当前位置:首页 » 服务存储 » 自举效应nand存储
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

自举效应nand存储

发布时间: 2022-10-10 22:48:21

1. 自举电路的原理

举个简单的例子:有一个12V的电路,电路中有一个场效应管需要15V的驱动电压,这个电压怎么弄出来?就是用自举。通常用一个电容和一个二极管,电容存储电荷,二极管防止电流倒灌,频率较高的时候,自举电路的电压就是电路输入的电压加上电容上的电压,起到升压的作用。
自举电路只是在实践中定的名称,在理论上没有这个概念。自举电路主要是在甲乙类单电源互补对称电路中使用较为普遍。甲乙类单电源互补对称电路在理论上可以使输出电压Vo达到Vcc的一半,但在实际的测试中,输出电压远达不到Vcc的一半。其中重要的原因就需要一个高于Vcc的电压。所以采用自举电路来升压。
常用自举电路(摘自fairchild,使用说明书AN-6076《供高电压栅极驱动器IC 使用的自举电路的设计和使用准则》)
开关直流升压电路(即所谓的boost或者step-up电路)原理
the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。基本电路图见图1.
假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。下面要分充电和放电两个部分来说明这个电路。

2. 电路升压的原理是什么

自举升压电路的原理:

举个简单的例子:有一个12V的电路,电路中有一个场效应管需要15V的驱动电压,这个电压弄出来就是用自举。通常用一个电容和一个二极管,电容存储电荷,二极管防止电流倒灌,频率较高的时候,自举电路的电压就是电路输入的电压加上电容上的电压,起到升压的作用。

自举电路只是在实践中定的名称,在理论上没有这个概念。自举电路主要是在甲乙类单电源互补对称电路中使用较为普遍。

甲乙类单电源互补对称电路在理论上可以使输出电压Vo达到Vcc的一半,但在实际的测试中,输出电压远达不到Vcc的一半。其中重要的原因就需要一个高于Vcc的电压。所以采用自举电路来升压。

(2)自举效应nand存储扩展阅读:

常用自举电路(摘自fairchild,使用说明书AN-6076《供高电压栅极驱动器IC 使用的自举电路的设计和使用准则》)

开关直流升压电路(即所谓的boost或者step-up电路)原理the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。基本电路图见图1.

假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。下面要分充电和放电两个部分来说明这个电路。

3. 什么是自举电路

1,自举电容是利用电容两端电压不能突变的特性,当电容两端保持有一定电压时,提高电容负端电压,正端电压仍保持于负端的原始压差,等于正端的电压被负端举起来了。实际就是正反馈电容,用于抬高供电电压。自举电容就是一个自举电路。
2,自举电路也叫升压电路,利用自举升压二极管,自举升压电容等电子元件,使电容放电电压和电源电压叠加,从而使电压升高.有的电路升高的电压能达到数倍电源电压。
3,原理

举个简单的例子:有一个12V的电路,电路中有一个场效应管需要15V的驱动电压,这个电压怎么弄出来?就是用自举。通常用一个电容和一个二极管,电容存储电荷,二极管防止电流倒灌,频率较高的时候,自举电路的电压就是电路输入的电压加上电容上的电压,起到升压的作用。
自举电路只是在实践中定的名称,在理论上没有这个概念。自举电路主要是在甲乙类单电源互补对称电路中使用较为普遍。甲乙类单电源互补对称电路在理论上可以使输出电压Vo达到Vcc的一半,但在实际的测试中,输出电压远达不到Vcc的一半。其中重要的原因就需要一个高于Vcc的电压。所以采用自举电路来升压。
常用自举电路(摘自fairchild,使用说明书AN-6076《供高电压栅极驱动器IC 使用的自举电路的设计和使用准则》)
开关直流升压电路
开关直流升压电路
开关直流升压电路(即所谓的boost或者step-up电路)原理
the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。基本电路图见图1.
假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。下面要分充电和放电两个部分来说明这个电路。

