当前位置:首页 » 服务存储 » OKI代理商比较好美光存储P
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

OKI代理商比较好美光存储P

发布时间: 2022-10-03 22:30:45

① 如何选择内存条

256M 正品,有保修

SD系列的-----200以下

DDR266-----230左右

DDR333-----230左右

DDR400-----260左右

DDR533-----300左右

内存是主板上重要的部件之一,它是存储CPU与外围设备沟通的数据与程序的部件。在主机中,内存所存储的数据或程序有些是永久的,有些是暂时的,所以内存就有不同形式的功能与作用,而且存储数据的多少也关系着内存的容量大小,传送数据的快慢也关系着内存的速度,这些都跟内存的种类与功能有关。现将内存重要的分类介绍如下:
内存的品牌
内存有许多不同的品牌,这些不同的品牌加载于主板上,它们的排列组合就关系着主板的性能和整个系统的稳定性。除了CPU、主板外,内存是一个关键的部件。每家厂商对于内存的规格、容量以及电路的特性都有不同的要求,所以对于在主板上使用的内存是否有不良的反应都应留意,尤其是高容量、高速度、新规格的内存,在选用时更应注意其特性,现将世界各国生产内存的厂商列出如下
★日本系列: Panasonic(松下)代号:MN
NEC(日本电器)代号:MC
Mitsubishi(三菱)代号: MH
Fujitsu (富士通)代号:MB
Hitachi(日立)代号: HM
Toshiba (东芝)代号: TMM
OkI(冲电气)代号:MSM
Sharp(夏普)代号: LH
Sanyo(三洋)代号:LC
Seiko(精工)代号:SRM
Sony(索尼)代号:CXK
★美国系列: Motorola (摩托罗拉)代号:MCM
NS(国民半导体)代号: NS
TI( ?菀瞧鳎┐�牛?TMS
Micron(美光)代号:MT
AMD(美国超微)代号: AM
Performance 代号:P
IDT(艾迪特)代号:IDT
★欧洲系列:Semens(德国西门于)代号:Semens
SGS(意大利汤拇逊)代号:T
★台湾系列:联华 代号: UMC
茂矽 代号:Mosel(MX)
德基 代号: Texas
矽成 代号:Is
华邦 代号:Winboard
华撇隆 代号:HMC
★韩国系列: Samsung(三星)代号:KM
Goldstar(金星)代号: GOldStar
Hyundai( 韩国现代)代号: HY
两种内存新技术动态
为了充分挖掘内存中更多的性能,几种内存新技术正进入高档微机。这些新内存的特点是:
1.EDO DRAM 方案
EDO(Extend Data Out,扩充数据输出)DRAM是一种*作效率更高的单周期内存,它在CAS周期处延迟数据的滞留,因为可维持更长的数据有效时间,这样无需拓宽数据总线也增加了带宽。
EDO内存是目前奔腾机中运用最多的一种内容,这种内存在工作时,允许CPU高效地用上次访问的尾部覆盖某次内存访问的首部;单个内存访问并没有更快,但一连串内存访问的完成时间比标准的快页模式DRAM要少。
2、同步高速内存
我们常说的高速缓存一般采用异步SRAM,它的访问速度相对DRAM来说已大大提高了,但相对CPU来说仍较慢。目前,有一种更新的同步SRAM的高速缓存出现在奔腾机的主板上。例如,在120MHz和更快的奔腾微机的主板上,均采用了Intel的Triton芯片组,该芯片组支持一种称为流水线突发(pipelined burst)高速缓存的特殊同步高速缓存,其中访问速度大大地提高。
除了上述两种新技术外,还有新型的同步DRAM技术和RambusDRAM的系统,这种技术采用25OMHz时钟速度极快地传送大批突发数据。
内存的速度
内存的存取速度关系着CPU对内存读写的时间,所以不同型号规格的内存就有不同的速度,如ROM就有27010-20,27010-15等不同的速度。DRAM也有411000-7、411000-6等不同的速度,这些编号后面的20代表200ns,-15代表150ns,-7代表70ns,-6代表60ns,所以RAM的速度比ROM的速度快很多。当电脑一启动时,把BIOS RoM中的程序拷贝至DRAM内,以后CPU直接与较快的DRAM联络即可,这就是我们所谓的ShadowRAM。
内存有它不同的规格和速度,在不同电路、不同设备也有不同的单位,现将它的应用说明如下:
ms, Milli Second(毫沙)
us: Micro Second(微秒)
ns: Nano Second (纳秒)
数据的传送速度:
以ms为单位,如硬盘的平均存取速度17ms、12ms等。
以us为单位,如DRAM每隔15us更新充电一次。
以ns为单位、如内存的存取速度:
RAM: 41256-8,8即表示80ns。
411000-7,7即表示70ns。
411000-6,6即表示60ns。
ROM: 27256-20, 20即表示200ns。
27512-15,15即表示150ns。
常规内存(Conventional Memory)
常规内存在内存分配表中占用最前面的位置,从0KB到640KB(地址000000H~109FFFFH),共占640KB的容量。因为它在内存的最前面并且在DOS可管理的内存区,我们又称之为Low Dos Memory(低DOS内存),或称为基本内存(Base Memory),使用此空间的程序有BIOS*作系统、DOS*作系统、外围设备的驱动程序、中断向量表、一些常驻的程序、空闲可用的内存空间、以及一般的应用软件等都可在此空间执行。由此可见,在DOS下的应用程序及其*作系统,挤在如此狭窄拥挤的空间里,640KB的容量已经不够使用,这是因为最早使用的CPU是8088,其寻址的地址信号线只有20条线,能够寻址的空间只有lMB,也就是祖先留下的祖产不多,受到先天硬件CPU寻址的限制。因此在规划内存给各个系统以及DOS下的一些套装应用软件使用时,在先天内存不足环境下,“省吃俭用”来分配这点内存, MS-DOS可以控制和管理1MB的内存空间,常规内存占了640KB,其他的384KB保留给BIOS ROM及其他各种扩展卡使用。这640KB的常规内存基本上分两部分,一部分给各种不同的*作系统程序使用,另一部分给数据、程序的使用。 上位内存(UMB)
UMB是英文Upper Memory Block的缩写,是常规内存上面一层的内存(64OKB~1024KB),我们又称之为DOS高端内存(地址为0A0000H~0FFFFFH)。由于PC的老祖先把DOS使用的内存限定在640KB的框框里,所以大家都想尽办法要突破640KB的紧箍罩以摆脱640KB的限制,让DOS的一些程序摆脱640KB藩篱。在DOS可以控制的1MB内存空间中,常规内存占了640KB,其余的384KB的上位内存(UMB)保留给BIOS ROM、显示卡和其他各种扩展卡使用,但是还有一些保留空间未使用,所以在DOS 5.0以上的版本,即有突破640KB的能耐,允许使用常规内存上面的384KB的上位内存UMB(地址0A0000H~OFFFFFlH),但是要超越传统的640KB,必须有一些条件和*作,其条件和*作如下:
◎386以上的电脑和384KB以上的扩展内存。
◎DOS 5.0以上的版本。
◎CONFIG.SYS设置Devuce=C:\DOS\HIMEM.SYS(扩展内存XMS驱动程序)。
◎CONFIG.SYS设置Device=C:\DOS\EMM386.EXE, NOEMS(扩充内存EMS模拟驱动程序)。
◎CONFIG.SYS设置DOS=HIGH,UMB。
高端内存区(HMA)
HMA是英文High Memory Area的缩写。它是1024KB至1088KB之间的64KB内存,称为高端内存区,其地址为100000H~1OFFEFH或以上,CPU在实地址模式下以Segment:OFFSET(段地址:偏移量)方式来寻址,其寻址的最大逻辑内存空间为(FFFF:FFFF),即10FFEFH,此已超过8088 CPU的20条线所能寻址的lMB的上限,故286CPU的地址线有24条,只要把A20地址信号线的“逻辑门”打开,即可使用此64KB范围的内存,这段内存乃在实地址模式下。一般说HMA是64KB,其实是指lMB以上至我们现在CPU所能寻址的广大空间4GB,它们都称为高端内存区(HMA),如何去打开A20地址线(A20Gate,逻辑门)以上的内存,只要在DOS5.0或以上版本中使用扩展内存驱动程序,其*作如下:
在CONFIG设置驱动程序:
◎286以上的电脑和lMB以上的内存。
◎DOS 5.0以上的版本。
◎Device=c:\DOS\HIMEM.SYS(扩展内存XMS驱动程序)。
◎DOS=HIGH
◎打开A20地址线, A20Gate(逻辑门)=1,即可寻址lMB内存以上的空间。
◎A20地址线没有打开, A20 Gate=O,不能寻址lMB内存以上的空间。
◎A20 Gate信号由软件驱动键盘BIOS 8042或芯片组产生。
EMB是英文Extended Memory Block(扩展内存块)的缩写,扩展内存是指lMB以上的内存空间,其地址是从100000H开始,连续不断向上扩展的内存,所以把这种内存称为
EMB(Extended Memory Block)。扩展内存取决于CPU的寻址能力, 286 CPU可寻址到16MB, 386 CPU以上至Pentium II CPU可寻址到4GB。但是,有些主板上芯片组的实际地址译码电路并没有设计为可寻址那么大的地址空间,如286 AT的主板上最大寻址空间只到4MB,Pentium系列主板目前的最大扩展内存也只到1GB,距实际CPU的寻址空间还有一段距离。对于这些扩展内存,由于超过了DOS的寻址范围,并不能直接被实地址模式的BIOS或DOS*作系统所使用,只能用于存放数据,除非使用了DOS的扩展器(DOSExtender),或使用Windows3.1/Windows 95/Windows NT/OS2等,在保护模式下供不同*作系统使用。要使电脑主机能使用扩展内存,还需要一些扩展内存驱动程序(XMS)来加以驱动和设置,其驱动程序是DOS5.O以上的版本或Windows所附带的HIMEM.SYS,其在CONFIG.SYS下设置为:
◎Device=C:\DOS\HIMEM.SYS。
◎扩展内存是lMB以上连续的内存。
◎进入扩展内存程序,必须在保护模式下。
◎进入扩展内存,必须先打开CPU的A20逻辑门,使内存寻址连续。
◎在主板由键盘BIOS 8042的A20逻辑门信号输出或芯片组来打开。
◎A20逻辑门信号是实地址模式和保护地址模式的切换开关。
◎执行驱动扩展内存,在实地址模式有64KB高端内存的扩展。
◎扩展至顶端的最大内存,对DOS而言,只能存放数据。
扩充内存(EMS)
EMS是英文Expanded Memory Specification(扩充内存规范)的缩写,是由LOtus/Intel/Microsoft三家公司制订。扩充内存是利用1MB内存中64KB的内存区,此内存区为连续的4页,每页为16KB的实际页内存,它们映射(Memory Mapping)到EMS卡上广大空间的逻辑页内存, EMS 4.0版本驱动程序其映射的内存区为1MB内任意大小的内存,映射的扩充内存空间为32MB,这是另一种扩充内存的方法。一般我们常用比较方便的DOS5.0以上版本,在386 CPU以上有虚拟86和分页的能力,在EMS Emulator模拟程序的控制下,使用扩展内存的广大空间来作为映射的内存,其驱动程序和*作如下:
◎主板和CPU为386CPU以上有虚拟86及4KB分页的能力。
◎使用扩充内存驱动程序(EMS),必须先执行扩展内存驱动程序(EMS)。
◎使用DOS 5.0以上版本,有EMS Emulator扩充内存模拟程序EMM386.EXE的程序来实现主板上扩展内存的映射。即在CONFIG.SYS设置:Device=C:\DOS\EMM386.EXE
◎扩充内存是非连续性的内存,它是用DOS内存的存储体开关(Bank Switch)分页切换映射到EMS的内存空间。
闪速存储器
什么叫闪速存储器(Flash Memory),闪速存储器是目前取代传统的EPROM和EEPROM的主要非挥发性(永久性)的存储器,目前大部分586主板的BIOS都使用闪速存储器,因为闪速存储器具有以下各项优点:
◎具有较快的速度(70ns-200ns)。
◎有节能的管理(Auto Sleep和Standby),低功率和低工作电压的功能。
◎更新数据方便,不须清除即可更改数据。
◎可由硬件或软件来控制数据的保护。
◎在电脑外围设备和通信设备中广泛应用。
◎目前586电脑使用容量为1MB(bit)的闪速存储器,686电脑使用容量为2MB(bit)的闪速存储器。
DRAM内存
DRAM是英文Dynamic RAM的缩写,其意思是动态随机存取内存,它是目前主板上使用的主要内存,因为它的集成度高,较小的体积即可获得较大的容量,而且价格低,所以是目前最常使用的内存。一般主机的内存容量即为DRAM的容量,虽然DRAM内存有容量大,价格低的优点,但是它也有缺点,主板必须有一个刷新电路与之相配合,对它的存储数据作刷新的*作,否则它的数据就会消失,因为它内部存储的数据是靠电容的充电来保存的,而电容会放电,故每隔一段时间就要对DRAM进行刷新。这种刷新*作会影响CPU对DRAM内存存取的效率,DRAM因为是主板主要使用的内存,所以主板在特性和内部的电路也作了一番改进,使之支持不同功能的DRAM。现将DRAM的特点归纳如下:
◎优点:集成度高,相同的体积可获得较大容量,价格便宜。
◎缺点:主板必须要有一个刷新的电路,这会影响CPU对DRAM内存的存取,影响CPU的工作效率。
◎DRAM使用的系统:
○作为CPU与主要数据的暂时存取的内存。
○作为CPU与外围设备显示卡数据的缓冲器或其他家电设备的内存。
