读取系统程序和应用程序,送到内存的RAM中,程序运行的中间结果放在RAM中,(内存不够是也可以放在外存中)程序的最终结果存入外部存储器。
2.按存储器的性质分类 ⑴RAM随机存取存储器(Random Access Memory) CPU根据RAM的地址将数据随机的写入或读出。电源切断后,所存数据全部丢失。按照集成电路内部结构不同,RAM又分为两类: ①SRAM静态RAM(Static RAM) 静态RAM速度非常快,只要电源存在内容就不会消失。但他的基本存储电路是由6个MOS管组成1位。集成度较低,功耗也较大。一般高速缓冲存储器(Cache memory)用它组成。 ②DRAM动态RAM(Dynamic RAM) DRAM内容在 或 秒之后自动消失,因此必须周期性的在内容消失之前进行刷新(Refresh)。由于他的基本存储电路由一个晶体管及一个电容组成,因此他的集成成本较低,另外耗电也少,但是需要刷新电路。⑵ROM只读存储器(Read Only Memory) ROM存储器将程序及数据固化在芯片中,数据只能读出不能写入。电源关掉,数据也不会丢失。ROM按集成电路的内部结构可以分为:①PROM可编程ROM(Programable ROM )将设计的程序固化进去,ROM内容不可更改。②EPROM可擦除、可编程(Erasable PROM)可编程固化程序,且在程序固化后可通过紫外线光照擦除,以便重新固化新数据。③EEPROM电可擦除可编程(Electrically Erasable PROM) 可编程固化程序,并可利用电压来擦除芯片内容,以便重新固化新数据。 3、按存储介质分
(1)半导体存储器。 存储元件由半导体器件组成的叫半导体存储器。其优点是体积小、功耗低、存取时间短。其缺点是当电源消失时,所存信息也随即丢失,是一种易失性存储器。
半导体存储器又可按其材料的不同, 分为双极型(TTL)半导体存储器和MOS半导体存储器两种。 前者具有高速的特点,而后者具有高集成度的特点,并且制造简单、成本低廉, 功耗小、故MOS半导体存储器被广泛应用。 (2)磁表面存储器。 磁表面存储器是在金属或塑料基体的表面上涂一层磁性材料作为记录介质,工作时磁层随载磁体高速运转,用磁头在磁层上进行读写操作,故称为磁表面存储器。
按载磁体形状的不同,可分为磁盘、磁带和磁鼓。现代计算机已很少采用磁鼓。由于用具有矩形磁滞回线特性的材料作磁表面物质,它们按其剩磁状态的不同而区分“0”或“1”,而且剩磁状态不会轻易丢失,故这类存储器具有非易失性的特点。
(3)光盘存储器。 光盘存储器是应用激光在记录介质(磁光材料)上进行读写的存储器,具有非易失性的特点。光盘记录密度高、耐用性好、可靠性高和可互换性强等。 4、按存取方式分类
按存取方式可把存储器分为随机存储器、只读存储器、顺序存储器和直接存取存储器四类。
(1)随机存储器RAM RAM是一种可读写存储器, 其特点是存储器的任何一个存储单元的内容都可以随机存取,而且存取时间与存储单元的物理位置无关。计算机系统中的主存都采用这种随机存储器。由于存储信息原理的不同, RAM又分为静态RAM (以触发器原理寄存信息)和动态RAM(以电容充放电原理寄存信息)。
(2)只读存储器 只读存储器是能对其存储的内容读出,而不能对其重新写入的存储器。这种存储器一旦存入了原始信息后,在程序执行过程中,只能将内部信息读出,而不能随意重新写入新的信息去改变原始信息。因此,通常用它存放固定不变的程序、常数以及汉字字库,甚至用于操作系统的固化。它与随机存储器可共同作为主存的一部分,统一构成主存的地址域。
只读存储器分为掩膜型只读存储器MROM(Masked ROM)、可编程只读存储器PROM(Programmable ROM)、可擦除可编程只读存储器EPROM(Erasable Programmable ROM)、用电可擦除可编程的只读存储器EEPROM(Electrically Erasable Programmable ROM)。以及近年来出现了的快擦型存储器Flash Memory,它具有EEPROM的特点,而速度比EEPROM快得多。
(3)串行访问存储器 如果对存储单元进行读写操作时,需按其物理位置的先后顺序寻找地址,则这种存储器叫做串行访问存储器。显然这种存储器由于信息所在位置不同,使得读写时间均不相同。如磁带存储器,不论信息处在哪个位置,读写时必须从其介质的始端开始按顺序寻找,故这类串行访问的存储器又叫顺序存取存储器。还有一种属于部分串行访问的存储器,如磁盘。在对磁盘读写时,首先直接指出该存储器中的某个小区域(磁道),然后再顺序寻访,直至找到位置。故其前段是直接访问,后段是串行访问,也称其为半顺序存取存储器。

