当前位置:首页 » 服务存储 » 超算设计总浮点数存储设备
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

超算设计总浮点数存储设备

发布时间: 2022-10-04 05:01:39

❶ 关于浮点数在计算机中的存储的问题

存放整数部分的只存放整数。另一部分用来存放小数部分。2的次幂表示指数的意思是:11.11=0.1111x2的10次幂=0.01111x2的100次幂=1111x2的-10次幂。

❷ 请问浮点型数据在计算机是怎么存储的

对于浮点类型的数据采用单精度类型(float)和双精度类型(double)来存储,float数据占用32bit,double数据占用64bit。

无论是单精度还是双精度在存储中都分为三个部分:

1、符号位(Sign) : 0代表正,1代表为负。

2、指数位(Exponent):用于存储科学计数法中的指数数据,并且采用移位存储。

3、尾数部分(Mantissa):尾数部分。

(2)超算设计总浮点数存储设备扩展阅读

实型变量分为两类:单精度型和双精度型,

其类型说明符为float 单精度说明符,double
双精度说明符。在Turbo
C中单精度型占4个字节(32位)内存空间,其数值范围为3.4E-38~3.4E+38,只能提供七位有效数字。

双精度型占8
个字节(64位)内存空间,其数值范围为1.7E-308~1.7E+308,可提供16位有效数字。

实型变量说明的格式和书写规则与整型相同。

例如: float x,y; (x,y为单精度实型量)

double a,b,c; (a,b,c为双精度实型量)

实型常数不分单、双精度,都按双精度double型处理。

❸ 浮点数在计算机中的存储方式

应该是: 在一个为32bit的存储空间中存储浮点数,bit0~bit22存储有效数字部分;bit23~bit30存储指数部分;bit31存储符号位。 在一个为64bit的存储空间中存储浮点数,bit0~bit51存储有效数字部分;bit52~bit62存储指数部分;bit63存储符号位。 还一种 在一个为80bit的存储空间中存储浮点数,bit0~bit62存储有效数字部分;bit63~bit78存储指数部分;bit79存储符号位。 只有这三种了,其他都不支持的 未来可能还有128位浮点数

❹ 超级计算机和普通的有什么区别

用的不是龙芯,用了几千颗Intel的CPU和AMD的GPU,系统软硬件结构都不同,相对普通PC超级计算机复杂很多!

❺ 关于c语言中浮点数在内存中的存储形式的疑惑

你这个问题非常有意义。

虽然我们都知道浮点数的格式定义在IEEE 754,我们可以换算出你定义的值。但是你这里打印的却不是我们换算出来的值,说明这样打印的方法有问题。

可以做以下试验证明:比如你定义3个一样的浮点数,float a, b ,c; a = b = c = 9.0;

理论上编码方式一样,打印出来就应该一样(无论值是什么)。可是用你的方法打印出来的结果是不一样的!!!哈哈!

具体原因我也不清楚,一直想在内存里面实际看看,最近工作忙,一直没有对比过。我怀疑是地址选择有些问题。也许用 printf("%x %x %x\n", *((unsigned int *) &a), *((unsigned int *) &b), *((unsigned int *) &c)); 打印可以解决问题。你可以试试看。或者用调试工具吊起来实际看看。

❻ 中国超算处理器是用什么软件设计的

其实我们的超算的CPU是进口的.......用的是intel 至强 和 NVIDIA 的辅助计算卡
超算之所以能够跑那么快,是因为拥有很多很多的CPU和GPU进行协同运算。至于有多少,可以参考一下:普通电脑的内存往往是4~8GB,但是一个高排名超算就要达到500TB以上,内存大小往往和CPU数量基本上成正比
那么超算的设计难点在什么地方呢?
1、架构设计。CPU不是想垒在一起就能垒在一起的,要有很好的节点通信性能和算法才行,要不然根本不能共同参与计算。这个是最大的瓶颈,也是超算技术的核心所在
2、周边设施。主要是散热,还包括供电和应急用电。上万个CPU共同运算时会产生大量的热(看看你的电脑就大概知道了吧),为大规模集成的计算节点散热是十分困难的,一旦散热中断,芯片会在1分钟内融化。内存的信息时断电即失的,所以一旦断电就全完蛋,所以要稳定的有充足备份的电力供应。
3、软件设计。每一个超算都要写一个操作系统,虽然不一定想windows那样完善,但是必须有鼻子有眼而且性能非常好。要知道,能挖掘上万CPU计算潜力的系统是非常难以设计的。
4、预算。对,没钱搞个球啊,肯定是看着兜里的钱画设计图啊~。

❼ 浮点数在计算机里面的存储

这个问题比较难..其实在实际运算过程中或写程序中我们要求的浮点数都有一定的精度,大多数情况下存成文件等形式我们一般会让他*10^n次方来存储去掉小数位.下面说正题.