SRAM存储器
SRAM是英文Static RAM的缩写,它是一种具有静志存取功能的内存,不需要刷新电路即能保存它内部存储的数据。不像DRAM内存那样需要刷新电路,每隔一段时间,固定要对DRAM刷新充电一次,否则内部的数据即会消失,因此SRAM具有较高的性能,但是SRAM也有它的缺点,即它的集成度较,相同容量的DRAM内存可以设计为较小的体积,但是SRAM却需要很大的体积,所以在主板上SRAM存储器要占用一部分面积,在主板上哪些是SRAM呢?
一种是置于CPU与主存间的高速缓存,它有两种规格:一种是固定在主板上的高速缓存(Cache Memory);另一种是插在卡槽上的COAST(Cache On A Stick)扩充用的高速缓存,另外在CMOS芯片1468l8的电路里,它的内部也有较小容量的128字节SRAM,存储我们所设置的配置数据。还有为了加速CPU内部数据的传送,自80486CPU起,在CPU的内部也设计有高速缓存,故在Pentium CPU就有所谓的L1 Cache(一级高速缓存)和L2Cache(二级高速缓存)的名词,一般L1 Cache是内建在CPU的内部,L2 Cache是设计在CPU的外部,但是Pentium Pro把L1和L2 Cache同时设计在CPU的内部,故Pentium Pro的体积较大。最新的Pentium II又把L2 Cache移至CPU内核之外的黑盒子里。SRAM显然速度快,不需要刷新的*作,但是也有另外的缺点,就是价格高,体积大,所以在主板上还不能作为用量较大的主存。现将它的特点归纳如下:
◎优点,节能、速度快,不必配合内存刷新电路,可提高整体的工作效率。
◎缺点,集成度低,相同的容量体积较大,而且价格较高,少量用于关键性系统以提高效率。
◎SRAM使用的系统:
○CPU与主存之间的高速缓存。
○CPU内部的L1/L2或外部的L2高速缓存。
○CPU外部扩充用的COAST高速缓存。
○CMOS 146818芯片(RT&CMOS SRAM)。
PB(Pipeline Burst,流水线突发式)SRAM
提高主机系统性能的方法除了更换速度较快、频率较高的主板、CPU以及扩充增加一些主存外,就是要使用支持PB SRAM芯片组的主板,什么叫PB SRAM?它是一种SRAM存储器,也是一种高速缓存(Cache Memory)。它是主板上使用的速度较快的高速缓存,是一种在材质和电路工艺改进的SRAM。根据测试结果,可以给CPU超频两极,较少的费用可以获得较佳的性能。传统长方形的异步SRAM,其工作电压为5V,为以前486主板所使用,由于速度容量的限制,已无法满足现在快速CPU的需求,现已淘汰不用。现在的主板都用速度较快,容量较大的同步PB SRAM,其工作电压为3.3V,其形状为较大的四方形,一般PB SRAM在主板上有两种规格。 ○一种是PB SRAM芯片组固定在主板上,一般为256KB或512KB,为现在大部分的主板采用。
○另一种是PB SRAM模块的方式,插在主板PB SRAM的插槽上,一般我们称之为COAST(Cache On A stick)插槽,由于主板的品牌和规格不同,它们安装的方法和注意事项也不尽相同。这种高速缓存在较新的主板上已淘汰不用。度较快,有的传送速度较慢,其中RAM的速度就比ROM的速度快,主存RAM的速度一般为50至70ns,而ROM的速度则为150至200ns,所以在主机系统的BIOS Setup(BIOS设置程序),就设置有所谓ShadowRAM的*作。电脑启动时,系统就会把主机系统的BIOSROM或VGA卡上的VideoBIOS ROM程序全部载入DRAM内存中,并且将存储有这些程序的内存区改为只读状态。以后凡是CPU要执行系统BIOS中的程序或Video BIOS中的程序,都会自动转至速皮较快的Shadow RAM中执行,如此即可加快CPU的处理速度和屏幕图像的显示,一般电脑一启动,系统即会自动将BIOS ROM和Video ROM设置为Shadow的*作,以加快系统的速度。动态DRAM内部的数据是靠电容特性存储的,但电容会放电,所以使用动态DRAM内存就需要有数据刷新(Refresh)时钟的电路,在几个ms之内必须对DRAM完成充电,否则动态DRAM内存内的数据就会因放电而丢失。因此,动态内存内部结构就好像一个会漏水的茶壶,假如不在一个固定的时间去加水添满的话,里面的光(数据就会消失)。在PC标准的电路里是每隔15 us即充电一况在4ms之内完成整个充电*作。由于CPU的速度越越快,使得DRAM的速度越来越跟不上CPU的处理速度,所以CPU必须增加儿个等待周期,让DRAM刷新充电以后再继续工作,如此势必影响CPU的工作效率,故在AT时代的主板则有交替(Interleave)刷新DRAM内存的设计,即主板必须至少有两组存储休(Bank),当一个存储体供CPU存取数据时,另一个存储体就进行数据刷新,如此才不会牺牲CPU的工作效率。另一种方式为DRAM Page Mode(DRAM页面模式),一般在CPU对DRAM进行读写的一个周期中,我们只能对一个地址进行存取,但是,采用页面模武是将内存的列地址固定,而连续改变内存的行地址,如此可得到一个连续地址的页区块内存,而使CPU能够存取范围较大的数据,而达到CPU快速存取数据的目的。另外,改进DRAM数据读写周期的触发电路和材质,采用具有较佳节能特性的动态内存,在CMOS的设置中对DRAM的刷?芷诮�幸环�髡��映ざ欣RAM刷新充电的时间周期,减少对CPU*作的干扰,这都是增加CPU工作效率的方法。所以,要使内存系统发挥其性能,一方面是延长刷新的时间,另一方面是改进DRAM本身的电路和材质,提高速度,如此内存才能跟上速度一直在倍增的CPU。 在我们的主板上除了有主要的内存外,还有高速缓存。顾名恩义,高速缓存最主要的目的是提高CPU与内存之间数据的传送速度,所以高速缓存在电路的设计上,则置于CPU与主存DRAM之间。当CPU从外围设备读取数据时,经CPU加以处理,再将数据写入主存DRAM中,在写入过程中路经高速缓存,此时会将写入主存DRAM的地址记录在TagSRAM(标记SRAM)内,并将刚才写入主存DRAM中的数据拷贝一份至高速缓存的SRAM内,以备CPU下次就近取用,而不必到较远的DRAM中读取,如此即可加快CPU的存取速度。目前主板高速缓存的规格有256KB和512KB两种容量,购买时应根据当时的价差选购。
主板的高速缓存其容量只有256KB或是512KB,再扩充的容量还是有限的,要把主存几十MB的数据全部拷贝过来是不可能的,因此高速缓存还是无法取代主存的地位,所以只有把经常要读写的数据拷贝到高速缓存内,但是CPU要存取的数据是否在高速缓存内呢?那就涉及到CPU对高速缓存读写的命中率(Hit Ratio)当CPU要读取主存中的数据时,检查高速缓存系统的Tag SRAM的地址数据,当高速缓存内有一份所需的数据时,高速缓存总线的仲裁电路就会将高速缓存系统的大门打,让CPU直接到高速缓存系统中存取数据, CPU就近取村,即可快速存取所要的数据。但是,假如CPU所要存取的数据并不在高速缓存中时,高速缓存总线的仲裁电路就不会将高速缓存至统的大门打开CPU只有跑到比较远的主存,根据数据的地址去存取所需要的数据了。 Tag SRAM
什么叫Tag SRAM,即标记的静态随机存取存储器,它是在高速缓存系统中配合高速缓存的附加SRAM,它也是高速缓存,只是用在高速缓存电路中记录地址数据,当CPU要读取主存某一个地址中的数据时,会先到高速缓存电路中去寻找,对高速缓存系统的Tag SRAM所记录的地址数据进行搜寻和对比,当高速缓存内也存有此地址的数据时,高速缓存总线的仲裁控制电路即将数据读取传回CPU,若对比Tag SRAM记录的地址数据而找不到此数据的地址时,CPU就会到主存读取数据。
当CPU要往主存写入某一个地址的数据时 ,到主存写入数据,然后再到高速缓存电路,对比高速缓存系统的Tag SRAM所记录的地址,当高速缓存内也存有此地址的数据时,则更新高速缓存内的数据以保持主存与高速缓存数据的一致性。对比高速缓存系统Tag SRAM所记录的地址是否为CPU所需读取数据的地址,对应了高速缓存内数据读取的机率,即所谓的命中率(Hit Ratio),命中率的多少要看高速缓存容量的大小、电路的设计、以及执行程序数据的内容,这些都与高速缓存的命中率有关。
内存的ECC
什么叫内存的ECC, ECC是英文Error Check &Correct的缩写,其中文的意思是“差错检查与纠正”,是目前功能较强、价格较高的芯片组才支持的功能,如Pentium的8243OHX的芯片组、Pentium II的8244OFX/82440LX/82440BX等芯片组,这些芯片组支持内存ECC校验功能。
ECC的功能不但使内存具有数据检查的能力,而且使内存具备了数据错误修正的功能,以前奇偶校验的是8比特(bit)的数据,用一比特的奇偶校验位来检查数据的正确性,但是具有ECC功能的内存则用4比特来检查8比特的数据是否正确。当CPU读取时,若有一个比特的数据错误,则ECC内存会根据原先存在四个比特中的检测比特,定位那个比特错误,而且会将错误的数据加以校正。这种DRAM内存在整个系统中较稳定,一般用于局域网络的文件服务器,或Internet的服务器,当然其价格也较贵。
如何进行内存的奇偶校验
内存的奇偶校验(Parity Check),在主机系统中,它是对内存和数据读写的一种检查电路,检查写到主存的数据与读取的数据是否相符,假如不符,则通过对CPU强制中断(NMI)的电路,通知CPU死机。
当CPU把数据写入主存时,同时也会把数据送到奇偶校验位产主器/检查器(74280)来加以计算,74280这个芯片是一个9位的奇偶校验位产生器,但也是一个检查器,其实它的主要功能是负责把从CPU输入到DRAM内存的H信号(高电平信号,即“1”信号)加起来看是偶数个“1”还是奇数个“1”,再从它的Even(偶)或Odd(奇)脚输出,此输出的信号就是奇偶校验位(Parity bit)。当CPU把8个比特的数据写入主存时,同时经奇偶校验位产生器加以计算,计算的结果假如是偶数个“1”,则奇偶校验位为”1”假如是奇数个“1”,则奇偶校验位(Parity bit)则为L信号(低电平,即”0”信号),把此奇偶校验位送到第9块内存芯片暂存起来,也就是说,写入数据的时候是产生奇偶校验位(Parity bit),不进行奇偶校验位的检查(Parity Check),因为没有对比检查的机会,所以写入时产主的奇偶校验位可能是“1”,也可能是“0”,在PC AT的电路里,当CPU对主存读取时,则此8个比特的数据在与刚才第9块内存芯片所存储的奇偶校验位相加起来,所得的答案应该为奇数个“1”(即奇校验电路的校验位=“0”),假如是偶数个”1”则启动奇偶校验检查电路,经NMI电路通知CPU死机。所以奇偶校验位的检查(Parity Check)是在读取数据的时候产主,因为只有在读取的时候,才能对比刚才所写入内存的数据有没有错误。
奇偶校验电路可以分两种检查,一种是奇校验检查,一种是偶校验检查,在PC主机电路里是奇校验检查,即读取的时候,奇偶校验位(Parity bit)的Even输出应为“0”,假如奇偶校验位是“1”的话,即产生奇偶校验位错误(Parity Error),然后经NMI电路通知CPU死机,检查时因每一个奇偶校验位产生器/检查器(74280)芯片只能检查8个比特,看看您的CPU是几个比特的,则就有几组74280, Pentium CPU的主机有8个7428O,但现在全部被缩编在芯片组里,故以一组来说明奇校验与偶校验检查的工作原理。
奇校验检查:
◎CPU把数据写入内存时仅产生奇偶校验位,不作奇偶校验位检查。
CPU写入数据时(8bit),经奇偶校验位产生器把8个比特(bit)加起来,计算的结果:
○有偶数个“1”,则奇偶校验位=1。
○有奇数个“1”则奇偶校验位=0。
○将奇偶校验位(Parity bit)存在第9个内存芯片内。
◎CPU读取内存数据时,此时与刚才写入数据进行对比,进行奇偶校验位检查。
○刚才写入的数据有偶数个“1” 加上存储在第9个内存芯片中的奇偶校验位=“l”,再经奇偶校验位检查器和逻辑电路的计算,Even接脚的输出应为奇数个“1”,即奇偶校验位为“0”。
○刚才写入的数据有奇数个“1”加上存储在第9个内存芯片的奇偶校验位=“0”,再经奇偶校验位检查器和逻辑电路的计算, Even接脚的输出还是为奇数个“1”, 即奇偶校验位为“0”。
○所以无论刚才写入的数据有偶数个“1”还是有奇数个“1”读取的时候都是为固定的奇数个“1”,假如为偶数的话,则系统产生一连串的*作,通知CPU死机。
◎目前大多数主板都支持没有奇偶校验位的DRAM内存,系统的BIOS会锁定(Disable)奇偶校验功能,比较新的BIOS会自动检测主板的DRAM内存是否有奇偶校验位。
◎奇校验:D0~D7加起来有奇数个“1”,由74280Even接脚输出“0”作为校验位。
◎偶校验: D0~D7加起来有偶数个“1”,由74280Odd接脚输出“1”作为校验位。
◎奇校验检查:读取数据时,D0~D7再加上奇偶校验位由74280计算结果,如果共有奇数个“1”,则Even接脚输出“0”,Odd接脚输出“l”。若为偶数个“1”。则Even接脚输出“1”, Odd接脚输出“0”。
◎偶校验检查读取数据时, D0~D7再加上奇偶校验位由74280计算结果,如果共有偶数个“1”,则Even接脚输出“1”,Odd接脚输出“0”。若为奇数个“l”,则Even接脚输出“0”Odd接脚输出“1”。
不同主板如何使用无奇偶校验(Non-Parity)的内存
主板的功能和内存的结构一直在改进,所以在更新或扩充主板和内存的时候,就会碰到主板的CMOS Setup设置程序是否具有设置Parity Check Enable/Disable(偶校验启用/禁用)的功能,只有386或486的主机才有这种设置,因为586以上主板的BIOS大部分都已有自动