❺ 什么是存储器工作原理是什么

存储器是现代信息技术中用于保存信息的记忆设备,那么你对存储器了解多少呢?以下是由我整理关于什么是存储器,希望大家喜欢!

存储器的简介

存储器的主要功能是存储程序和各种数据,并能在计算机运行过程中高速、自动地完成程序或数据的存取。存储器是具有“记忆”功能的设备,它采用具有两种稳定状态的物理器件来存储信息。这些器件也称为记忆元件。在计算机中采用只有两个数码“0”和“1”的二进制来表示数据。记忆元件的两种稳定状态分别表示为“0”和“1”。日常使用的十进制数必须转换成等值的二进制数才能存入存储器中。计算机中处理的各种字符,例如英文字母、运算符号等,也要转换成二进制代码才能存储和操作。

存储器:存放程序和数据的器件

存储位:存放一个二进制数位的存储单元,是存储器最小的存储单位,或称记忆单元

存储字:一个数(n位二进制位)作为一个整体存入或取出时,称存储字

存储单元:存放一个存储字的若干个记忆单元组成一个存储单元

存储体:大量存储单元的集合组成存储体

存储单元地址:存储单元的编号

字编址:对存储单元按字编址

字节编址:对存储单元按字节编址

寻址:由地址寻找数据,从对应地址的存储单元中访存数据。

以存储体(大量存储单元组成的阵列)为核心,加上必要的地址译码、读写控制电路,即为存储集成电路;再加上必要的I/O接口和一些额外的电路如存取策略管理,则形成存储芯片,比如手机中常用的存储芯片。得益于新的IC制造或芯片封装工艺,现在已经有能力把DRAM和FLASH存储单元集成在单芯片里。存储芯片再与控制芯片(负责复杂的存取控制、存储管理、加密、与其他器件的配合等)及时钟、电源等必要的组件集成在电路板上构成整机,就是一个存储产品,如U盘。从存储单元(晶体管阵列)到存储集成电路再到存储设备,都是为了实现信息的存储,区别是层次的不同。

存储器的构成

构成存储器的存储介质,存储元,它可存储一个二进制代码。由若干个存储元组成一个存储单元,然后再由许多存储单元组成一个存储器。一个存储器包含许多存储单元,每个存储单元可存放一个字节(按字节编址)。每个存储单元的位置都有一个编号,即地址,一般用十六进制表示。一个存储器中所有存储单元可存放数据的总和称为它的存储容量。假设一个存储器的地址码由20位二进制数(即5位十六进制数)组成,则可表示2的20次方,即1M个存储单元地址。每个存储单元存放一个字节,则该存储器的存储容量为1MB。

存储器的工作原理

这里只介绍动态存储器(DRAM)的工作原理。

动态存储器每片只有一条输入数据线,而地址引脚只有8条。为了形成64K地址,必须在系统地址总线和芯片地址引线之间专门设计一个地址形成电路。使系统地址总线信号能分时地加到8个地址的引脚上,借助芯片内部的行锁存器、列锁存器和译码电路选定芯片内的存储单元,锁存信号也靠着外部地址电路产生。