4. CMOS、Cache、Bios的作用分别是什么

电脑CMOS

CMOS是Complementary Metal Oxide Semiconctor(互补金属氧化物半导体)的缩写。它是指制造大规模集成电路芯片用的一种技术或用这种技术制造出来的芯片。是电脑主板上的一块可读写的RAM芯片。因为可读写的特性,所以在电脑主板上用来保存BIOS设置完电脑硬件参数后的数据,这个芯片仅仅是用来存放数据的。
CMOS(本意是指互补金属氧化物半导体——一种大规模应用于集成电路芯片制造的原料)是微机主板上的一块可读写的RAM芯 片,用来保存当前系统的硬件配置和用户对某些参数的设定。CMOS可由主板的电池供电,即使系统掉电,信息也不会丢失。 CMOS RAM本身只是一块存储器,只有数据保存功能,而对CMOS中各项参数的设定要通过专门的程序。早期的CMOS设置程序驻留 在软盘上的(如IBM的PC/AT机型),使用很不方便。现在多数厂家将CMOS设置程序做到了BIOS芯片中,在开机时通过特定的按键 就可进入CMOS设置程序方便地对系统进行设置,因此CMOS设置又被叫做BIOS设置。 早期的CMOS是一块单独的芯片MC146818A(DIP封装),共有64个字节存放系统信息,见CMOS配置数据表。386以后的微机一般将 MC146818A芯片集成到其它的IC芯片中(如82C206,PQFP封装),最新的一些586主板上更是将CMOS与系统实时时钟和后备电池集 成到一块叫做DALLDA DS1287的芯片中。随着微机的发展、可设置参数的增多,现在的CMOS RAM一般都有128字节及至256字节 的容量。为保持兼容性,各BIOS厂商都将自己的BIOS中关于CMOS RAM的前64字节内容的设置统一与MC146818A的CMOS RAM格式 一致,而在扩展出来的部分加入自己的特殊设置,所以不同厂家的BIOS芯片一般不能互换,即使是能互换的,互换后也要对 CMOS信息重新设置以确保系统正常运行. 你认识主板上的BIOS芯片吗? 介绍常见的BIOS芯片的识别 ROM BIOS是主板上存放微机基本输入输出程序的只读存贮器,其功能是微机的上电自检、开机引导、基本外设I/O和系统CMOS 设置。 主板上的ROM BIOS芯片是主板上唯一贴有标签的芯片,一般为双排直插式封装(DIP),上面印有“BIOS”字样。虽然有些BIOS 芯片没有明确印出“BIOS”,但凭借外贴的标签也能很容易地将它认出。 586以前的BIOS多为可重写EPROM芯片,上面的标签起着保护BIOS内容的作用(紫外线照射会使EPROM内容丢失),不能随便撕下。 586以后的ROM BIOS多采用EEPROM(电可擦写只读ROM),通过跳线开关和系统配带的驱动程序盘,可以对EEPROM进行重写,方便 地实现BIOS升级。 常见的BIOS芯片有AMI、Award、Phoenix等,在芯片上都能见到厂商的标记。
现在的CMOS芯片通常都集成在主板的BIOS芯片里面(所以主板上一般看不到CMOS芯片,只能看到BIOS芯片
平时说的BIOS设置和CMOS设置其实都是一回事,就是通过BIOS程序对电脑硬件进行设置,设置好的参数放在CMOS芯片里面。但是CMOS芯片和BIOS芯片却是完全不同的概念。

CACHE
cache高速缓冲存储器 一种特殊的存储器子系统,其中复制了频繁使用的数据以利于快速访问。存储器的高速缓冲存储器存储了频繁访问的 RAM 位置的内容及这些数据项的存储地址。当处理器引用存储器中的某地址时,高速缓冲存储器便检查是否存有该地址。如果存有该地址,则将数据返回处理器;如果没有保存该地址,则进行常规的存储器访问。因为高速缓冲存储器总是比主RAM 存储器速度快,所以当 RAM 的访问速度低于微处理器的速度时,常使用高速缓冲存储器。

cache是一个高速小容量的临时存储器,可以用高速的静态存储器芯片实现,或者集成到CPU芯片内部,存储CPU最经常访问的指令或者操作数据。
cache的基本原理
CPU与cache之间的数据交换是以字为单位,而cache与主存之间的数据交换是以块为单位。一个块由若干定长字组成的。当CPU读取主存中一个字时,便发出此字的内存地址到cache和主存。此时cache控制逻辑依据地址判断此字当前是否在 cache中:若是,此字立即传送给CPU;若非,则用主存读周期把此字从主存读出送到CPU,与此同时,把含有这个字的整个数据块从主存读出送到cache中。由始终管理cache使用情况的硬件逻辑电路来实现LRU替换算法