② 内存和内存颗粒是什么关系

samsung内存
具体含义解释:
例:samsungk4h280838b-tcb0
主要含义:
第1位——芯片功能k,代表是内存芯片。
第2位——芯片类型4,代表dram。
第3位——芯片的更进一步的类型说明,s代表sdram、h代表ddr、g代表sgram。
第4、5位——容量和刷新速率,容量相同的内存采用不同的刷新速率,也会使用不同的编号。64、62、63、65、66、67、6a代表64mbit的容量;28、27、2a代表128mbit的容量;56、55、57、5a代表256mbit的容量;51代表512mbit的容量。
第6、7位——数据线引脚个数,08代表8位数据;16代表16位数据;32代表32位数据;64代表64位数据。
第11位——连线“-”。
第14、15位——芯片的速率,如60为6ns;70为7ns;7b为7.5ns(cl=3);7c为7.5ns(cl=2);80为8ns;10为10ns(66mhz)。
知道了内存颗粒编码主要数位的含义,拿到一个内存条后就非常容易计算出它的容量。例如一条三星ddr内存,使用18片samsungk4h280838b-tcb0颗粒封装。颗粒编号第4、5位“28”代表该颗粒是128mbits,第6、7位“08”代表该颗粒是8位数据带宽,这样我们可以计算出该内存条的容量是128mbits(兆数位)×16片/8bits=256mb(兆字节)。
注:“bit”为“数位”,“b”即字节“byte”,一个字节为8位则计算时除以8。关于内存容量的计算,文中所举的例子中有两种情况:一种是非ecc内存,每8片8位数据宽度的颗粒就可以组成一条内存;另一种ecc内存,在每64位数据之后,还增加了8位的ecc校验码。通过校验码,可以检测出内存数据中的两位错误,纠正一位错误。所以在实际计算容量的过程中,不计算校验位,具有ecc功能的18片颗粒的内存条实际容量按16乘。在购买时也可以据此判定18片或者9片内存颗粒贴片的内存条是ecc内存。

hynix(hyundai)现代
现代内存的含义:
hy5dv641622at-36
hyxxxxxxxxxxxxxxxx
123456789101112
1、hy代表是现代的产品
2、内存芯片类型:(57=sdram,5d=ddrsdram);
3、工作电压:空白=5v,v=3.3v,u=2.5v
4、芯片容量和刷新速率:16=16mbits、4kref;64=64mbits、8kref;65=64mbits、4kref;128=128mbits、8kref;129=128mbits、4kref;256=256mbits、16kref;257=256mbits、8kref
5、代表芯片输出的数据位宽:40、80、16、32分别代表4位、8位、16位和32位
6、bank数量:1、2、3分别代表2个、4个和8个bank,是2的幂次关系
7、i/o界面:1:sstl_3、 2:sstl_2
8、芯片内核版本:可以为空白或a、b、c、d等字母,越往后代表内核越新
9、代表功耗:l=低功耗芯片,空白=普通芯片
10、内存芯片封装形式:jc=400milsoj,tc=400miltsop-ⅱ,td=13mmtsop-ⅱ,tg=16mmtsop-ⅱ
11、工作速度:55:183mhz、5:200mhz、45:222mhz、43:233mhz、4:250mhz、33:300nhz、l:ddr200、h:ddr266b、 k:ddr266a
现代的mbga封装的颗粒