当要从DRAM芯片中读出数据时,CPU首先将行地址加在A0-A7上,而后送出RAS锁存信号,该信号的下降沿将地址锁存在芯片内部。接着将列地址加到芯片的A0-A7上,再送CAS锁存信号,也是在信号的下降沿将列地址锁存在芯片内部。然后保持WE=1,则在CAS有效期间数据输出并保持。

当需要把数据写入芯片时,行列地址先后将RAS和CAS锁存在芯片内部,然后,WE有效,加上要写入的数据,则将该数据写入选中的存贮单元。

由于电容不可能长期保持电荷不变,必须定时对动态存储电路的各存储单元执行重读操作,以保持电荷稳定,这个过程称为动态存储器刷新。PC/XT机中DRAM的刷新是利用DMA实现的。首先应用可编程定时器8253的计数器1,每隔1⒌12μs产生一次DMA请求,该请求加在DMA控制器的0通道上。当DMA控制器0通道的请求得到响应时,DMA控制器送出到刷新地址信号,对动态存储器执行读操作,每读一次刷新一行。

存储器的分类

按存储介质

半导体存储器:用半导体器件组成的存储器。

磁表面存储器:用磁性材料做成的存储器。

按存储方式

随机存储器:任何存储单元的内容都能被随机存取,且存取时间和存储单元的物理位置无关。

顺序存储器:只能按某种顺序来存取,存取时间和存储单元的物理位置有关。

按读写功能

只读存储器(ROM):存储的内容是固定不变的,只能读出而不能写入的半导体存储器。

随机读写存储器(RAM):既能读出又能写入的半导体存储器。

按信息保存性

非永久记忆的存储器:断电后信息即消失的存储器。

永久记忆性存储器:断电后仍能保存信息的存储器。

按用途

根据存储器在计算机系统中所起的作用,可分为主存储器、辅助存储器、高速缓冲存储器、控制存储器等。

为了解决对存储器要求容量大,速度快,成本低三者之间的矛盾,通常采用多级存储器体系结构,即使用高速缓冲存储器、主存储器和外存储器。

用途特点

高速缓冲存储器Cache 高速存取指令和数据存取速度快,但存储容量小

主存储器内存存放计算机运行期间的大量程序和数据存取速度较快,存储容量不大

外存储器外存存放系统程序和大型数据文件及数据库存储容量大,位成本低


❻ 电脑存储设备的储存原理是什么!

电脑的存储设备由两部分构成,一部分是主存储器,即内存,它可以直接与CPU交换数据,读取快,但断电后数据不能保存;另一部分是辅助存储器,也叫外存储器,它不能直接与CPU交换数据,如硬盘、软盘、光盘等,软硬盘是靠磁记录信息的,是同心圆,光盘是光介质,它是一条渐开线,二者的介质不同。早期的电脑是内存大外存小,现在是外存大内存小。满意就顶一下。

