㈠ 如何查询存储式测井仪器技术现状
无电缆存储式测井技术是为了适应目前水平井、大斜度井等复杂井逐渐增多而相应发展的新型测井技术.测井时,系统利用钻具受井眼条件影响较小的特点,将下井仪器悬挂在钻具(保护套)内,通过钻具输送至目的层段,利用泥浆循环将仪器泵出保护套,起钻同时
㈡ 中地英捷系列测井仪
北京中地英捷物探仪器研究所
PSJ-2 型数字测井采集控制系统
PSJ-2 型数字测井系统是北京中地英捷物探仪器研究所成熟的主打产品,经过 5 年多的批量生产,该产品遍布我国 30 多个省、市、自治区,正在为我国的煤田、水文、金属及工程勘探等测井工作发挥重要作用。该产品还随我国施工队伍,进入亚洲、非洲等多个国家的资源勘探测井工程,以它价廉物美、稳定可靠的特点,倍受国内外用户的青睐。
地球物理仪器汇编及专论
PSJ-2 型数字测井系统由野外作业的地面仪器、下井仪器和室内资料处理等三部分组成。地面仪器含采集控制系统和绞车系统,下井仪器(简称探管)含密度、声波、井斜等各种方法探管,室内资料处理部分包括计算机、专用软件、打印机或绘图仪。
PSJ-2 型数字测井采集控制系统包括给下井仪供电、控制、通讯的采集记录仪(简称采集面板)、控制绞车的绞车控制器、采集记录的便携电脑和实时打印机。该系统可以控制 30 多种探管,完成深度达 3000m的各种测井任务。采集面板由微处理器控制,在采集输出同时,还将数据存储在内部掉电非易失存储器备份,可以直接控制并口针式打印机实时打印曲线,该功能在交通不便的山地,可以省去便携电脑而独立完成测井任务。绞车控制器控制 500m、1500m、2500m、3000m等绞车,配Ф4.75mm、Ф5.6mm的 4 芯铠装电缆。提升速度可达 2000m/h,最大提升力 5000N。
基本参数
PSJ-2型数字测井绞车系统
测井绞车是数字测井系统中重要的提升和下放设备,负责下井仪器的提升和下放,所有下井仪器的供电及信号传输均要通过该系统完成。北京中地英捷物探仪器研究所的测井绞车,结构紧凑、功能齐全、控制灵活、操作方便。按载缆长度分为500m、1500m、2500m和3000m,用户根据需要还可以选择电缆的型号,一般为Ф4.75mm和Ф5.6mm的4芯铠装电缆。
该绞车具有4档机械变速,分别是高、中、低和空档,配合绞车控制器的无极调速控制,电缆的升、降速度在0~2000m/h范围可调。空档和手刹制动的设计,使得测井现场的操作更方便、灵活。该绞车的排缆功能,使得电缆在卷筒上整齐排布,既美观又能延长电缆的服务寿命。
地球物理仪器汇编及专论
基本参数(以2500m绞车为例)
PSMD系列密度三侧向组合测井仪
密度三侧向测井仪在煤田测井中被称为煤探头,是煤田测井中核心仪器之一。该仪器组合了补偿密度、聚焦电阻率、自然伽马和井径等四种参数,输出八条曲线,它们是自然伽马计数率、井径、聚焦电导率、聚焦电阻率、三侧向电压、三侧向电流、长源距计数率、短源距计数率。
地球物理仪器汇编及专论
根据康普顿—吴有训效应,中等能量的伽马射线经地层散射后的射线强度的对数与地层密度成线性关系,这就是密度测井的测量原理。该仪器采用长、短源距双探测器贴井壁测量,长、短源距探测器受井壁和泥饼的影响基本相同,经刻度,即可消除钻孔对密度测量的影响,这就是补偿密度的测量原理。地层中煤与围岩密度差别大,用密度参数很容易划分出煤层。北京中地英捷物探仪器研究所生产有三种密度三侧向组合测井仪,它们适应不同的井径和井深,密度测量精度达0.03g/cm3。
基本参数
PSBZ-1补尝中子测井仪
地球物理仪器汇编及专论