infineon(英飞凌)
infineon是德国西门子的一个分公司,目前国内市场上西门子的子公司infineon生产的内存颗粒只有两种容量:容量为128mbits的颗粒和容量为256mbits的颗粒。编号中详细列出了其内存的容量、数据宽度。infineon的内存队列组织管理模式都是每个颗粒由4个bank组成。所以其内存颗粒型号比较少,辨别也是最容易的。
hyb39s128400即128mb/4bits,“128”标识的是该颗粒的容量,后三位标识的是该内存数据宽度。其它也是如此,如:hyb39s128800即128mb/8bits;hyb39s128160即128mb/16bits;hyb39s256800即256mb/8bits。
infineon内存颗粒工作速率的表示方法是在其型号最后加一短线,然后标上工作速率。
-7.5——表示该内存的工作频率是133mhz;
-8——表示该内存的工作频率是100mhz。
例如:
1条kingston的内存条,采用16片infineon的hyb39s128400-7.5的内存颗粒生产。其容量计算为:128mbits(兆数位)×16片/8=256mb(兆字节)。
1条ramaxel的内存条,采用8片infineon的hyb39s128800-7.5的内存颗粒生产。其容量计算为:128mbits(兆数位)×8片/8=128mb(兆字节)。

kingmax、kti
kingmax内存的说明
kingmax内存都是采用tinybga封装(tinyballgridarray)。并且该封装模式是专利产品,所以我们看到采用kingmax颗粒制作的内存条全是该厂自己生产。kingmax内存颗粒有两种容量:64mbits和128mbits。在此可以将每种容量系列的内存颗粒型号列表出来。
容量备注:
ksva44t4a0a——64mbits,16m地址空间×4位数据宽度;
ksv884t4a0a——64mbits,8m地址空间×8位数据宽度;
ksv244t4xxx——128mbits,32m地址空间×4位数据宽度;
ksv684t4xxx——128mbits,16m地址空间×8位数据宽度;
ksv864t4xxx——128mbits,8m地址空间×16位数据宽度。
kingmax内存的工作速率有四种状态,是在型号后用短线符号隔开标识内存的工作速率:
-7a——pc133/cl=2;
-7——pc133/cl=3;
-8a——pc100/cl=2;
-8——pc100/cl=3。
例如一条kingmax内存条,采用16片ksv884t4a0a-7a的内存颗粒制造,其容量计算为:64mbits(兆数位)×16片/8=128mb(兆字节)。

micron(美光)
以mt48lc16m8a2tg-75这个编号来说明美光内存的编码规则。
含义:
mt——micron的厂商名称。
48——内存的类型。48代表sdram;46代表ddr。
lc——供电电压。lc代表3v;c代表5v;v代表2.5v。
16m8——内存颗粒容量为128mbits,计算方法是:16m(地址)×8位数据宽度。
a2——内存内核版本号。
tg——封装方式,tg即tsop封装。
-75——内存工作速率,-75即133mhz;-65即150mhz。
实例:一条micronddr内存条,采用18片编号为mt46v32m4-75的颗粒制造。该内存支持ecc功能。所以每个bank是奇数片内存颗粒。
其容量计算为:容量32m×4bit×16片/8=256mb(兆字节)。
winbond(华邦)
含义说明:
wxxxxxxxx
12345
1、w代表内存颗粒是由winbond生产
2、代表显存类型:98为sdram,94为ddrram
3、代表颗粒的版本号:常见的版本号为b和h;
4、代表封装,h为tsop封装,b为bga封装,d为lqfp封装
5、工作频率:0:10ns、100mhz;8:8ns、125mhz;z:7.5ns、133mhz;y:6.7ns、150mhz;6:6ns、166mhz;5:5ns、200mhz

mosel(台湾茂矽)

台湾茂矽科技是台湾一家较大的内存芯片厂商,对大陆供货不多,因此我们熟悉度不够。这颗粒编号为v54c365164vdt45,从编号的6、7为65表示单颗粒为64/8=8mb,从编号的8、9位16可知单颗粒位宽16bit,从编号的最后3位t45可知颗粒速度为4.5ns

nanya(南亚)、elixir、pqi、pluss、atl、eudar

南亚科技是全球第六大内存芯片厂商,也是去年台湾内存芯片商中唯一盈利的公司,它在全球排名第五位。这颗显存编号为nt5sv8m16ct-7k,其中第4位字母“s”表示是sdram显存,6、7位8m表示单颗粒容量8m,8、9位16表示单颗粒位宽16bit,-7k表示速度为7ns。

v-data(香港威刚)、a-data(台湾威刚)、vt
内存颗粒编号为vdd8608a8a-6b h0327,是6纳秒的颗粒,单面8片颗粒共256m容量,0327代表它的生产日期为2003年第27周

③ 内存是什么

内存是主板上重要的部件之一,它是存储CPU与外围设备沟通的数据与程序的部件。在主机中,内存所存储的数据或程序有些是永久的,有些是暂时的,所以内存就有不同形式的功能与作用,而且存储数据的多少也关系着内存的容量大小,传送数据的快慢也关系着内存的速度,这些都跟内存的种类与功能有关。现将内存重要的分类介绍如下:
内存的品牌
内存有许多不同的品牌,这些不同的品牌加载于主板上,它们的排列组合就关系着主板的性能和整个系统的稳定性。除了CPU、主板外,内存是一个关键的部件。每家厂商对于内存的规格、容量以及电路的特性都有不同的要求,所以对于在主板上使用的内存是否有不良的反应都应留意,尤其是高容量、高速度、新规格的内存,在选用时更应注意其特性,现将世界各国生产内存的厂商列出如下
★日本系列: Panasonic(松下)代号:MN
NEC(日本电器)代号:MC
Mitsubishi(三菱)代号: MH
Fujitsu (富士通)代号:MB
Hitachi(日立)代号: HM
Toshiba (东芝)代号: TMM
OkI(冲电气)代号:MSM
Sharp(夏普)代号: LH
Sanyo(三洋)代号:LC
Seiko(精工)代号:SRM
Sony(索尼)代号:CXK
★美国系列: Motorola (摩托罗拉)代号:MCM
NS(国民半导体)代号: NS
TI( ?菀瞧鳎┐�牛?TMS
Micron(美光)代号:MT
AMD(美国超微)代号: AM
Performance 代号:P
IDT(艾迪特)代号:IDT
★欧洲系列:Semens(德国西门于)代号:Semens
SGS(意大利汤拇逊)代号:T
★台湾系列:联华 代号: UMC
茂矽 代号:Mosel(MX)
德基 代号: Texas
矽成 代号:Is
华邦 代号:Winboard
华撇隆 代号:HMC
★韩国系列: Samsung(三星)代号:KM
Goldstar(金星)代号: GOldStar
Hyundai( 韩国现代)代号: HY
两种内存新技术动态
为了充分挖掘内存中更多的性能,几种内存新技术正进入高档微机。这些新内存的特点是:
1.EDO DRAM 方案
EDO(Extend Data Out,扩充数据输出)DRAM是一种*作效率更高的单周期内存,它在CAS周期处延迟数据的滞留,因为可维持更长的数据有效时间,这样无需拓宽数据总线也增加了带宽。
EDO内存是目前奔腾机中运用最多的一种内容,这种内存在工作时,允许CPU高效地用上次访问的尾部覆盖某次内存访问的首部;单个内存访问并没有更快,但一连串内存访问的完成时间比标准的快页模式DRAM要少。
2、同步高速内存
我们常说的高速缓存一般采用异步SRAM,它的访问速度相对DRAM来说已大大提高了,但相对CPU来说仍较慢。目前,有一种更新的同步SRAM的高速缓存出现在奔腾机的主板上。例如,在120MHz和更快的奔腾微机的主板上,均采用了Intel的Triton芯片组,该芯片组支持一种称为流水线突发(pipelined burst)高速缓存的特殊同步高速缓存,其中访问速度大大地提高。
除了上述两种新技术外,还有新型的同步DRAM技术和RambusDRAM的系统,这种技术采用25OMHz时钟速度极快地传送大批突发数据。
内存的速度
内存的存取速度关系着CPU对内存读写的时间,所以不同型号规格的内存就有不同的速度,如ROM就有27010-20,27010-15等不同的速度。DRAM也有411000-7、411000-6等不同的速度,这些编号后面的20代表200ns,-15代表150ns,-7代表70ns,-6代表60ns,所以RAM的速度比ROM的速度快很多。当电脑一启动时,把BIOS RoM中的程序拷贝至DRAM内,以后CPU直接与较快的DRAM联络即可,这就是我们所谓的ShadowRAM。
内存有它不同的规格和速度,在不同电路、不同设备也有不同的单位,现将它的应用说明如下:
ms, Milli Second(毫沙)
us: Micro Second(微秒)
ns: Nano Second (纳秒)
数据的传送速度:
以ms为单位,如硬盘的平均存取速度17ms、12ms等。
以us为单位,如DRAM每隔15us更新充电一次。
以ns为单位、如内存的存取速度:
RAM: 41256-8,8即表示80ns。
411000-7,7即表示70ns。
411000-6,6即表示60ns。
ROM: 27256-20, 20即表示200ns。
27512-15,15即表示150ns。
常规内存(Conventional Memory)
常规内存在内存分配表中占用最前面的位置,从0KB到640KB(地址000000H~109FFFFH),共占640KB的容量。因为它在内存的最前面并且在DOS可管理的内存区,我们又称之为Low Dos Memory(低DOS内存),或称为基本内存(Base Memory),使用此空间的程序有BIOS*作系统、DOS*作系统、外围设备的驱动程序、中断向量表、一些常驻的程序、空闲可用的内存空间、以及一般的应用软件等都可在此空间执行。由此可见,在DOS下的应用程序及其*作系统,挤在如此狭窄拥挤的空间里,640KB的容量已经不够使用,这是因为最早使用的CPU是8088,其寻址的地址信号线只有20条线,能够寻址的空间只有lMB,也就是祖先留下的祖产不多,受到先天硬件CPU寻址的限制。因此在规划内存给各个系统以及DOS下的一些套装应用软件使用时,在先天内存不足环境下,“省吃俭用”来分配这点内存, MS-DOS可以控制和管理1MB的内存空间,常规内存占了640KB,其他的384KB保留给BIOS ROM及其他各种扩展卡使用。这640KB的常规内存基本上分两部分,一部分给各种不同的*作系统程序使用,另一部分给数据、程序的使用。 上位内存(UMB)