❼ 存储器的工作原理是什么

动态读写存贮器(DRAM),以其速度快、集成度高、功耗小、价格低在微型计算机中得到极其广泛地使用。但动态存储器同静态存储器有不同的工作原理。它是靠内部寄生电容充放电来记忆信息,电容充有电荷为逻辑1,不充电为逻辑0。欲深入了解动态RAM的基本原理请点击。 动态存储器有多种系列,如61系列、37系列、41系列、21系列等。图示为2164芯片的引脚图。将鼠标指向相应引脚可看到其对引脚功能。它是一个64K 1bit的DRAM芯片,将8片并接起来,可以构成64KB的动态存储器。
每片只有一条输入数据线,而地址引脚只有8条。为了形成64K地址,必须在系统地址总线和芯片地址引线之间专门设计一个地址形成电路。使系统地址总线信号能分时地加到8个地址的引脚上,借助芯片内部的行锁存器、列锁存器和译码电路选定芯片内的存储单元,锁存信号也靠着外部地址电路产生。
当要从DRAM芯片中读出数据时,CPU 首先将行地址加在A0-A7上,而后送出RAS 锁存信号,该信号的下降沿将地址锁存在芯片内部。接着将列地址加到芯片的A0-A7上,再送CAS锁存信号,也是在信号的下降沿将列地址锁存在芯片内部。然后保持WE=1,则在CAS有效期间数据输出并保持。
当需要把数据写入芯片时,行列地址先后将RAS和CAS锁存在芯片内部,然后,WE有效,加上要写入的数据,则将该数据写入选中的存贮单元。
由于电容不可能长期保持电荷不变,必须定时对动态存储电路的各存储单元执行重读操作,以保持电荷稳定,这个过程称为动态存储器刷新。PC/XT机中DRAM的刷新是利用DMA实现的。首先应用可编程定时器8253的计数器1,每隔1⒌12μs产生一次DMA请求,该请求加在DMA控制器的0通道上。当DMA控制器0通道的请求得到响应时,DMA控制 器送出到刷新地址信号,对动态存储器执行读操作,每读一次刷新一行。
只读存贮器(ROM)有多种类型。由于EPROM和EEPROM存贮容量大,可多次擦除后重新对它进行编程而写入新的内容,使用十分方便。尤其是厂家为用户提供了单独地擦除器、编程器或插在各种微型机上的编程卡,大大方便了用户。因此,这种类型的只读存贮器得到了极其广泛的应用。7. RAM的工作时序
为保证存储器准确无误地工作,加到存储器上的地址、数据和控制信号必须遵守几个时间边界条件。
图7.1—3示出了RAM读出过程的定时关系。读出操作过程如下:
欲读出单元的地址加到存储器的地址输入端;
加入有效的选片信号CS;
在 线上加高电平,经过一段延时后,所选择单元的内容出现在I/O端;
让选片信号CS无效,I/O端呈高阻态,本次读出过程结束。
由于地址缓冲器、译码器及输入/输出电路存在延时,在地址信号加到存储器上之后,必须等待一段时间tAA,数据才能稳定地传输到数据输出端,这段时间称为地址存取时间。如果在RAM的地址输入端已经有稳定地址的条件下,加入选片信号,从选片信号有效到数据稳定输出,这段时间间隔记为tACS。显然在进行存储器读操作时,只有在地址和选片信号加入,且分别等待tAA和tACS以后,被读单元的内容才能稳定地出现在数据输出端,这两个条件必须同时满足。图中tRC为读周期,他表示该芯片连续进行两次读操作必须的时间间隔。
写操作的定时波形如图7.1—4所示。写操作过程如下:
将欲写入单元的地址加到存储器的地址输入端;
在选片信号CS端加上有效电平,使RAM选通;
将待写入的数据加到数据输入端;
在 线上加入低电平,进入写工作状态;
使选片信号无效,数据输入线回到高阻状态。
由于地址改变时,新地址的稳定需要经过一段时间,如果在这段时间内加入写控制信号(即 变低),就可能将数据错误地写入其他单元。为防止这种情况出现,在写控制信号有效前,地址必须稳定一段时间tAS,这段时间称为地址建立时间。同时在写信号失效后,地址信号至少还要维持一段写恢复时间tWR。为了保证速度最慢的存储器芯片的写入,写信号有效的时间不得小于写脉冲宽度tWP。此外,对于写入的数据,应在写信号tDW时间内保持稳定,且在写信号失效后继续保持tDH时间。在时序图中还给出了写周期tWC,它反应了连续进行两次写操作所需要的最小时间间隔。对大多数静态半导体存储器来说,读周期和写周期是相等的,一般为十几到几十ns。
ddr一个时钟周期内穿2次数据
ddr2一个时钟周期传4次
所以相同频率下ddr2的带宽是ddr的2倍