中子测井是利用中子射线在物质中的减速、扩散和俘获特性,研究地层孔隙度的测井方法。同位素中子源发射的中等能量中子射线一般要经历减速、扩散和俘获三个过程。中子射线在减速过程中主要是弹性散射,氢是所有元素中最强的减速剂,这是中子测井方法的重要概念。快中子减速为低能的热中子后,速度不再降低,处于类似于分子的热运动状态。热中子由浓度高的区域向浓度低的区域迁移运动,称为扩散。热中子在扩散过程中,很容易被原子核俘获,俘获中子的原子核,释放出伽马射线回到稳定的基态。补偿中子—中子测井,是利用两个不同源距的探测器探测中子的浓度,然后利用两个探测器的计数率比值,消除环境因素如泥饼、井径等的影响。该比值反映了地层内热中子密度随距离衰减的速率,与地层含氢量的对数有近似的线性关系。一般地层的模型为砂、泥、水,氢元素存在于空隙内的流体如水、油、气中,因此根据含氢量可以确定地层的孔隙度。
基本参数
PSV系列声速测井仪
声速测井是测量岩层表面滑行纵波的传播速度,从而划分岩层、判断岩性、计算岩石的抗压强度等。该仪器设有三只声波换能器,其中一只发射换能器,两只接收换能器。发射换能器在高压脉冲激励后,产生振荡,发射一列超声波。超声波经泥浆进入井壁岩层时,产生透射,当透射角等于90°时,透射波延井壁表面滑行传播叫做滑行波。滑行波的任何一点都可以看作一个新的点振源,因此滑行波在泥浆中产生一簇平行的折射波。两只接收换能器测量折射波到来的时差,由此计算出岩层的纵波传播速度。北京中地英捷物探仪器研究所生产有三种声速测井仪,它们适应不同的井径。
地球物理仪器汇编及专论
基本参数
测量参数
PSCL-1电磁流量测井仪
根据法拉第电磁感应定律,当一导体在磁场中运动切割磁力线时,在导体的两端产生感生电动势,其方向由右手定则确定,其大小与磁场的磁感应强度、导体的运动速度成正比。导电液体的流动可以看作是导体在磁场中切割磁力线的运动。因此,测量的感生电动势与液体的流速成正比。
地球物理仪器汇编及专论
为避免电解质液体被极化造成的误差,该仪器采用低频方波励磁,测量电路经相敏整流,得到与液体的流速成正比的电压输出,经内置微处理器处理后,以数字方式上传井上仪记录。由于仪器无活动部件,因此,测量精度高、范围宽,响应速度快,不受被测液体的温度、压力和粘度的影响。但不适宜低电导率液体,如石油的测量。
基本参数
PSXDWL系列连续孔斜组合测井仪
仪器内安装三个方向相互正交的磁阻传感器,测量地磁场在三个传感器的分量,通过坐标旋转,求得方位角,即井斜方位角。仪器内还安装两只加速度计,根据加速度计的输出信息可以求得它与重力加速度方向的夹角大小,即井斜顶角。该仪器还组合了井温、井液电阻率、自然电位和电极系。
地球物理仪器汇编及专论
基本参数
PS2521陀螺测斜仪
陀螺测斜仪是利用高速旋转陀螺的惯性,测量方位的测井仪器,它不受磁环境影响。该仪器采用了动调式绕性陀螺,自动寻北、低飘移是绕性陀螺较传统框架陀螺的优点。
地球物理仪器汇编及专论
基本参数
PSGZ系列固井质量检查测井仪
该仪器组合了自然伽马、首波幅度、单收时差、双收时差、磁定位接箍和全波列等参数,用于评价固井质量的优劣。自然伽马用于分层对比,磁定位接箍用于定位,声幅用于检测第一界面,变密度用于检测第二界面。声幅在自由套管波幅的30%以下被认为固井质量合格,全波列绘制的变密度图如果可以看到地层波,则认为第二界面合格。北京中地英捷物探仪器研究所生产有三种固井质量检查测井仪,它们适应不同的井径和井深。
地球物理仪器汇编及专论
基本参数
重要技术参数
㈢ 中石化新车汽油券怎么激活
进入中石化加油卡官方网站,点击后进入账户激活页面。然后,进入账户激活页面后便可按指定步骤进行账户激活,输入加油卡卡号,与购卡信息一致的证件号码,输入个人的基本信息,确保中石化及时联系我们,保证中奖礼品的准确送达。
中石化特点
测井仪器研制取得明显进步,在高温小井眼井下仪器,高抗硫产气剖面井下仪器研制上取得成功,有力支撑了开窗侧钻井及普光气田开发配套的生产需要,水平井分段压裂配套射孔技术取得明显进步,同时,快速平台测井,八扇区水泥胶结测井,泵出存储式测井等成熟技术得到推广应用。