④ 内存颗粒编号问题,请高手指教

整个DDR SDRAM颗粒的编号,一共是由14组数字或字母组成,他们分别代表内存的一个重要参数,了解了他们,就等于了解了现代内存。

颗粒编号解释如下:

1. HY是HYNIX的简称,代表着该颗粒是现代制造的产品。

2. 内存芯片类型:(5D=DDR SDRAM)

3. 处理工艺及供电:(V:VDD=3.3V & VDDQ=2.5V;U:VDD=2.5V & VDDQ=2.5V;W:VDD=2.5V & VDDQ=1.8V;S:VDD=1.8V & VDDQ=1.8V)

4. 芯片容量密度和刷新速度:(64:64M 4K刷新;66:64M 2K刷新;28:128M 4K刷新;56:256M 8K刷新;57:256M 4K刷新;12:512M 8K刷新;1G:1G 8K刷新)

5. 内存条芯片结构:(4=4颗芯片;8=8颗芯片;16=16颗芯片;32=32颗芯片)

6. 内存bank(储蓄位):(1=2 bank;2=4 bank;3=8 bank)

7. 接口类型:(1=SSTL_3;2=SSTL_2;3=SSTL_18)

8. 内核代号:(空白=第1代;A=第2代;B=第3代;C=第4代)

9. 能源消耗:(空白=普通;L=低功耗型)

10. 封装类型:(T=TSOP;Q=LOFP;F=FBGA;FC=FBGA(UTC:8x13mm))

11. 封装堆栈:(空白=普通;S=Hynix;K=M&T;J=其它;M=MCP(Hynix);MU=MCP(UTC))

12. 封装原料:(空白=普通;P=铅;H=卤素;R=铅+卤素)

13. 速度:(D43=DDR400 3-3-3;D4=DDR400 3-4-4;J=DDR333;M=DDR333 2-2-2;K=DDR266A;H=DDR266B;L=DDR200)

14. 工作温度:(I=工业常温(-40 - 85度);E=扩展温度(-25 - 85度))

由上面14条注解,我们不难发现,其实最终我们只需要记住2、3、6、13等几处数字的实际含义,就能轻松实现对使用现代DDR SDRAM内存颗粒的产品进行辨别。尤其是第13位数字,它将明确的告诉消费者,这款内存实际的最高工作状态是多少。假如,消费者买到一款这里显示为L的产品(也就是说,它只支持DDR 200的工作频率),那么就算内存条上贴的标签或者包装盒上吹的再好,它也只是一款低档产品。

常见SDRAM 编号识别

维修SDRAM内存条时,首先要明白内存芯片编号的含义,在其编号中包括以下几个内容:厂商名称(代号)、容量、类型、工作速度等,有些还有电压和一些特殊标志等。通过对这些参数的分析比较,就可以正确认识和理解该内存条的规格以及特点。
(1)世界主要内存芯片生产厂商的前缀标志如下:
▲ HY HYUNDAI ------- 现代
▲ MT Micron ------- 美光
▲ GM LG-Semicon
▲ HYB SIEMENS ------ 西门子
▲ HM Hitachi ------ 日立
▲ MB Fujitsu ------ 富士通
▲ TC Toshiba ------ 东芝
▲ KM Samsung ------ 三星
▲ KS KINGMAX ------ 胜创
(2)内存芯片速度编号解释如下:
★ -7 标记的SDRAM 符合 PC143 规范,速度为7ns.
★ –75标记的SDRAM 符合PC133规范,速度为7.5ns.
★ –8标记的SDRAM 符合PC125规范,速度为8ns.
★ –7k/-7J/10P/10S标记的SDRAM 符合PC100规范,速度为10ns.
★ –10K标记的SDRAM符合PC66规范,速度为15ns.
(3) 编 号 形 式
HY 5a b ccc dd e f g h ii-jj
其中5a中的a表示芯片类别,7---SDRAM; D—DDR SDRAM.
b表示电压,V—3.3V; U---2.5V; 空白—5V.
CCC表示容量,16—16M; 65—64M; 129—129M; 256—256M.
dd表示带宽。
f表示界面,0—LVTTL; 1—SSTL(3); 2—SSTL_2.
g表示版本号,B—第三代。
h表示电源功耗, L—低功耗; 空白—普通型。
ii表示封装形式, TC—400mil TSOP—H.
jj表示速度,7—143MHZ; 75—133MHZ;8—125MHZ;
10P—100MHZ(CL=2);10S—100MHZ(CL=3)
10—100MHZ(非PC100)。
例:1) HY57V651620B TC-75
按照解释该内存条应为:SDRAM, 3.3V, 64M, 133MHZ.
2) HY57V653220B TC-7
按照解释该内存条应为:SDRAM, 3.3V, 64M, 143MHZ

全球主要内存芯片生产厂家(掌握内存芯片生产技术的厂家主要分布在美国、韩国、日本、德国、台湾):

序号 品牌 国家/地区 标识 备注
1 三星 韩国 SAMSUNG
2 现代 韩国 HY
3 乐金 韩国 LGS 已与HY合并
4 迈克龙 美国 MT
5 德州仪器 美国 Ti 已与Micron合并
6 日电 日本 NEC
7 日立 日本 HITACHI
8 冲电气 日本 OKI
9 东芝 日本 TOSHIBA
10 富士通 日本 F
11 西门子 德国 SIEMENS
12 联华 台湾 UMC
13 南亚 台湾 NANYA
14 茂矽 台湾 MOSEI
回答者:血蔷薇3109 - 魔法师 五级

⑤ OKI C3100怎么清零啊,在线求助,打印机维修资料,打印机维修资料

建议不要自己加粉,一对打印机不好,二对打出来的产品不好,三对身体不好,。

只能通过更换芯片完成,取出墨盒更换新的打印芯片即可。
清零——电子学术语:清零是一种指令。在电子计算机硬件中,有计算器、累加器、中央存储器、外部存储器、地址存储器等。
使用清零指令,可以将存储器的状态(数据)变成原始的零状态。即是存储器由高电位(代表逻辑1)翻转成低电位(代表逻辑0)。

⑥ 针式打印机一下几个牌子,你用的是哪个牌子1 得实 2 富士通 3 爱普生 4 映美 5 OKI 6 实达 7 star

我们用的是得实,可以3年免费上门维修维护,机器也是人家上门给我们安好调好才走的。用起来质量确实不错,本来我们想买STAR的呢,听人介绍说这个牌子现在都是代理商生产的,型号一样但是质量跟以前的不一样了,试用了一下感觉一般。

⑦ 国内美光内存代理商叫什么啊

叫星宏伟业。
Micron(美国美光)半导体是全球第二大内存芯片厂,是全球着名的半导体存储器方案供应商,是美 国500强企业之一。
Micron是其中先进的半导体解答领先世界的提供者之一。Micron微量和闪光组分用于现代最先进的 计算,Micron的网络和通信产品,包括计算机、工作站、服务器、手机、无线电设备、数字照相机和 GAMING系统。美光科技有限公司(Micron Technology, Inc.)是高级半导体解决方案的全球领先供应商之 一。

