㈠ 对稀疏矩阵进行压缩存储的目的是什么
对稀疏矩阵进行压缩存储目的是节省存储空间。
存储矩阵的一般方法是采用二维数组,其优点是可以随机地访问每一个元素,因而能够较容易地实现矩阵的各种运算。
但对于稀疏矩阵而言,若用二维数组来表示,会重复存储了很多个0了,浪费空间,而且要花费时间来进行零元素的无效计算。所以必须考虑对稀疏矩阵进行压缩存储。
(1)稀疏矩阵的存储特点扩展阅读
优点
稀疏矩阵的计算速度更快,因为MATLAB只对非零元素进行操作,这是稀疏矩阵的一个突出的优点。假设矩阵A,B中的矩阵一样,计算2*A需要一百万次的浮点运算,而计算2*B只需要2000次浮点运算。
因为MATLAB不能自动创建稀疏矩阵,所以要用特殊的命令来得到稀疏矩阵。算术和逻辑运算都适用于稀疏矩阵。对于一个用二维数组存储的稀疏矩阵Amn,如果假设存储每个数组元素需要L个字节,那么存储整个矩阵需要m*n*L个字节。
㈡ 稀疏矩阵的优点
稀疏矩阵的计算速度更快,因为M AT L A B只对非零元素进行操作,这是稀疏矩阵的一个突出的优点.
假设矩阵A,B中的矩阵一样.计算2*A需要一百万次的浮点运算,而计算2*B只需要2 0 0 0次浮点运算.
因为M AT L A B不能自动创建稀疏矩阵,所以要用特殊的命令来得到稀疏矩阵.
前面章节中的算术和逻辑运算都适用于稀疏矩阵.
对于一个用二维数组存储的稀疏矩阵Amn,如果假设存储每个数组元素需要L个字节,那么存储整个矩阵需要m*n*L个字节.但是,这些存储空间的大部分存放的是0元素,从而造成大量的空间浪费.为了节省存储空间,可以只存储其中的非0元素.
对于矩阵Amn的每个元素aij,知道其行号i和列号j就可以确定其位置.因此对于稀疏矩阵可以用一个结点来存储一个非0元素.该结点可以定义如下:
[i,j,aij]
该结点由3个域组成,i:行号,j:列号;aij元素值.这样的结点被称为三元组结点.矩阵的每一个元素Qij,由一个三元组结点(i,j,aij)唯一确定.
例如稀疏矩阵A:
50 0 0 0
10 0 20 0
0 0 0 0
-30 0 -60 5
其对应的三元组表为:
1 1 50
2 1 10
2 3 20
4 1 -30
4 3 -60
4 4 5
㈢ 对稀疏矩阵进行压缩存储目的是() A.便于进行矩阵运算 B.便于输入和输出 C.节省存储空间 D.降低运
对稀疏矩阵进行压缩存储目的是节省存储空间。
稀疏矩阵的存储方式:
存储矩阵的一般方法是采用二维数组,其优点是可以随机地访问每一个元素,因而能够较容易地实现矩阵的各种运算。但对于稀疏矩阵而言,若用二维数组来表示,会重复存储了很多个0了,浪费空间,而且要花费时间来进行零元素的无效计算。所以必须考虑对稀疏矩阵进行压缩存储。
(3)稀疏矩阵的存储特点扩展阅读:
最常用的稀疏矩阵存储格式主要有:三元组(i,j,a(i,j))和CSR(Compressed Sparse Row)。
(1) 三元组(i,j,a(i,j))(也叫COO(Coordinate Format))
三元组(i,j,a(i,j))很简单,就是使用3个数组,分别存储全部非零元的行下标(row index)、列下标(column index)和值(value)
(2) CSR存储(Compressed Sparse Row,压缩稀疏的行)
CSR是比较标准的一种,也需要三类数据来表达:数值,列号,以及行偏移。数值和列号与COO一致,表示一个元素以及其列号,行偏移表示某一行的第一个元素在values里面的起始偏移位置。
㈣ 特殊矩阵和稀疏矩阵哪一种采用压缩存储会失去随机存取的功能为什么
稀疏矩阵压缩存储后,必会失去随机存取功能。
稀疏矩阵在采用压缩存储后将会失去随机存储的功能。因为在这种矩阵中,非零元素的分布是没有规律的,为了压缩存储,就将每一个非零元素的值和它所在的行、列号做为一个结点存放在一起,这样的结点组成的线性表中叫三元组表,它已不是简单的向量,所以无法用下标直接存取矩阵中的元素。
㈤ 简述稀疏矩阵的分类及各类特点
在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合[1],最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。[2]在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考《矩阵理论》。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个已持续几个世纪以来的课题,是一个不断扩大的研究领域。 矩阵分解方法简化了理论和实际的计算。 针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。 无限矩阵发生在行星理论和原子理论中。 无限矩阵的一个简单例子是代表一个函数的泰勒级数的导数算子的矩阵
由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。记作:
矩阵的加减法和矩阵的数乘合称矩阵的线性运算。
希望我能帮助你解疑释惑。
㈥ 稀疏矩阵的存储空间
一个稀疏矩阵中有许多元素等于零,这便于矩阵的计算和保存.如果Matlab把一个矩阵当作稀疏矩阵,那么只需在m×3的矩阵中存储m个非零项.第1列是行下标,第2列是列下标,第3列是非零元素值,不必保存零元素.如果存储一个浮点数要8个字节,存储每个下标要4个字节,那么整个矩阵在内存中存储需要1 6×m个字节.