在提速提效等方面发挥了重要作用,海洋工程建设技术取得新进展,胜利902铺管船建造工程获全国优秀焊接工程一等奖,东海合作区块海洋工程设计和建造技术研究取得阶段性成果,非常规页岩气井的钻井技术得到很大发展,形成了页岩气长井段水平井钻井,油基钻井液,弹塑性水泥浆固井等工程配套技术。
㈣ 井温测井
井温测井(或称温度测井、热测井),是一种热学方法,它使用带有温度传感器的下井仪器测量井内温度(通常是井液温度)及其沿井轴或井周的空间分布,其方法及仪器比较简单,但仍是一种广泛应用的重要测井方法。
我国温度测井起步于1954年,在四川石油钻井中工作中首次应用。20世纪60年代,我国开始在煤矿和水文勘查钻井中使用温度测井方法,并逐步在各领域广泛应用。20世纪80年代初开始,地矿、石油、核工业、地震、中科院等部门有关单位研制生产了多种型号的数字井温仪,包括多点测温、连续测温、存储式测温以及连续井温梯度测量等类型。使用了铠装铂电阻、半导体或石英晶体等新型传感器,测量精度达±(0.01~0.1)℃。近年来,微差井温梯度测量和径向微差井温测量技术也在我国得到应用。
4.3.1 井温测井基本原理
地球内部具有强大热能,通过火山喷发、温泉涌出和岩石传导等途径向外散热。在地球表面常温层以下,地温随深度加大而增高。通常把地表常温层以下每向下加深100m所升高的温度称为地热增温率或地温梯度。对于一个局部地区,在正常条件下热场分布一般是稳定的,但其地温梯度值可能与平均地温梯度有差别,如我国华北平原约为1~2℃/hm,大庆油田可达5℃/hm。据实测,地球表层的平均地温梯度约为3℃/hm;海底的平均地温梯度为4~8℃/hm,大陆为0.9~5℃/hm。
如果在井内温度测量发现地温梯度或径向温度分布有明显的异常变化则可判断为井下发生异常情况。
为了反映井内温度分布,研制了多种类型的井温仪,但其测量原理是相同的。井温仪的传感器多采用热敏电阻组成的惠更斯电桥,把井内温度变化转换成电桥输出的电压变化送至地面进行记录。
图4.3.1是井温仪测量原理图,其井下部分是惠更斯测量电桥。其中R2、R4是电桥的两个固定臂,用温度系数β较低的康铜(β=5×10-6)丝制成,其阻值为R2=R4=R0;另外两个臂R1=R3=R0+ΔR,R1和R3是电桥中的灵敏臂,是用高温度系数的铂金(β=3.89×10-3)丝制成,铂金丝对温度变化十分敏感,只要温度稍有变化,其电阻值就随之变化。
图4.3.1 井温仪测量原理图
电桥测量时,首先在某一起始温度T0下,使电桥M、N输出端没有输出,此时R1=R2=R3=R4=R0,ΔR=0,这是电桥平衡状态。当井内温度变化时,由于固定臂的β小,则仍可认为R2=R4=R0,而β大的灵敏臂的电阻R1=R3=R0+ΔR,这样电桥失去平衡,在输出端M、N有电位差ΔUMN输出,ΔUMN的大小与温度的变化ΔT成正比,即:
地球物理测井教程
式中:c为仪器常数;I为供电电流。井内温度T为:
地球物理测井教程
上式中T0、c可通过仪器校验求得,只要测出MN两点的电位差ΔUMN,即可以记录到一条随井深变化的井温曲线。
根据上述原理,针对所需要解决的问题,可选用不同的井温仪。如梯度井温仪测量主要反映井内温度梯度变化情况;微差井温仪测量的是井轴上一定间距两点间温度变化情况,由于用较大比例记录,能较清楚地显示井内局部温度的变化。为了确保井温曲线质量,测井前必须进行仪器常数、起始温度和时间常数的标定工作,并且选择最佳测速进行测量。应当特别指出的是,温度测井要在所有测井中最先测量,以避免仪器和电缆运动破坏原始的热场分布。