⑧ 现在的内存颗粒厂商及详细参数

我们经常用到的内存品牌有:海盗船、Kingston(金士顿)、Kingmax(胜创)、APACER(宇瞻)、三星(SAMSUNG)、现代(HYNIX)等。杂牌中用的颗粒编号较多的是EACH的以及KingMAN、KingRAM等等。海盗船内存主要用于服务器或者发烧玩家,我们大家在购买电脑的时候,在资金比较宽裕的情况下,推荐选购Kingston的VALUERAM盒装内存,以及APACER盒装内存(建议购买英飞凌”INFINEON“颗粒的)这两种内存提供内存的终身质保,品质上没有任何问题,大家完全可以放心使用。如果资金不是很宽裕,建议购买非打磨现代的内存,经实践证明原厂现代内存的兼容性在所有的内存中首屈一指。但是,现代的内存假货严重泛滥,关于其造假及售假方法将在下文中提到。如果你要购买现代的兼容内存,建议你一定要买富豪代理或者金霞代理的盒装正品。如果贪图便宜选择散装条子,那就要考考您的眼力了。基本上不推荐购买杂牌内存,杂牌内存在使用寿命和质保上都不能令人满意,最后说一下Kingmax内存之所以不推荐,就是因为Kingmax内存与某些主板(如早期NFORCE 2芯片组)的兼容性不是很好,但其自身的品质和性能绝对也是业界一流的。希望在购买的时候一定要当场试试,看有没有兼容性问题.
现代颗粒:
作为全球几大内存颗粒生产厂家的现代公司自从进入中国以后假货也随之而来并且花样之多令人发寒。以往所谓的现代原厂内存不过是使用些小伎俩比如贴塑料纸,喷漆等下三滥的REMARK手段,而现在真正的仿冒品出来了,不仔细看的话真的会被假货所蒙骗。同时HY公司的内存颗粒一直以来算的上中规中矩,除了稳固TSOP II封装的颗粒外,根本没有生产过其他封装的产品,这里就暴露了假货的致命点。虽然外观漂亮,但是最终难逃假货的命运。
目前现代主流的内存颗粒有两种,默认频率在200MHz的D-43颗粒以及250MHz的D-5颗粒。
海力士(Hynix)颗粒:
与英飞凌的情况类似,海力士以前是韩国现代电子公司的子公司现代半导体公司,后来从母公司中独立,改名为Hynix,所以严格的说,它的产品不能再称之为“现代内存”了。
KINGSTON系列:
虽然他比KINGMAX出道晚,但是他却以迅雷不及掩耳的速度在国内走红,可能最主要的原因就是内存质量了。同样市场上也就出现了仿冒的盒装KINGSTON。辨别是否是正品非常的简单。首先,正品的封口贴纸印刷色彩丰富。假冒的产品则逊色很多。
如果不能通过包装外表来识破真假,那么就看看内存颗粒,假货为了节省成本通常使用廉价的杂牌内存颗粒,而正品则是以SAMSUNG,HY等为主的。但是必须要提防打磨的颗粒。还有一招就是拨打内存上的800电话来辨别真假。
三星原厂颗粒:
三星与现代原厂内存一直都是比较崇尚的,自从去年进入市场以来也都没有过的清闲,频繁受到了仿冒品的骚扰。
现在的所谓三星原厂的仿冒品如同以前的散装条,做工较为粗糙,PCB质量较为低劣,并且分量也不及原厂条来的重。内存颗粒的激光字体原厂的非常清晰,而仿冒品则有摩擦过的痕迹。
内存的背面也可以看到真品的走线比较清晰自然,而仿冒品则比较零乱,包括焊点的质量,谁真谁假一目了然。
为了防止仿冒品三星原厂内存的代理商未雨绸缪的使用了防伪技术,在真品的内存中贴上了一张镭射三星金条的贴纸,同时整体原厂的包装中也附带有了一张质量保证卡。相信这些仿冒者除非下血本,不然还是难以与真品的附件质量相抗衡的。
三星内存颗粒上的编号“TC”,其中的“T”代表采用TSOP封装方式。
一、三星DDR系列内存芯片:
三星TCB3颗粒:
TCB3是三星推出的6ns DDR颗粒,可以稳定地工作在PC2700, 2-2-2-X的时序,参数非常优秀,此外它同样可以工作在PC3200,但是不能继续维持这么高的时序,200MHz时的时序为2-3-3-6,不过也已经很不错了。TCB3的频率极限在230MHz左右,对于对于默认为166MHz的内存来说超频幅度很大,TCB3对于电压并不太敏感,3.0V电压下频率提升也不是很大。现在来看这种颗粒有些过时。
三星TCCC颗粒:
TCCC是三星TCC系列(PC3200)里面编号为“C”的颗粒,表示其PC3200时预设CAS值为3。TCCC可以工作在250-260MHz,3-4-4-8的时序,而默认200MHz时可以保持2.5-3-3-6的时序,由于TCCC颗粒的售价比较便宜,因此和现代的D43一起成为性价比出色的代表。此外不少DDR500内存同样采用了TCCC颗粒,不过由于已经接近极限频率,留给这款内存的超频空间已经很小了。电压对于TCCC颗粒的超频有一定的影响,不过在2.8V时已经基本可以达到最高频率。
三星TCC4颗粒:
TCC4:TCC4是三星的另外一款5ns的DDR400内存颗粒,不过并不常见,在一些品牌的PC3200低端内存甚至是PC2700内存上面可以看到它。TCC4并不太适合超频用户,因为在加压情况下最高也只能稳定在210-220MHz,3-3-3-X的时序模式下,对电压很不敏感,只适合追求容量和性价比的用户。
三星TCC5颗粒:
TCC5:TCC5是三星TCC系列的一款新产品,在各方面比它的前辈TCC4都要优秀很多,一般多用在DDR466内存产品上,超频性能很不错。这款内存的默认工作频率为233MHz,初始频率比TCC4要高,默认工作时序可以达到2.5-3-3-X,在超频模式下,可以工作在250MHz和3-4-4-X的时序下,对于电压也不太敏感。这款颗粒相比TCCC和现代的D43来说并不常见,售价相对较高,对于AMD,Intel的平台都比较适应,200MHz下可以提供不错的时序,而超频状态下可以提供不错的频率,是一个不错的选择。
三星TCCD颗粒:
TCCD:TCCD是另一款经典高频颗粒,可以在2-2-2-X的时序下稳定工作在220MHz,也可以在2.5-4-4-X的时序下以超过300MHz的频率稳定运行,是目前工作频率最高的DDR内存芯片。TCCD对于电压的比较敏感,但是并不需要太高的电压就可以完全进入高效状态,在2.8V或者更低电压下即可达到,几乎适用于所有的主流主板。目前采用TCCD颗粒的内存产品在绝大多数主板上可以轻松达到DDR600的水准,可以满足不同用户的需要。TCCD和BH-5相比在高频时候的参数不足可以通过更高的工作频率来弥补。目前几乎所有的内存频宽记录都是由TCCD创造的,不少采用TCCD颗粒的品牌内存已经成为超频玩家们追捧的对象。
三星UCCC颗粒:
此外三星UCCC内存颗粒低延迟特性也为玩家所追捧,选用UCCC颗粒的DDR400内存条,默认工作时序为3-3-3-6,在不加电压超频模式下,可以工作在240MHz和2.5-3-3-X下。相对价格也要便宜一些,非常适合大众选择。
三星DDR2系列内存芯片
GCCC是目前最常见的三星颗粒,多用于DDR2-400产品
使用三星ZCD5颗粒的三星金条DDR2-533内存在不加电压超频情况下,能够以4-4-4-X的时序稳定工作在DDR2-667模式,更具备挑战DDR2-900的实力。
目前全球速度最快的三星金条DDR2-800采用三星ZCE7颗粒
最近生产的三星颗粒上,厂家标识已经从原来的“SAMSUNG”改为“SEC”了
DDR2时代,三星全面进入到GC和ZC(G为FBGA封装方式,Y为FBGA-LF)系列,另外还有SC和YC,并采用90nm生产工艺,使相同芯片可以生产出更多的颗粒,从而降低了成本。YC是外形最小的一种封装方式,性能表现也最好,现在市面上很少见到。
目前较常见到的有GCCC(多用于DDR2-400)、***5/ZCD5(多用于DDR2-533)、***6/GCE6(多用于DDR2-667)、GCF7/GCE7(多用于DDR2-800)等;这些内存颗粒在超频方面同样有着不容小视的实力,且仍保持低延迟风格。不过经过编号更改后(由SAMSUNG改为SEC),默认时序参数已设定得较为保守,不过某些DDR2-533默认延迟仍设定在4-4-4-10上。通常情况下三星DDR2-533内存时序参数可以稳定在3-3-3-4上,优势明显,这也是为什么三星金条内存品质非常好的一个原因。GCCC和***5颗粒大都具备在5-5-5-15参数下超频至DDR2-800以上水平。三星金条作为韩国三星电子的原厂原装内存,多选用这种颗粒。
KINGMAX系列:
KINGMAX的产品以他的TINYBGA封装形式得以闻名,同时因为技术的独特性也一定程度抑制了假货的生存。在去年KINGMAX为了丰富自己的产品线推出了一个SUPER-RAM的系列,这个系列采用了TSOP封装技术,当然这也给仿冒工厂带来了又一个利润点。
不过KINGMAX公司也意识到了这一点,对这个系列的内存使用了非常多的防伪手段。最另人值得注意的就是PCB板正面SPD下方新设计一颗ASIC芯片(特殊用途芯片),该颗粒采用KINGMAX专利的TinyBGA技术进行封装,内部存储了ID CODE,具有全球统一识别码,也就是说拥有唯一性,同时还附上了800电话的查询贴纸,这样假货就无处藏身了。
Kingmax内存都是采用TinyBGA封装(Tiny ball grid array)。并且该封装模式是专利产品,所以采用Kingmax颗粒制作的内存条全是该厂自己生产。Kingmax内存颗粒有两种容量:64Mbits和128Mbits。在此可以将每种容量系列的内存颗粒型号列表出来。
容量备注:
KSVA44T4A0A——64Mbits,16M地址空间 × 4位数据宽度;
KSV884T4A0A——64Mbits,8M地址空间 × 8位数据宽度;
KSV244T4XXX——128Mbits,32M地址空间 × 4位数据宽度;
KSV684T4XXX——128Mbits,16M地址空间 × 8位数据宽度;
KSV864T4XXX——128Mbits,8M 地址空间 × 16位数据宽度。
Kingmax内存的工作速率有四种状态,是在型号后用短线符号隔开标识内存的工作速率:
-7A——PC133 /CL=2;
-7——PC133 /CL=3;
-8A——PC100/ CL=2;
-8——PC100 /CL=3。
例如一条Kingmax内存条,采用16片KSV884T4A0A-7A 的内存颗粒制造,其容量计算为: 64Mbits(兆数位)×16片/8=128MB(兆字节)。
Winbond(华邦)系列
Winbond(华邦)是台湾着名的内存芯片生产商,该公司生产的DDR内存颗粒在玩家心目中的地位是其他任何厂商没办法取代的,该公司的BH-5内存芯片已经成为高档内存的代名词。
1、BH-5
BH-5是华邦公司最出名的内存颗粒,也可以称得上到目前位置最出名的内存颗粒!这些颗粒以其超强的内存参数而着称,并且对于电压相当地敏感;大多数的BH-5颗粒可以工作在2-2-2-X的参数下,当然在3.2-3.4V高压下,部分采用BH-5颗粒的极品内存甚至工作在280MHZ的频率,并且仍然维持2-2-2-x这样的时序。
当然这样体质的BH-5颗粒还比较少见,对于内存的整体要求也相当高。如果你的主板不支持2.8V以上的内存电压调节,采用BH-5颗粒的内存或许不太适合你,但是对于那些狂热的超频玩家来说,OCZ的DDR booster可以帮助他们榨干BH-5的所有能量,最高3.9V的电压可以轻松让你的BH5达到DDR500,2-2-2-X以上,当然笔者不推荐正常使用中采用这么高的电压(毕竟大多数采用BH5颗粒的内存默认电压为2.5-2.6V之间)。
2003年是BH-5颗粒产量最多的一年,但目前华邦已经宣布停产BH-5颗粒,因此现在的市面上新售内存中采用BH-5的比例非常少,多数出现在售价超贵的高端内存中,如Mushkin Black Level ram,Kingston Hyper X,Corsair XMS,TwinMos,Buffalo以及极少数低端内存产品中;当然另外一种寻找BH-5内存的方法就是在销售商的库存产品中,或二手市场,网友之间的交易来获得。