何数据在内存中都是以二进制(0或1)顺序存储的,每一个1或0被称为1位,而在x86CPU上一个字节是8位。比如一个16位(2 字节)的short int型变量的值是1000,那么它的二进制表达就是:00000011 11101000。由于Intel CPU的架构原因,它是按字节倒序存储的,那么就因该是这样:11101000 00000011,这就是定点数1000在内存中的结构。
目前C/C++编译器标准都遵照IEEE制定的浮点数表示法来进行float,double运算。这种结构是一种科学计数法,用符号、指数和尾数来表示,底数定为2——即把一个浮点数表示为尾数乘以2的指数次方再添上符号。下面是具体的规格:
````````符号位 阶码 尾数 长度
float 1 8 23 32
double 1 11 52 64
临时数 1 15 64 80

由于通常C编译器默认浮点数是double型的,下面以double为例:
共计64位,折合8字节。由最高到最低位分别是第63、62、61、……、0位:
最高位63位是符号位,1表示该数为负,0正;
62-52位,一共11位是指数位;
51-0位,一共52位是尾数位。
按照IEEE浮点数表示法,下面将把double型浮点数38414.4转换为十六进制代码。
把整数部和小数部分开处理:整数部直接化十六进制:960E。小数的处理:
0.4=0.5*0+0.25*1+0.125*1+0.0625*0+……
实际上这永远算不完!这就是着名的浮点数精度问题。所以直到加上前面的整数部分算够53位就行了(隐藏位技术:最高位的1 不写入内存)。
如果你够耐心,手工算到53位那么因该是:38414.4(10)=1001011000001110.(2)
科学记数法为:1.001……乘以2的15次方。指数为15!
于是来看阶码,一共11位,可以表示范围是-1024 ~ 1023。因为指数可以为负,为了便于计算,规定都先加上1023,在这里, 15+1023=1038。二进制表示为:100 00001110
符号位:正—— 0 ! 合在一起(尾数二进制最高位的1不要):
01000000 11100010 11000001 11001101 01010101 01010101 01010101 01010101
按字节倒序存储的十六进制数就是:
55 55 55 55 CD C1 E2 40

❽ c++浮点数存储方式

月初还在上班的时候,就天天盼望着过年放长假,然而终于熬到了过年,却发现自己的12天的长假将在碌碌无为中度过,朋友们又一个接一个的远去,心里真是拔凉拔凉的啊!最近版上的人气有点低落,连违规率(不敢说犯罪率哈,怕被人砍)都下降了不少,我想在春节这档子这是免不了的,论坛上应该有不上工作的朋友可能都回家团聚了。那像我这种无家可归的人除了眼馋别人的幸福,那就只有向仍然全力支持着我们C++/面向对象这个大家庭的兄弟姐妹们拜个年,祝来年薪水猛涨,职位高升,身体健康,家庭幸福!

最近一段时间看到版上关于C++里浮点变量精度的讨论比较多,那么我就给对这个问题有疑惑的人详细的讲解一下intel的处理器上是如何处理浮点数的。为了能更方便的讲解,我在这里只以float型为例,从存储结构和算法上来讲,double和float是一样的,不一样的地方仅仅是float是32位的,double是64位的,所以double能存储更高的精度。还要说的一点是文章和程序一样,兼容性是有一定范围的,所以你想要完全读懂本文,你最好对二进制、十进制、十六进制的转换有比较深入的了解,了解数据在内存中的存储结构,并且会使用VC.net编译简单的控制台程序。OK,下面我们开始。

大家都知道任何数据在内存中都是以二进制(1或着0)顺序存储的,每一个1或着0被称为1位,而在x86CPU上一个字节是8位。比如一个16位(2字节)的short int型变量的值是1156,那么它的二进制表达就是:00000100 10000100。由于Intel CPU的架构是Little Endian(请参数机算机原理相关知识),所以它是按字节倒序存储的,那么就因该是这样:10000100 00000100,这就是定点数1156在内存中的结构。

那么浮点数是如何存储的呢?目前已知的所有的C/C++编译器都是按照IEEE(国际电子电器工程师协会)制定的IEEE 浮点数表示法来进行运算的。这种结构是一种科学表示法,用符号(正或负)、指数和尾数来表示,底数被确定为2,也就是说是把一个浮点数表示为尾数乘以2的指数次方再加上符号。下面来看一下具体的float的规格:

float
共计32位,折合4字节
由最高到最低位分别是第31、30、29、……、0位
31位是符号位,1表示该数为负,0反之。
30-23位,一共8位是指数位。
22-0位,一共23位是尾数位。
每8位分为一组,分成4组,分别是A组、B组、C组、D组。
每一组是一个字节,在内存中逆序存储,即:DCBA

我们先不考虑逆序存储的问题,因为那样会把读者彻底搞晕,所以我先按照顺序的来讲,最后再把他们翻过来就行了。