根据热源不同,井温测井可以分为自然热场法和人工热场法。但是,在实际测温过程中测量的几乎全是人工热场,只有在井液与地层之间的温度已经达到稳定状态时测量,才有可能测量到自然热场。
4.3.2 井温测井的应用
实测井温测井曲线如图4.3.2所示,温度曲线用TEMP表示,温度随着井深的增大而增大。
井温测井广泛用于基础地学研究、油气开发、地热勘查、水文及矿井设计等各个领域。
1)在基础地学研究中,井温测井是获得深部地温梯度和计算热流值的主要手段。
2)在油气田开发中,井温测井被用来确定注水井中的吸水层位;利用天然气层被钻穿时气体膨胀的吸热效应寻找天然气层;确定套管外水泥返回高度,评价检查固井质量;评价酸化、裂化效果。
3)在地热勘查中,利用热水层的温度异常寻找热水层,并用来研究地热分布及热储结构。
4)在水文钻井中,温度测井被用来划分含水层位和分析补给关系。
5)在固体矿产中,它是某些固体矿产建井设计或安全措施所需地下温度数据的重要来源。
图4.3.2 井温测井曲线图
㈤ 我所核物探发展年历史回顾
李昌国张玉君
李昌国1957年前来所(室)。曾任我所核技术室临时负责人。1985年调地矿部航空物探总队。
张玉君1957年来所。曾任我所核技术室负责人。1983年调地矿部航空物探总队,现任该队研究所所长。
我所核物探应用研究始于1956年,那时还是物探局实验室。30年来所开展的工作侧重于核测井方法和地样核分析技术研究,并研制了相应的仪器。许多同志满腔热忱地,不遗余力地投身于这一事业。油田自然伽玛及中子——伽玛测井、煤田自然伽玛及伽玛—伽玛测井、钾盐自然伽玛能谱测井的研究成果,经过推广在生产中发挥了很好的作用,经受住了历史的考验,创造了显着的经济和社会效益。后几年又引进了现代化的仪器设备,修建了核技术专业实验室,堆照化探标样的中子活化多元素分析所测定的元素从数量及精度上都达到了国外同类工作的先进水平。……在这一切成绩中凝聚着许多同志的心血和智慧。
但是,纵观这30年历程,步履是艰难的,道路是曲拆的,既受主观因素影响,更受客观条件的制约。30年中政治生活的波澜直接左右着科研的进展。凡是大局安定,科研受到保证,人员较稳定的阶段,研究项目的进展也就较顺利,也只有在此前提下,个人的努力,才有条件得以发挥。
1956年在党中央关于“向科学技术进军”的号召的鼓舞下,物探局实验室迈出了核物探的第一步。1956年8月20日,新华社从玉门播出了一条电讯“我国第一次用原子能勘探石油,”刊登在一些报纸上。在醒目的标题下,报道了由物探局和玉门油矿实验自然伽玛和中子伽玛测井的情况。
我国第一次用原子能探测石油
(新华社玉门20日电)玉门油矿开始在老君庙油田上试验石油探测技术上的最新成就——原子能放射性测井。利用原子能探测石油,在我国还是第一次。
最近在井下套管内试验放射性测井效果良好,很明显地分析出了地下沙岩、粘土的地质情况。目前进行的放射性测井试验.用的是伽玛测井和中子测井两种方法。这就是把一套特殊的井下仪器放入井中,利用岩石天然放射性或对人工放射原素的反应,探测井下地质和含油水层情况。它比一般电测具有极大优越性:可以在下过套管的井内进行测量;可以在泥浆电阻率很低的时候准确地测出井下岩层变化情况;可以解决油田开采上的油水边界问题。这些,以过去的技术是无法彻底解决的。解放以前,由于技术水平低,老君庙油田许多老井的油层深度、油层好坏等都搞不清楚。现在利用放射性测井可以解决了。
放射性测井试验将进行三个月。这次试验是由地质部物理探矿局放射性测井试验队和玉门矿务局地球物理处测井大队联合进行的。
(1956.8.21.新闻日报)
那时,我国核反应堆正在建造,原子能在地质勘探中的首次应用也受到了各方面的关注。中央新闻记录电影制片厂还在实验现场拍摄了记录电影。这次实验是由物探局实验室组织,兰本洁任队长,并由苏联专家穆海尔具体指导开展的,李昌国同志也有幸参加了此次有历史意义的实验。实验结束后,举办了放射性测井技术培训班,由穆海尔授课,为我国培养了首批油田放射性测井人才。中子伽玛测井在以后的30年漫长的岁月中,在石油测井工作中发挥着重要的作用。