2、CH-5
CH-5颗粒是华邦公司继BH-5以后推出的另外一款试用于DDR400内存产品的内存芯片,可以称之为BH-5的缩水版,为什么这样说呢?因为CH-5超频后工作参数一般只能达到2-3-2-X,频率在220-230MHZ左右,和BH-5相差甚远;并且对于电压的敏感程度比不上BH-5,高于3V的电压通常也起不到太明显的效果,这种现象虽然主要还是内存颗粒的本身体质来决定的,但是和内存厂商的PCB板设计,用料还是脱不了干系的。
不同批次的CH-5颗粒的差别也很大,一些少数CH-5颗粒同样可以达到BH-5所能够达到的成绩,当然几率非常小。目前华邦仍然在继续生产CH-5颗粒,在BH-5停产后,缩水版的CH-5也逐渐被很多高端内存所选购,成为新一代的“极品”,不少采用CH-5颗粒的内存在适当的加压后可以工作在200MHZ 2-2-2-X的模式下,目前Corsair XMS,Kingston Hyper X以及其他几个高端品牌的内存产品的一些型号均采用了CH-5颗粒。
3、BH-6
BH-6作为BH-X系列的6ns版本,同样具有非常不错的性能,某些批次的BH-6的超频性能甚至能够比得上同门大哥BH-5,大多数BH-6同样可以工作在2-2-2-2X的参数下,并且在3.2-3.4V电压下可以稳定工作在240-250MHz。
不过由于华邦在推出BH-6颗粒不久后由于产能不足停止了该型号颗粒的生产,因此相比BH-5颗粒来说BH-6颗粒数量更为稀少。Mushkin Special 2-2-2,Corsair XMS,Kingston Hyper X,Kingston Value Ram PC2700等型号的内存产品上采用了BH-6颗粒。
4、CH-6
CH-6是华邦CH-X系列的6ns版本,虽然大家对这款华邦低端DDR颗粒不是很看好,但是它仍然继承了华邦系列一贯的优秀品质。CH-6在大多数情况下和CH-5很相似,不过不太容易稳定在2-2-2-X的时序,和CH-5一样同样对于电压不是很敏感,最高的工作频率应该是220MHz,2-3-2-X的时序。CH-6面对的是性价比比较高的市场,在一些较低端的内存产品上比较常见,如Kingston Value Ram,Corsair Value Ram以及Mushkin Basic系列。
5、UTT
UTT是华邦最新推出的DDR内存颗粒,可以说和BH-5颗粒非常相似,无论是能够达到的极限频率以及工作时序,和BH5不同的是UTT颗粒需要稍高的电压才能做到这些,因此大多数超频玩家选择让UTT在3.4-3.6V的电压下工作。
UTT在一点上做的要比BH-5颗粒出色,那就是UTT颗粒无论是双面还是单面分布超频性能几乎相同,但BH-5更偏爱单面分布的方式,因此BH-5系列内存的最好超频搭配为2x256MB,但UTT无论是2x256mb或者是2x512MB的搭配都同样出色,这一优势在1GB内存成为主流容量的今天显得特别重要,512MB的容量在对付主流的3D游戏和软件应用已经捉襟见肘。
UTT颗粒在辨认上显得有点困难,可以通过印刷在颗粒表面的商标很容易地辨认出上面介绍的华邦其他四款内存芯片,但是UTT的颗粒印刷种类比较多,在寻找的时候会带来不小的难度。UTT常见的颗粒表面印着M.Tec或者Twinmos的商标,并且拥有华邦系列内存的特征(颗粒正面左右对称分布2个凹进去的小圆圈,内存的侧面可以看到两个短距离的金属横片)。
一般具备华邦内存颗粒特征但是没有印刷BH-5/CH-5的DDR400颗粒通常就是UTT颗粒了。一但拥有了采用UTT颗粒的内存,你会发现拥有1GB容量并且可以工作在275MHz 2-2-2-X时序的内存是多么值得兴奋的事。目前你可以在OCZ Gold VX系列 OCZ Value VX系列, TwinMos Speed Premium 系列以及其他多种品牌的低价内存上看到它的身影。1GB容量的售价在150美元左右,非常超值。
华邦系列内存颗粒的特征-颗粒正面左右对称分布2个凹进去的小圆圈,内存的侧面可以看到两个短距离的金属横片。
镁光(Micron)系列颗粒
镁光系列DDR内存颗粒以出色的超频性能以及兼容性好而着称,好多超频玩家称之为“中庸内存”,在中端领域镁光的颗粒无人能敌。目前常见的DDR颗粒包括-5B C/-5B G系列。
1、-5B C
说实话镁光的5B系列颗粒本来应该十分热卖才对,这款-5B C颗粒不仅能够达到很高的频率并且同时拥有很棒的时序,通常可以稳定工作在230MHz,2.5-2-2-X,虽然CAS延迟不能达到2.0或者更低,但是TRD和TRP却很低,均可稳定在时序2,当然工作频率还可以上的更高。-5B C对于电压同样很敏感,在3.0V电压下基本上可以达到最高频率250MHz以上。
镁光的颗粒的效能非常好,CAS2.5可以和BH-5系列CAS2相聘美,此外该款内存的异步性能非常好,对于高端的Athlon64,Intel平台处理器FSB的提升尤其有帮助。目前多家厂商推出的PC3200内存均采用了镁光的这款芯片,其中最引人注目的就是日本的Buffalo品牌,此外还包括Crucial,OCZ和其他品牌。
-5B G
-5B G颗粒是镁光针对前者-5B C的改进版,虽然同样为5ns芯片,但是所能达到的最高频率要高于前者,着名的Crucial Ballistix系列内存就采用了这款型号的内存颗粒,不仅工作频率高,内存时序也相当出色。
-5B G颗粒可以在保持较高频率的同时拥有出色的时序,大多数-5B G可以工作在250-260MHz,2.5-2-2-X的时序,比大多数现代的D43/D5颗粒都要出色,目前1GB容量Crucial Ballistix的售价在250美元左右,此外你还可以在镁光原厂DDR400上发现这款颗粒的身影。
美光内存芯片编号的说明如下:
美光科技的编号相当详细,这是因为它将所有的DRAM芯片编号进行了统一,包括久远的EDO(在一些专用设备上仍然会使用到它)和未来的DDR-2芯片,所以也显得参数很多,甚至在封装类型中还体现出有铅和无铅(Lead Free)封装,但好在分类还是比较清楚的。值得注意的是芯片的版本,其规则也基本与三星的一样,越靠后越新,但会有一些特殊的规定,如果是LF、S2、SF、T2等标识则代表了该产品集成了两个内核,可以认为是堆叠式(Stack)封装)。而特殊功能则是指产品所具备的一些功能可选项,但自刷新(Self Refresh)自从16Mb的SDRAM以后就是标准的设计,所以这一项是无关紧要的。
在芯片结构方面,表示容量单位的字母(K、M、G,这三个字母大家应该很熟悉了吧)后面的数字就是芯片的位宽,它乘以前面的字母与数字组合的结果就是芯片的容量,单位是Bit。比如图中的例子是32M8,代表的是位宽为8bit,乘以32M,总容量为256Mbit。
Micron(美光)内存颗粒的容量辨识相对于三星来说简单许多。下面就以MT48LC16M8A2TG-75这个编号来说明美光内存的编码规则。
含义:
MT——Micron的厂商名称。
48——内存的类型。48代表SDRAM;46 代表DDR。
LC——供电电压。LC代表3V;C 代表5V;V 代表2.5V。
16M8——内存颗粒容量为128Mbits,计算方法是:16M(地址)×8位数据宽度。
A2——内存内核版本号。
TG——封装方式,TG即TSOP封装。
-75——内存工作速率,-75即133MHz;-65即150MHz。
以上面的芯片图为例,可以看出它的容量是256Mbit,位宽8bit,采用TSOP-II封装,产品版本应该是第一代(没有版本编号)、速度为DDR-400(3-3-3)。
实例:一条Micron DDR内存条,采用18片编号为MT46V32M4-75的颗粒制造。该内存支持ECC功能。所以每个Bank是奇数片内存颗粒。
其容量计算为:容量32M ×4bit ×16 片/ 8=256MB(兆字节)。
Infineon(英飞凌)系列颗粒
Infineon(英飞凌)科技作为内存界的元老,其在SD时代的超频性能无人能敌,并且具备完美的兼容性能。有人将Infineon称为西门子(Siemens),事实上英飞凌的前身是西门子半导体公司,在SDRAM时代,我们经常看到Siemens字样的内存,但如今Infineon早已独立,所以今后不再叫它是西门子内存了。目前英飞凌常见的几款DDR内存颗粒在超频上都有不错的表现。
1、B5
这是英飞凌的5ns内存颗粒,不过并不多见,因为仅有Corsair XMS3200 rev. 3.1这款内存使用了B5颗粒,默认设置为200MHz,2-3-3-6时序,相当不错,总体特征和华邦的CH-6颗粒很类似。B5颗粒对电压同样敏感,不过没有华邦的颗粒那么明显,即使加压后超频幅度也很一般,在2.9-3.0V的电压下只能工作在220-230MHz,尝试超过这个电压更是在浪费时间。
2、BT-6
这款是英飞凌的6ns颗粒,主要使用在PC2700内存产品上,和B5很类似,仅是在超频幅度上略逊于后者。Kingston的KVR2700就是采用了BT-6颗粒,可以稳定工作在215MHz,2.5-3-3-11的时序;目前6ns的BT-6算是比较落伍了,不过可以轻松达到200MHz,CAS2.5的水准,如果想要达到更高的频率和参数,就要在电压上下功夫了。综合来说,BT-6的好处就是以PC2700的价格带给你PC3200的体验。
3、BT-5
目前最常见的英飞凌DDR400芯片就是BT-5,默认工作频率为200MHz,3.0-3-3-8,DDR400通常优化时序为2.5-3-2-X,显得一般,不过BT-5擅长的是频率制胜,并且对于电压敏感程度很高,在2.8V以上电压,BT-5颗粒大多可以工作在240MHz以上,少数可以达到275MHz,3-4-4-X的工作状态。目前在很多品牌包括英飞凌原厂的PC3200内存都采用了这款BT-5颗粒,是一款性价比不错的产品。
4、CE-5/BE-5
在BT-5 200MHz下的时序遭人诟病以后,英飞凌的另外一款5ns DDR颗粒进入了市场,CE-5颗粒可以稳定工作在200MHz 2-3-2-X时序,此外部分产品还可以上到260MHz以上的频率,不过目前采用CE-5颗粒的内存品质参差不齐,一部分产品甚至不能稳定在225MHz以上。此外最新推出的BE-5颗粒,可以单面实现512MB容量,在参数和极限速度上相比CE-5又有进步。
英飞凌内存芯片编号的说明如下:
在以前,有些人一看开头是HYB就以为是现代(HYUNHAI)的内存芯片,现在可就不要再出这种错误了。在最新的编号中,英飞凌将DDR和DDR-2的产品编号进行了统一,比如DDR-2 400与DDR-400的速度编号是一样的,但在具体的产品上所代表的含义并不一样。英飞凌的编号比较简明(由于DDR内存目前都是4个逻辑Bank,所以英飞凌也就取消了该编号,但估计到了DDR-2时代,由于多了8Bank的选项,估计还会有该编码)
西门子内存颗粒(实际上还是上面的英飞凌)
目前国内市场上西门子的子公司Infineon生产的内存颗粒只有两种容量:容量为128Mbits的颗粒和容量为256Mbits的颗粒。编号中详细列出了其内存的容量、数据宽度。Infineon的内存队列组织管理模式都是每个颗粒由4个Bank组成。所以其内存颗粒型号比较少,辨别也是最容易的。
HYB39S128400即128MB/ 4bits,“128”标识的是该颗粒的容量,后三位标识的是该内存数据宽度。其它也是如此,如:HYB39S128800即128MB/8bits;HYB39S128160即128MB/16bits;HYB39S256800即256MB/8bits。
Infineon内存颗粒工作速率的表示方法是在其型号最后加一短线,然后标上工作速率。
-7.5——表示该内存的工作频率是133MHz;