现在让我们按照IEEE浮点数表示法,一步步的将float型浮点数12345.0f转换为十六进制代码。在处理这种不带小数的浮点数时,直接将整数部转化为二进制表示:1 11100010 01000000也可以这样表示:11110001001000000.0然后将小数点向左移,一直移到离最高位只有1位,就是最高位的1:1.11100010010000000一共移动了16位,在布耳运算中小数点每向左移一位就等于在以2为底的科学计算法表示中指数+1,所以原数就等于这样:1.11100010010000000 * ( 2 ^ 16 )好了,现在我们要的尾数和指数都出来了。显而易见,最高位永远是1,因为你不可能把买了16个鸡蛋说成是买了0016个鸡蛋吧?(呵呵,可别拿你买的臭鸡蛋甩我~),所以这个1我们还有必要保留他吗?(众:没有!)好的,我们删掉他。这样尾数的二进制就变成了:11100010010000000最后在尾数的后面补0,一直到补够23位:11100010010000000000000(MD,这些个0差点没把我数的背过气去~)

再回来看指数,一共8位,可以表示范围是0 - 255的无符号整数,也可以表示-128 - 127的有符号整数。但因为指数是可以为负的,所以为了统一把十进制的整数化为二进制时,都先加上127,在这里,我们的16加上127后就变成了143,二进制表示为:10001111
12345.0f这个数是正的,所以符号位是0,那么我们按照前面讲的格式把它拼起来:
0 10001111 11100010010000000000000
01000111 11110001 00100000 00000000
再转化为16进制为:47 F1 20 00,最后把它翻过来,就成了:00 20 F1 47。
现在你自己把54321.0f转为二进制表示,自己动手练一下!

有了上面的基础后,下面我再举一个带小数的例子来看一下为什么会出现精度问题。
按照IEEE浮点数表示法,将float型浮点数123.456f转换为十六进制代码。对于这种带小数的就需要把整数部和小数部分开处理。整数部直接化二进制:100100011。小数部的处理比较麻烦一些,也不太好讲,可能反着讲效果好一点,比如有一个十进制纯小数0.57826,那么5是十分位,位阶是1/10;7是百分位,位阶是1/100;8是千分位,位阶是1/1000……,这些位阶分母的关系是10^1、10^2、10^3……,现假设每一位的序列是{S1、S2、S3、……、Sn},在这里就是5、7、8、2、6,而这个纯小数就可以这样表示:n = S1 * ( 1 / ( 10 ^ 1 ) ) + S2 * ( 1 / ( 10 ^ 2 ) ) + S3 * ( 1 / ( 10 ^ 3 ) ) + …… + Sn * ( 1 / ( 10 ^ n ) )。把这个公式推广到b进制纯小数中就是这样:
n = S1 * ( 1 / ( b ^ 1 ) ) + S2 * ( 1 / ( b ^ 2 ) ) + S3 * ( 1 / ( b ^ 3 ) ) + …… + Sn * ( 1 / ( b ^ n ) )

天哪,可恶的数学,我怎么快成了数学老师了!没办法,为了广大编程爱好者的切身利益,喝口水继续!现在一个二进制纯小数比如0.100101011就应该比较好理解了,这个数的位阶序列就因该是1/(2^1)、1/(2^2)、1/(2^3)、1/(2^4),即0.5、0.25、0.125、0.0625……。乘以S序列中的1或着0算出每一项再相加就可以得出原数了。现在你的基础知识因该足够了,再回过头来看0.45这个十进制纯小数,化为该如何表示呢?现在你动手算一下,最好不要先看到答案,这样对你理解有好处。

我想你已经迫不及待的想要看答案了,因为你发现这跟本算不出来!来看一下步骤:1 / 2 ^1位(为了方便,下面仅用2的指数来表示位),0.456小于位阶值0.5故为0;2位,0.456大于位阶值0.25,该位为1,并将0.45减去0.25得0.206进下一位;3位,0.206大于位阶值0.125,该位为1,并将0.206减去0.125得0.081进下一位;4位,0.081大于0.0625,为1,并将0.081减去0.0625得0.0185进下一位;5位0.0185小于0.03125,为0……问题出来了,即使超过尾数的最大长度23位也除不尽!这就是着名的浮点数精度问题了。不过我在这里不是要给大家讲《数值计算》,用各种方法来提高计算精度,因为那太庞杂了,恐怕我讲上一年也理不清个头绪啊。我在这里就仅把浮点数表示法讲清楚便达到目的了。

OK,我们继续。嗯,刚说哪了?哦对对,那个数还没转完呢,反正最后一直求也求不尽,加上前面的整数部算够24位就行了:1111011.01110100101111001。某BC问:“不是23位吗?”我:“倒,不是说过了要把第一个1去掉吗?当然要加一位喽!”现在开始向左移小数点,大家和我一起移,众:“1、2、3……”好了,一共移了6位,6加上127得131(怎么跟教小学生似的?呵呵~),二进制表示为:10000101,符号位为……再……不说了,越说越啰嗦,大家自己看吧:
0 10000101 11101101110100101111001
42 F6 E9 79
79 E9 F6 42