A = e y e ( 1 0 0 0 ) ;
得到一个1 0 0 0×1 0 0 0的单位矩阵,存储它需要8 MB空间.如果使用命令:
B = s p e y e ( 1 0 0 0 ) ;
用一个1 0 0 0×3的矩阵来代表,每行包含有一个行下标,列下标和元素本身.只需1 6 K B的空间就可以存储1 0 0 0×1 0 0 0的单位矩阵,它只需要满单位矩阵的0 . 2 %存储空间.对于许多的广义矩阵也可这样来作.
㈦ 稀疏矩阵和普通矩阵有什么不同在运算上有什么差别
稀疏矩阵和普通矩阵de不同是数据存储的方式不同
因为稀疏矩阵是有特点的
所以为了节省内存和存取的方便有一定的稀疏矩阵独特的算法
具体的什么算法在算法书上都可以找到
普通矩阵就只能用数组来苯苯的存储了吧...
因为没有什么规律和特点
算法上的差别是稀疏矩阵要更复杂...
具体的麻烦你在书上找的看
应该都有说的
具体我也忘了不少了...
呵呵
不好意思
我也只能回答这么多了
㈧ 从空间效率和时间效率的角度,谈谈你对采用稀疏矩阵必要性的认识。
中大的吧
来,哥解救你
空间效率
稀疏矩阵的很多元素等于0,采用稀疏矩阵便于矩阵的运算和保存。对于一个用二维数组存储的稀疏矩阵Am*n,如果假设存储每个数组元素需要L个字节,那么存储整个矩阵需要m*n*L个字节。但是,这些存储空间的大部分存放的是0元素,从而造成大量的空间浪费。为了节省存储空间,稀疏矩阵采取只存储其中的非0元素的方法。因此用稀疏矩阵可以大大节省存储空间。如创建A=eye(10)单位矩阵,其所占用存储空间为10*10*8=800bytes,如果采用稀疏矩阵,则只需10*16=160bytes,只需原来存储空间的20%。
时间效率
采用稀疏矩阵,能加快运算速度,因为Matlab只对非零元素进行操作,这是稀疏矩阵的一个突出的优点。因为稀疏矩阵的很多元素等于0,如果对整个矩阵进行运算,会浪费许多时间在对零的运算上,所以稀疏矩阵的方法是只对非零元素 进行操作,这样可以大大提高运算的时间效率。如对一个n维的单位矩阵A,2*A要做n*n次乘法运算操作,而用稀疏矩阵,则只需n次乘法运算操作,节省了时间。
请采纳!
㈨ 三元组表示稀疏矩阵是什么
三元组表示稀疏矩阵如下:
从方法上讲,所谓的三元组法表示稀疏矩阵是:将非零元素所在的行、列以及它的值构成一个三元组(i、j、v),然后再按某种规律存储这些三元组,这种方法可以节约存储空间。
对于稀疏矩阵,采用压缩存储方法时,只存储非0元素。必须存储非0元素的行下标值、列下标值、元素值。因此,一个三元组唯一确定稀疏矩阵的一个非零元素。
稀疏矩阵和三元组的特点:
稀疏矩阵的概念是:一个m行n列的矩阵,若它的非零元个数特别少,即可称它为稀疏矩阵。只存储稀疏矩阵的非零元。除了存储非零元的值a以外,还必须记下它的行下标i和列下标j。反之,一个三元组唯一确定矩阵的一个非零元。因此,一个稀疏矩阵可由一个三元组数组和该矩阵的行列数来确定。
㈩ 稀疏矩阵一般的压缩存储方法有两种
分别是三元组和十字链表。
三元组是指形如((x,y),z)的集合(这就是说,三元组是这样的偶,其第一个射影亦是一个偶),常简记为(x,y,z)。
三元组是计算机专业的一门公共基础课程——数据结构里的概念。主要是用来存储稀疏矩阵的一种压缩方式,也叫三元组表。假设以顺序存储结构来表示三元组表(triple table),则得到稀疏矩阵的一种压缩存储方式,即三元组顺序表,简称三元组表。
十字链表(Orthogonal List)是有向图的另一种链式存储结构。该结构可以看成是将有向图的邻接表和逆邻接表结合起来得到的。用十字链表来存储有向图,可以达到高效的存取效果。同时,代码的可读性也会得到提升。
拓展资料:
十字链表(Orthogonal List)是有向图的另一种链式存储结构。可以看成是将有向图的邻接表和逆邻接表结合起来得到的一种链表。在十字链表中,对应于有向图中每一条弧都有一个结点,对应于每个定顶点也有一个结点。
十字链表之于有向图,类似于邻接表之于无向图。
也可以理解为 将行的单链表和列的单链表结合起来存储稀疏矩阵称为十字链表, 每个节点表示一个非零元素。
三元组解释:
1、所谓“三元组”是指图形的几何元素构成、图线间的拓扑关系和尺寸约束。如果一组图形的前二元相同而只是尺寸大小不同,则这组图形构成一族形状相同的系列化图形。
2、把组成一个元素的三个数称为三元组。一个三元组包含以下三部分的内容SDO_STARTING_OFFSET表明每个几何元素的第一个坐标在SDO_ORDINATES数组中的存储位置。
3、…Mt:N2)的表示称为三元组...…Mt称为标号,N1、N2为结点R为关系。当n≠0时,称Li为对结点N1的修饰。t≠0时,称Mj为对结点N2的修饰。
参考资料:网络:十字链表
网络:三元组