当前位置:首页 » 服务存储 » 商品的存储费建模应该如何假设
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

商品的存储费建模应该如何假设

发布时间: 2022-09-27 21:15:03

A. 数学建模中 模型假设怎么写

数学建模文章格式模版
题目:明确题目意思

一、摘要:500个字左右,包括模型的主要特点、建模方法和主要结果

二、关键字:3-5个

三.问题重述。略
四. 模型假设
根据全国组委会确定的评阅原则,基本假设的合理性很重要。
(1)根据题目中条件作出假设
(2)根据题目中要求作出假设
关键性假设不能缺;假设要切合题意
五. 模型的建立
(1) 基本模型:
1) 首先要有数学模型:数学公式、方案等
2) 基本模型,要求 完整,正确,简明
(2) 简化模型
1) 要明确说明:简化思想,依据
2) 简化后模型,尽可能完整给出
(3) 模型要实用,有效,以解决问题有效为原则。
数学建模面临的、要解决的是实际问题,
不追求数学上:高(级)、深(刻)、难(度大)。
u 能用初等方法解决的、就不用高级方法,
u 能用简单方法解决的,就不用复杂方法,
u 能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。
(4)鼓励创新,但要切实,不要离题搞标新立异
数模创新可出现在
▲建模中,模型本身,简化的好方法、好策略等,
▲模型求解中
▲结果表示、分析、检验,模型检验
▲推广部分
(5)在问题分析推导过程中,需要注意的问题:
u 分析:中肯、确切
u 术语:专业、内行;;
u 原理、依据:正确、明确,
u 表述:简明,关键步骤要列出
u 忌:外行话,专业术语不明确,表述混乱,冗长。
六. 模型求解
(1) 需要建立数学命题时:
命题叙述要符合数学命题的表述规范,
尽可能论证严密。
(2) 需要说明计算方法或算法的原理、思想、依据、步骤。
若采用现有软件,说明采用此软件的理由,软件名称
(3) 计算过程,中间结果可要可不要的,不要列出。
(4) 设法算出合理的数值结果。
七、 结果分析、检验;模型检验及模型修正;结果表示
(1) 最终数值结果的正确性或合理性是第一位的 ;
(2) 对数值结果或模拟结果进行必要的检验。
结果不正确、不合理、或误差大时,分析原因,
对算法、计算方法、或模型进行修正、改进;
(3) 题目中要求回答的问题,数值结果,结论,须一一列出;
(4) 列数据问题:考虑是否需要列出多组数据,或额外数据
对数据进行比较、分析,为各种方案的提出提供依据;
(5) 结果表示:要集中,一目了然,直观,便于比较分析
▲数值结果表示:精心设计表格;可能的话,用图形图表形式
▲求解方案,用图示更好
(6) 必要时对问题解答,作定性或规律性的讨论。
最后结论要明确。
八.模型评价
优点突出,缺点不回避。
改变原题要求,重新建模可在此做。
推广或改进方向时,不要玩弄新数学术语。
九、参考文献.十、附录
详细的结果,详细的数据表格,可在此列出。
但不要错,错的宁可不列。
主要结果数据,应在正文中列出,不怕重复。
检查答卷的主要三点,把三关:
n 模型的正确性、合理性、创新性
n 结果的正确性、合理性
n 文字表述清晰,分析精辟,摘要精彩

内容你自己写吧,我也正想要呢

B. 一个生产优化的数学建模,请高手指教,式子怎么列啊

一条综合难题,期待!!

C. 库存问题数学建模(急!!!!)

对鱼杆的需求量在12月份最小,4月份达到最大。一家鱼具商店预测,12月份的需求量为50支,随后每个月增加10支,到4月份达到90支。除了从2月到4月的高峰需求月份以外,一个批量的订货费为2500元,而高峰月份的订货费增加到3000元。每支鱼杆的购置费用大约是150元,全年不变,而每支鱼杆每月的存贮费用为10元。该鱼具商店正在制定下一年度(1月到12月)鱼杆订货计划。
1. 商店的经理认为,鱼具属季节性商品,因此不允许缺货。试为该鱼具商店制订一份下一年度的订货方案。
2. 其他条件不变。如果鱼杆的订货数量超过250支,厂家将给予优惠,每支鱼杆的购置费降至120元。那么,是否利用此项优惠。如果利用,全年的订货方案将如何改变?
3. 如果需求量是随机的,假设其预测值是鱼杆销售的期望值,标准差为5。商店经理从商店的信誉方面考虑,认为商品缺货概率应严格控制在5%以内。在这种情况下,如何确定下一年度的订货方案。

要求给出详细解答…………麻烦在2010年3月31号早上10点之前给出答案……

D. 数学建模中 模型假设怎么写

数学建模中模型假设怎么写这个问题我不是很清楚。

数学建模,就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻画,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。
全网招募小白免费学习,测试一下你是否有资格。
想要了解关于数学建模方面的更多内容,可以了解一下广州中教在线教育科技有限公司。(以下简称:中教在线)。中教在线联合工控信息安全技术国家工程实验室推出工控信息安全培训项目,旨在提升我国工业控制系统安全保障水平,强化行业工控安全系统性认识,提高工业企业抵御信息安全事件的能力,降低信息泄露风险,加强工控安全技术人员专业能力和专业知识。

E. 数学建模如何做假设 我有一本数学建模的书 看过后面对一些实际问题还是不知道如何下手

一、根据网上资料加以整理,回答如下:

1、根据全国组委会确定的评阅原则,基本假设的合理性很重要。
(1)根据题目中条件作出假设
(2)根据题目中要求作出假设
关键性假设不能缺;假设要切合题意。

2、合理的假设可以简化模型,从而反映模型的本质问题,如果过多考虑次要因素会使模型的建立难度加大,理论和实际问题总是存在差距,这是不可避免的。所有理论模型都是理想的,但所有理论模型又是有用的。

3、假设就是把复杂的问题假设成简单的问题,当然这不能改变题原来的本意,尽量的把一些不确定因素,假设出来,也就是把他定加以限定或不予考虑等等。
4、数学建模大都是开放性的试题,主要就是要有合理的假设。但不是一次性就假设完的,你在做题过程中还会发现新的问题,要么改进模型,要么增加假设,具体用哪个就要看合不合理了。

【参考网址见附件】

二、根据自己多次数学建模经验,回答如下:

1、首先,多看优秀论文肯定会找到感觉的,这种感觉就是如何用建模的语言表达问题。

2、其次,每个人都有自己的专长,最合理的就是,让那个最会写作的(这里指学术论文写作)来写。

3、假设看似只是建模的第一步,实际上在整个建模过程中,都要不断的来验证、完善假设,也就是完善模型。

4、“给一个问题不知道要做什么,怎么做”,这其中涉及到选题。每个人(或者每个建模团队)都有自己擅长的题目。在看有些优秀论文时,我们只需要粗略浏览;而有些就要细细品味。

5、除了多看书和论文,参加培训以及之后的建模模拟练习都是必不可少的。

你已经对建模感兴趣了,剩下的就是努力。相信会有好的回报的!

F. 数学建模中如何对问题进行假设,假设时应该注意哪些问题

1.假设尽量要少,要不然就太过理想化了,失去了其实际意义
2.假设必须要基础,切实可行,容易达到
3.假设要合情合理
4.假设最好不要重复,同一类的要最简洁的就好

G. 数学建模模型假设

数学建模文章格式模版
题目:明确题目意思
一、摘要:500个字左右,包括模型的主要特点、建模方法和主要结果
二、关键字:3-5个
三.问题重述。略
四.
模型假设

根据全国组委会确定的评阅原则,基本假设的合理性很重要。

(1)根据题目中条件作出假设

(2)根据题目中要求作出假设

关键性假设不能缺;假设要切合题意
五.
模型的建立

(1)
基本模型:

1)
首先要有数学模型:数学公式、方案等

2)
基本模型,要求
完整,正确,简明

(2)
简化模型

1)
要明确说明:简化思想,依据

2)
简化后模型,尽可能完整给出

(3)
模型要实用,有效,以解决问题有效为原则。

数学建模面临的、要解决的是实际问题,

不追求数学上:高(级)、深(刻)、难(度大)。

u
能用初等方法解决的、就不用高级方法,

u
能用简单方法解决的,就不用复杂方法,

u
能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。

(4)鼓励创新,但要切实,不要离题搞标新立异
数模创新可出现在

▲建模中,模型本身,简化的好方法、好策略等,

▲模型求解中

▲结果表示、分析、检验,模型检验

▲推广部分

(5)在问题分析推导过程中,需要注意的问题:

u
分析:中肯、确切

u
术语:专业、内行;;

u
原理、依据:正确、明确,

u
表述:简明,关键步骤要列出

u
忌:外行话,专业术语不明确,表述混乱,冗长。
六.
模型求解

(1)
需要建立数学命题时:
命题叙述要符合数学命题的表述规范,
尽可能论证严密。

(2)
需要说明计算方法或算法的原理、思想、依据、步骤。
若采用现有软件,说明采用此软件的理由,软件名称

(3)
计算过程,中间结果可要可不要的,不要列出。

(4)
设法算出合理的数值结果。
七、
结果分析、检验;模型检验及模型修正;结果表示

(1)
最终数值结果的正确性或合理性是第一位的


(2)
对数值结果或模拟结果进行必要的检验。
结果不正确、不合理、或误差大时,分析原因,
对算法、计算方法、或模型进行修正、改进;

(3)
题目中要求回答的问题,数值结果,结论,须一一列出;

(4)
列数据问题:考虑是否需要列出多组数据,或额外数据
对数据进行比较、分析,为各种方案的提出提供依据;

(5)
结果表示:要集中,一目了然,直观,便于比较分析

▲数值结果表示:精心设计表格;可能的话,用图形图表形式

▲求解方案,用图示更好

(6)
必要时对问题解答,作定性或规律性的讨论。
最后结论要明确。
八.模型评价

优点突出,缺点不回避。

改变原题要求,重新建模可在此做。

推广或改进方向时,不要玩弄新数学术语。
九、参考文献.十、附录

详细的结果,详细的数据表格,可在此列出。

但不要错,错的宁可不列。

主要结果数据,应在正文中列出,不怕重复。

检查答卷的主要三点,把三关:

n
模型的正确性、合理性、创新性

n
结果的正确性、合理性

n
文字表述清晰,分析精辟,摘要精彩
内容你自己写吧,我也正想要呢

H. 货物采购与存储的经营策略数学建模

个人认为,需求量得按天算才行,要不然无法计算缺货损失。而且缺货会不会影响需求量,这也是问题。比如C2商店需要M4商品1200件,但是第360天仓库才有此库存,那么这时C2商店的需求量依然是1200件吗?如果需求量按平均每天多少件来算的话,那么这样此商店对此商品的每天需求就会大大增加。缺货导致商店对商品的日需求增大,这样的假设并不合理吧?还有工厂产量如果和需求量如果不是平均分布的话,工厂供不上货也会导致商店缺货,这里得缺货损失也是不好假设的。
计算缺货损失时很多条件都不成熟,也不太好假设。个人认为,如果这些条件能够给得合理,那么计算这个题目非常简单。