❽ 计算机储存原理

动态存储器(DRAM)的工作原理

动态存储器每片只有一条输入数据线,而地址引脚只有8条。为了形成64K地址,必须在系统地址总线和芯片地址引线之间专门设计一个地址形成电路。使系统地址总线信号能分时地加到8个地址的引脚上,借助芯片内部的行锁存器、列锁存器和译码电路选定芯片内的存储单元,锁存信号也靠着外部地址电路产生。

当要从DRAM芯片中读出数据时,CPU首先将行地址加在A0-A7上,而后送出RAS锁存信号,该信号的下降沿将地址锁存在芯片内部。接着将列地址加到芯片的A0-A7上,再送CAS锁存信号,也是在信号的下降沿将列地址锁存在芯片内部。然后保持WE=1,则在CAS有效期间数据输出并保持。

当需要把数据写入芯片时,行列地址先后将RAS和CAS锁存在芯片内部,然后,WE有效,加上要写入的数据,则将该数据写入选中的存贮单元。

由于电容不可能长期保持电荷不变,必须定时对动态存储电路的各存储单元执行重读操作,以保持电荷稳定,这个过程称为动态存储器刷新。PC/XT机中DRAM的刷新是利用DMA实现的。

首先应用可编程定时器8253的计数器1,每隔1⒌12μs产生一次DMA请求,该请求加在DMA控制器的0通道上。当DMA控制器0通道的请求得到响应时,DMA控制器送出到刷新地址信号,对动态存储器执行读操作,每读一次刷新一行。

(8)计算机存储器电路原理扩展阅读

描述内、外存储容量的常用单位有:

1、位/比特(bit):这是内存中最小的单位,二进制数序列中的一个0或一个1就是一比比特,在电脑中,一个比特对应着一个晶体管。

2、字节(B、Byte):是计算机中最常用、最基本的存在单位。一个字节等于8个比特,即1 Byte=8bit。

3、千字节(KB、Kilo Byte):电脑的内存容量都很大,一般都是以千字节作单位来表示。1KB=1024Byte。

4、兆字节(MBMega Byte):90年代流行微机的硬盘和内存等一般都是以兆字节(MB)为单位。1 MB=1024KB。

5、吉字节(GB、Giga Byte):市场流行的微机的硬盘已经达到430GB、640GB、810GB、1TB等规格。1GB=1024MB。

6、太字节(TB、Tera byte):1TB=1024GB。最新有了PB这个概念,1PB=1024TB。

❾ 存储器的电路原理是什么

存储器中最小的存储单位就是一个双稳态半导体电路或一个CMOS晶体管或磁性材料的存储元,它可存储一个二进制代码。由若干个存储元组成一个存储单元,然后再由许多存储单元组成一个存储器。一个存储器包含许多存储单元,每个存储单元可存放一个字节(按字节编址)。每个存储单元的位置都有一个编号,即地址,一般用十六进制表示。一个存储器中所有存储单元可存放数据的总和称为它的存储容量。假设一个存储器的地址码由20位二进制数(即5位十六进制数)组成,则可表示2的20次方,即1M个存储单元地址。每个存储单元存放一个字节,则该存储器的存储容量为1MB。

❿ 计算机的存储程序工作原理是什么

计算机的基本原理是:

存储程序和程序控制。

预先要把指挥计算机如何进行操作的指令序列(称为程序)和原始数据通过输入设备输送到计算机内存贮器中。

每一条指令中明确规定了计算机从哪个地址取数,进行什么操作,然后送到什么地址去等步骤。

1计算机在运行时,先从内存中取出第一条指令,通过控制器的译码,按指令的要求,从存储器中取出数据进行指定的运算和逻辑操作等加工,然后再按地址把结果送到内存中去。

2接下来,再取出第二条指令,在控制器的指挥下完成规定操作。依此进行下去。直至遇到停止指令。

3程序与数据一样存贮,按程序编排的顺序,一步一步地取出指令,自动地完成指令规定的操作是计算机最基本的工作原理。

4这一原理最初是由美籍匈牙利数学家冯.诺依曼于1945年提出来的,故称为冯.诺依曼原理。