BIOS

BIOS设置程序是储存在BIOS芯片中的,只有在开机时才可以进行设置。CMOS主要用于存储BIOS设置程序所设置的参数与数据,而BIOS设置程序主要对计算机的基本输入输出系统进行管理和设置,使系统运行在最好状态下,使用BIOS设置程序还可以排除系统故障或者诊断系统问题。 有人认为既然BIOS是"程序",那它就应该是属于软件,感觉就像自己常用的Word或Excel。但也有很多人不这么认为,因为它与一般的软件还是有一些区别,而且它与硬件的联系也是相当地紧密。形象地说,BIOS应该是连接软件程序与硬件设备的一座"桥梁",负责解决硬件的即时要求。主板上的BIOS芯片或许是主板上唯一贴有标签的芯片,一般它是一块32针的双列直插式的集成电路,上面印有"BIOS"字样。586以前的BIOS多为可重写EPROM芯片,上面的标签起着保护BIOS内容的作用(紫外线照射会使EPROM内容丢失),不能随便撕下。586以后的ROM BIOS多采用EEPROM(电可擦写只读ROM),通过跳线开关和系统配带的驱动程序盘,可以对EEPROM进行重写,方便地实现BIOS升级。 计算机用户在使用计算机的过程中,都会接触到BIOS,它在计算机系统中起着非常重要的作用。一块主板性能优越与否,很大程度上取决于主板上的BIOS管理功能是否先进。
BIOS芯片是主板上一块长方型或正方型芯片,BIOS中主要存放:
自诊断程序/(加电自检程序):通过读取CMOS RAM中的内容识别硬件配置,并对其进行自检和初始化;
CMOS设置程序:引导过程中,用特殊热键启动,进行设置后,存入CMOS RAM中;
系统自举装载程序:在自检成功后将磁盘相对0道0扇区上的引导程序装入内存,让其运行以装入DOS系统;
主要I/O设备的驱动程序和中断服务/(基本外围设备的驱动程序): 由于BIOS直接和系统硬件资源打交道,因此总是针对某一类型的硬件系统,而各种硬件系统又各有不同,所以存在各种不同种类的BIOS,随着硬件技术的发展,同一种BIOS也先后出现了不同的版本,新版本的BIOS比起老版本来说,功能更强。

5. 电容的作用是什么

电容的作用是:

1、旁路

旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。就像小型可充电电池一样,旁路电容能够被充电,并向器件进行放电。这能够很好的防止输入值过大而导致的地电位抬高和噪声。地电位是地连接处在通过大电流毛刺时的电压降。

2、去耦

去耦电容就是起到一个“电池”的作用,满足驱动电路电流的变化,避免相互间的耦合干扰,在电路中进一步减小电源与参考地之间的高频干扰阻抗。

3、滤波

电容越大高频越容易通过。具体用在滤波中,大电容(1000μF)滤低频,小电容(20pF)滤高频。由于电容的两端电压不会突变,由此可知,信号频率越高则衰减越大。它把电压的变动转化为电流的变化,频率越高,峰值电流就越大,从而缓冲了电压。滤波就是充电,放电的过程。

4、储能

储能型电容器通过整流器收集电荷,并将存储的能量通过变换器引线传送至电源的输出端。根据不同的电源要求,器件有时会采用串联、并联或其组合的形式, 对于功率级超过10KW 的电源,通常采用体积较大的罐形螺旋端子电容器。

概念:

电容(或称电容量)是表现电容器容纳电荷本领的物理量。电容从物理学上讲,它是一种静态电荷存储介质,可能电荷会永久存在,这是它的特征。

它的用途较广,它是电子、电力领域中不可缺少的电子元件。主要用于电源滤波、信号滤波、信号耦合、谐振、滤波、补偿、充放电、储能、隔直流等电路中。

6. 电视中,什么是自举升压电路

自举升压电路一般是采用电容藕合,将放大器自身的输出信号电压与电源电压叠加,使输出级的供电或驱动电位抬高,从而提高输出信号摆幅和电源利用率的电路结构。升压跟随信号,犹如信号抬高了自已,所以称自举升压。

7. 什么叫自举电路

【原理】自举电路也叫升压电路,利用自举升压二极管,自举升压电容等电子元件,使电容放电电压和电源电压叠加,从而使电压升高.有的电路升高的电压能达到数倍电源电压。
【举例】有一个12V的电路,电路中有一个场效应管需要15V的驱动电压,这个电压就是用自举。通常用一个电容和一个二极管,电容存储电荷,二极管防止电流倒灌,频率较高的时候,自举电路的电压就是电路输入的电压加上电容上的电压,起到升压的作用。