-8——表示该内存的工作频率是100MHz。
例如:
1条Kingston的内存条,采用16片Infineon的HYB39S128400-7.5的内存颗粒生产。其容量计算为: 128Mbits(兆数位)×16片/8=256MB(兆字节)。
1条Ramaxel的内存条,采用8片Infineon的HYB39S128800-7.5的内存颗粒生产。其容量计算为: 128Mbits(兆数位) × 8 片/8=128MB(兆字节)。
南亚科技(Nanya)

南亚内存芯片编号说明如下:

南亚的编号也是SDRAM、DDR SDRAM与DDR-2 SDRAM统一在起,而且也比较简明,在芯片结构方面,规则与美光的一样,并且也没有逻辑Bank数量的编码,在此不再详细说明了。不过,南亚代工的内存产品也非常多,如Elixir、PQI等,但这些产品已经非常少见,并且也没有对外公布明确的编码规则。
尔必达(ELPIDA)
尔必达是日立与NEC各自的内存分部合并的结果,也因此在产品的编号会有两种截然不同的规则与标识,早期以HM为开头的很可能就是原日立分部的延续,而目前则基本转移到了DD开头的编号规则。近期,尔必达的声势比较大,产销形势有明显的好转,采用其芯片的金士顿模组已经在国内上市,相信今后我们能见到越来越多采用尔必达芯片的产品。
尔必达内存芯片编号说明如下:
尔必达的编号也是比较简单的,需要指出的是,在速度编号的后面还有可能出现其他的编码,比如L,就代表低能耗,I则代表工业级产品,具有宽广的工作温度范围(-40至85°C),不过它们很不常见,在此就不多说了。另外,编码中的第一个字母E,一般不会有,在芯片上直接以DD形状,而E则变成了尔必达的英文名称——ELPIDA。

茂矽(MOSEL VITELIC)
茂矽内存芯片编号说明如下:

茂矽的编号也比较详细,而且比较明确,只是芯片结构一栏比较难以理解,我们可以这样看:前面的三位数是总容量,后面的两位数则是位宽(80=8bit、40=4bit、16=16bit、32=32bit),其他的就很好理解了。

2003年世界最大十家DRAM厂商排名:

从中可以看出,排名前十的厂商是三星(SAMSUNG,韩国)、美光(Micron,美国)、英飞凌(Infineon,德国)、Hynix(韩国)、南亚(Nanya,中国台湾)、尔必达(ELPIDA,日本)、茂矽(Mosel Vitelic,中国台湾),力晶(Powerchip,中国台湾)、华邦(Winbond,中国台湾)、冲电气(Oki,日本)。
最后要强调的是,所谓的主流厂商,就是指DRAM销售额世界排名前十位的厂商,有不少模组厂商也会自己生产内存芯片。但请注意,他们并不是真正的生产,而只是封装!像胜创(KingMax)、金士顿(Kingston)、威刚(ADATA、VDATA)、宇瞻(Apacer)、勤茂(TwinMOS)等都出过打着自己品牌的芯片,不过它们自己并不生产内存晶圆,而是从那些大厂购买晶圆再自己或找代工厂封装。

⑨ 请教大家,内存编号HTL HT25D648512K具体有什么含义

整个DDR SDRAM颗粒的编号,一共是由14组数字或字母组成,他们分别代表内存的一个重要参数,了解了他们,就等于了解了现代内存。

颗粒编号解释如下:

1. HY是HYNIX的简称,代表着该颗粒是现代制造的产品。

2. 内存芯片类型:(5D=DDR SDRAM)

3. 处理工艺及供电:(V:VDD=3.3V & VDDQ=2.5V;U:VDD=2.5V & VDDQ=2.5V;W:VDD=2.5V & VDDQ=1.8V;S:VDD=1.8V & VDDQ=1.8V)

4. 芯片容量密度和刷新速度:(64:64M 4K刷新;66:64M 2K刷新;28:128M 4K刷新;56:256M 8K刷新;57:256M 4K刷新;12:512M 8K刷新;1G:1G 8K刷新)

5. 内存条芯片结构:(4=4颗芯片;8=8颗芯片;16=16颗芯片;32=32颗芯片)

6. 内存bank(储蓄位):(1=2 bank;2=4 bank;3=8 bank)

7. 接口类型:(1=SSTL_3;2=SSTL_2;3=SSTL_18)

8. 内核代号:(空白=第1代;A=第2代;B=第3代;C=第4代)

9. 能源消耗:(空白=普通;L=低功耗型)

10. 封装类型:(T=TSOP;Q=LOFP;F=FBGA;FC=FBGA(UTC:8x13mm))

11. 封装堆栈:(空白=普通;S=Hynix;K=M&T;J=其它;M=MCP(Hynix);MU=MCP(UTC))

12. 封装原料:(空白=普通;P=铅;H=卤素;R=铅+卤素)

13. 速度:(D43=DDR400 3-3-3;D4=DDR400 3-4-4;J=DDR333;M=DDR333 2-2-2;K=DDR266A;H=DDR266B;L=DDR200)

14. 工作温度:(I=工业常温(-40 - 85度);E=扩展温度(-25 - 85度))

由上面14条注解,我们不难发现,其实最终我们只需要记住2、3、6、13等几处数字的实际含义,就能轻松实现对使用现代DDR SDRAM内存颗粒的产品进行辨别。尤其是第13位数字,它将明确的告诉消费者,这款内存实际的最高工作状态是多少。假如,消费者买到一款这里显示为L的产品(也就是说,它只支持DDR 200的工作频率),那么就算内存条上贴的标签或者包装盒上吹的再好,它也只是一款低档产品。

常见SDRAM 编号识别

维修SDRAM内存条时,首先要明白内存芯片编号的含义,在其编号中包括以下几个内容:厂商名称(代号)、容量、类型、工作速度等,有些还有电压和一些特殊标志等。通过对这些参数的分析比较,就可以正确认识和理解该内存条的规格以及特点。
(1)世界主要内存芯片生产厂商的前缀标志如下:
▲ HY HYUNDAI ------- 现代
▲ MT Micron ------- 美光
▲ GM LG-Semicon
▲ HYB SIEMENS ------ 西门子
▲ HM Hitachi ------ 日立
▲ MB Fujitsu ------ 富士通
▲ TC Toshiba ------ 东芝
▲ KM Samsung ------ 三星
▲ KS KINGMAX ------ 胜创
(2)内存芯片速度编号解释如下:
★ -7 标记的SDRAM 符合 PC143 规范,速度为7ns.
★ –75标记的SDRAM 符合PC133规范,速度为7.5ns.
★ –8标记的SDRAM 符合PC125规范,速度为8ns.
★ –7k/-7J/10P/10S标记的SDRAM 符合PC100规范,速度为10ns.
★ –10K标记的SDRAM符合PC66规范,速度为15ns.
(3) 编 号 形 式
HY 5a b ccc dd e f g h ii-jj
其中5a中的a表示芯片类别,7---SDRAM; D—DDR SDRAM.
b表示电压,V—3.3V; U---2.5V; 空白—5V.
CCC表示容量,16—16M; 65—64M; 129—129M; 256—256M.
dd表示带宽。
f表示界面,0—LVTTL; 1—SSTL(3); 2—SSTL_2.
g表示版本号,B—第三代。
h表示电源功耗, L—低功耗; 空白—普通型。
ii表示封装形式, TC—400mil TSOP—H.
jj表示速度,7—143MHZ; 75—133MHZ;8—125MHZ;
10P—100MHZ(CL=2);10S—100MHZ(CL=3)
10—100MHZ(非PC100)。
例:1) HY57V651620B TC-75
按照解释该内存条应为:SDRAM, 3.3V, 64M, 133MHZ.
2) HY57V653220B TC-7
按照解释该内存条应为:SDRAM, 3.3V, 64M, 143MHZ

全球主要内存芯片生产厂家(掌握内存芯片生产技术的厂家主要分布在美国、韩国、日本、德国、台湾):

序号 品牌 国家/地区 标识 备注
1 三星 韩国 SAMSUNG
2 现代 韩国 HY
3 乐金 韩国 LGS 已与HY合并
4 迈克龙 美国 MT
5 德州仪器 美国 Ti 已与Micron合并
6 日电 日本 NEC
7 日立 日本 HITACHI
8 冲电气 日本 OKI
9 东芝 日本 TOSHIBA
10 富士通 日本 F
11 西门子 德国 SIEMENS
12 联华 台湾 UMC
13 南亚 台湾 NANYA
14 茂矽 台湾 MOSEI

⑩ oki打印机好不好

oki打印机应该算是比较非主流的选择,日冲虽然也算是大品牌,在国内也有代理商。但整体销量很一般,价格高,配件贵,功能少,质量也一般。在很多三四线的地级市都找不到经销商和售后。还有软件适配很差,打印机驱动软件更新慢,汉化版做的很差。
如果不是非他不可,其实有很多更好的选择。专业点的佳能和柯尼卡都比它好,便宜的惠普,联想等又它便宜,配件更多,耗材也便宜。