下面再来讲如何将纯小数转化为十六进制。对于纯小数,比如0.0456,我们需要把他规格化,变为1.xxxx * (2 ^ n )的型式,要求得纯小数X对应的n可用下面的公式:
n = int( 1 + log (2)X );

0.0456我们可以表示为1.4592乘以以2为底的-5次方的幂,即1.4592 * ( 2 ^ -5 )。转化为这样形式后,再按照上面第二个例子里的流程处理:
1. 01110101100011100010001
去掉第一个1
01110101100011100010001
-5 + 127 = 122
0 01111010 01110101100011100010001
最后:
11 C7 3A 3D

另外不得不提到的一点是0.0f对应的十六进制是00 00 00 00,记住就可以了。

最后贴一个可以分析并输出浮点数结构的函数源代码,有兴趣的自己看看吧:

// 输入4个字节的浮点数内存数据
void DecodeFloat( BYTE pByte[4] )
{
printf( "原始(十进制):%d %d %d %d\n" , (int)pByte[0],
(int)pByte[1], (int)pByte[2], (int)pByte[3] );
printf( "翻转(十进制):%d %d %d %d\n" , (int)pByte[3],
(int)pByte[2], (int)pByte[1], (int)pByte[0] );
bitset<32> bitAll( *(ULONG*)pByte );
string strBinary = bitAll.to_string<char, char_traits<char>, allocator<char> >();
strBinary.insert( 9, " " );
strBinary.insert( 1, " " );
cout << "二进制:" << strBinary.c_str() << endl;
cout << "符号:" << ( bitAll[31] ? "-" : "+" ) << endl;
bitset<32> bitTemp;
bitTemp = bitAll;
bitTemp <<= 1;
LONG ulExponent = 0;
for ( int i = 0; i < 8; i++ )
{
ulExponent |= ( bitTemp[ 31 - i ] << ( 7 - i ) );
}
ulExponent -= 127;
cout << "指数(十进制):" << ulExponent << endl;
bitTemp = bitAll;
bitTemp <<= 9;
float fMantissa = 1.0f;
for ( int i = 0; i < 23; i++ )
{
bool b = bitTemp[ 31 - i ];
fMantissa += ( (float)bitTemp[ 31 - i ] / (float)( 2 << i ) );
}
cout << "尾数(十进制):" << fMantissa << endl;
float fPow;
if ( ulExponent >= 0 )
{
fPow = (float)( 2 << ( ulExponent - 1 ) );
}
else
{
fPow = 1.0f / (float)( 2 << ( -1 - ulExponent ) );
}
cout << "运算结果:" << fMantissa * fPow << endl;
}

累死了,我才发现这篇文章虽然短,然而确是最难写的。上帝,我也不是机算机,然而为什么我满眼都只有1和0?看来我也快成了黑客帝国里的那个看通迅员了……希望大家能不辜负我的一翻辛苦,帮忙up吧!

❾ 谁能解释浮点数在内存是怎样存储的吗比如-3.14159如何存储

以32位浮点数为例:

-3.14159转化为二进制为-11.xxxx,后面的xxxx我就算了,你自己算,不管怎样,小数点后面始终精确到第23位
也即-1.1xxxx*2^1,
现在开始计算:符号位是1,阶码是1+127,尾数是1xxxx
至于小数点前面那个1,不存储,该浮点数参与计算的时候默认加上即可

看明白规律了吗?

将其二进制形式按符号位、阶码、尾数的形式顺序存入内存中的一个4字节空间里

❿ 浮点数的存储问题

先看看浮点数格式
·一个浮点数总共有4个字节,32位
第一个比特表符号 0正数 1负数
后八个比特表阶码,即为指数,这个数在实际的数上面加127
最后23个比特表尾数 原码表示

具体分析
对于3.25

正数 首位为0

用二进制表示 11.01=1.101乘以2的1次方
所以阶码为1 127+1=128
10000000

对于尾数1.101,因为规格化的数都是最高位为1,即小数点左边的数为1
所以这个1就省略,因此存储的时候就存101

10100000 00000000 0000000

把所有的拼起来
01000000 01010000 00000000 00000000

你的上面最后写反了