8. 电容的作用是什么

电容(或称电容量)是表现电容器容纳电荷本领的物理量。我们把电容器的两极板间的电势差增加1伏所需的电量,叫做电容器的电容。电容器从物理学上讲,它是一种静态电荷存储介质(就像一只水桶一样,你可以把电荷充存进去,在没有放电回路的情况下,刨除介质漏电自放电效应(电解电容比较明显),可能电荷会永久存在,这是它的特征,它的用途较广,它是电子、电力领域中不可缺少的电子元件。主要用于电源滤波、信号滤波、信号耦合、谐振、隔直流等电路中。
实际应用
电子制作中需要用到各种各样的电容器,它们在电路中分别起着不同的作用。与电阻器相似,通常简称其为电容,用字母C表示。顾名思义,电容器就是“储存电荷的容器”。尽管电容器品种繁多,但它们的基本结构和原理是相同的。两片相距很近的金属中间被某物质(固体、气体或液体)所隔开,就构成了电容器。两片金属称为极板,中间的物质叫做介质。电容器也分为容量固定的与容量可变的。但常见的是固定容量的电容,最多见的是电解电容和瓷片电容。 不同的电容器储存电荷的能力也不相同。规定把电容器外加1伏特直流电压时所储存的电荷量称为该电容器的电容量。电容的基本单位为法拉(F)。但实际上,法拉是一个很不常用的单位,因为电容器的容量往往比1法拉小得多,常用微法(μF)、纳法(nF)、皮法(pF)(皮法又称微微法)等,它们的关系是:1法拉(F)= 1000000微法(μF) 1微法(μF)= 1000纳法(nF)= 1000000皮法(pF) 在电子线路中,电容用来通过交流而阻隔直流,也用来存储和释放电荷以充当滤波器,平滑输出脉动信号。小容量的电容,通常在高频电路中使用,如收音机、发射机和振荡器中。大容量的电容往往是作滤波和存储电荷用。而且还有一个特点,一般1μF以上的电容均为电解电容,而1μF以下的电容多为瓷片电容,当然也有其他的,比如独石电容、涤纶电容、小容量的云母电容等。电解电容有个铝壳,里面充满了电解质,并引出两个电极,作为正(+)、负(-)极,与其它电容器不同,它们在电路中的极性不能接错,而其他电容则没有极性。 把电容器的两个电极分别接在电源的正、负极上,过一会儿即使把电源断开,两个引脚间仍然会有残留电压(学了以后的教程,可以用万用表观察),我们说电容器储存了电荷。电容器极板间建立起电压,积蓄起电能,这个过程称为电容器的充电。充好电的电容器两端有一定的电压。电容器储存的电荷向电路释放的过程,称为电容器的放电。 举一个现实生活中的例子,我们看到市售的整流电源在拔下插头后,上面的发光二极管还会继续亮一会儿,然后逐渐熄灭,就是因为里面的电容事先存储了电能,然后释放。当然这个电容原本是用作滤波的。至于电容滤波,不知你有没有用整流电源听随身听的经历,一般低质的电源由于厂家出于节约成本考虑使用了较小容量的滤波电容,造成耳机中有嗡嗡声。这时可以在电源两端并接上一个较大容量的电解电容(1000μF,注意正极接正极),一般可以改善效果。发烧友制作HiFi音响,都要用至少1万微法以上的电容器来滤波,滤波电容越大,输出的电压波形越接近直流,而且大电容的储能作用,使得突发的大信号到来时,电路有足够的能量转换为强劲有力的音频输出。这时,大电容的作用有点像水库,使得原来汹涌的水流平滑地输出,并可以保证下游大量用水时的供应。电子电路中,只有在电容器充电过程中,才有电流流过,充电过程结束后,电容器是不能通过直流电的,在电路中起着“隔直流”的作用。电路中,电容器常被用作耦合、旁路、滤波等,都是利用它“通交流,隔直流”的特性。那么交流电为什么能够通过电容器呢?我们先来看看交流电的特点。交流电不仅方向往复交变,它的大小也在按规律变化。电容器接在交流电源上,电容器连续地充电、放电,电路中就会流过与交流电变化规律一致(相位不同)的充电电流和放电电流。电容器的选用涉及到很多问题。首先是耐压的问题。加在一个电容器的两端的电压超过了它的额定电压,电容器就会被击穿损坏。一般电解电容的耐压分档为6.3V,10V,16V,25V,50V等。

9. 自举升压电路的原理是这样的

自举升压电路的原理:

举个简单的例子:有一个12V的电路,电路中有一个场效应管需要15V的驱动电压,这个电压弄出来就是用自举。通常用一个电容和一个二极管,电容存储电荷,二极管防止电流倒灌,频率较高的时候,自举电路的电压就是电路输入的电压加上电容上的电压,起到升压的作用。

自举电路只是在实践中定的名称,在理论上没有这个概念。自举电路主要是在甲乙类单电源互补对称电路中使用较为普遍。

甲乙类单电源互补对称电路在理论上可以使输出电压Vo达到Vcc的一半,但在实际的测试中,输出电压远达不到Vcc的一半。其中重要的原因就需要一个高于Vcc的电压。所以采用自举电路来升压。

(9)自举效应nand存储扩展阅读:

充电过程

在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。

二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。

放电过程:

当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流 保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。

而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电, 电容两端电压升高,此时电压已经高于输入电压了。升压完毕。