紧接着油田上的实验,1957年起又在煤田开展了伽玛—伽玛测井方法和自然伽玛测井方法的实验,1957年实验队由兰本洁带领在安徽濉溪,1958年实验队由张玉君带领在河北峰峰,并有煤炭科学院地质所朱诚仁的全力配合开展工作,从濉溪到峰峰,经过50多个钻孔大量实验,以伽玛—伽玛为主导的综合测井方法研究成功地解决了煤田的主要问题。这支实验队平均年龄仅22岁,却充分显示了年青人勇于进取攻克技术难关的能力。1958年10~11月,物探局在峰峰煤矿举办了全国煤田放射性测井训练班,为地质部和煤炭部培养了133多名放射性测井人员。同年年底物探局修造所也仿制成功了轻便型放射性测井仪,并制造了一批仪器,加之我国反应堆巳开始生产钴—60放射性源。专门人材,专用仪器及放射性源是煤田放射性测井得以很快推广的三个缺一不可的条件,借助这三个条件,到1959年全国煤田测井队有50%以上推广使用了伽玛—伽玛测井方法。以后伽玛—伽玛测井方法很快地被煤田测井队无一例外地用做主导方法,30年来所创造的经济效益无法估算。因此,在1978年全国科学大会上,经煤炭部推荐,煤田伽玛—伽玛测井方法被列为大会受奖项目。
油田、煤田的放射性测井研究是在引进苏联先进技术的基础上开展的。将向外国学习与培养自己的专业队伍以及引进设备与仿制融为一体,使我们赢得了时间,较快地填补我国在石油和煤田放射性测井方面的空白,并形成了方法研究,仪器制造及生产使用的基本技术力量。
1961年人员大下放,核子组仅剩二人,加之苏联停止了向我国出口中子源,许多工作被迫中断,核物探濒临取消的边缘。为了寻找发展出路,经过调研得知,我国急缺钾盐矿藏,根据K—40同位素的放射性特征,通过理论计算,张玉君在1963年提出了利用能谱测定K—40自然弱放射性在钻孔中顺便普查钾盐的设想(见核子组1963年调研报告)。国外报道钾盐能谱测井工作是5年后(1968年)才出现的。因此这一设想的提出标志着我所核物探从“模仿”阶段走向了“创新”时期。
1965年争取了条件与上海地质仪器厂协作研制电子管的205型单道能谱测井仪,其地面分析器是以1958年吴振远的设计为基础。
1965年底赴云南勐野井钾盐矿区进行方法实验和仪器考验。测了5口井,解决了测量技术与方法解释的问题,能分辨出0.5m厚,氯化钾含量大于2%的钾盐层(开采品位为6%),并找出生产上漏掉的11个层位,其中有10层得到地质验证确认。正当研究工作需要进一步深入时,动乱的“文革”的10年开始了,严重地干扰了工作进行,尽管同志们顶着“抓生产、压革命”的“罪名”几次去到野外试图继续实验,但都被严重的武斗堵了回来,野外实验不得不中断。
直到1972年,也就是所谓的右倾翻案风时期,科研工作才有了一点转机。地质科学研究院与江汉油田组织找钾会战,我们作为地科院的下属所,与油田测井营一道承担会战中的测井找钾任务。经过半年的努力,解决了下井仪3000m脉冲传输及100℃高温的技术关键,终于在地质和测井综合分析指出的成钾有利地区,测出了钾盐层异常,通过正在钻进的相邻孔,相同层位取芯验证,是0.8m厚含氯化钾16.8%的钾硭硝矿层。这是在未知矿区找到钾盐层,能谱测井有效地发挥了作用,也说明油盐兼探找钾的必要性。于是江汉油田用这台仪器进行了生产性的普查找钾工作。石油部于1975年在江汉油田召开了技术推广会,并于1986年授于这次会战科学技术进步三等奖。
在这之后,为了改进仪器性能,继续进行以下三种型号仪器的研制;1974~1975年研制成集成电路的NC-75型双道能谱测井仪;1976年扩大试制了NC-76型双道能谱测井仪,以满足四川、云南、山东及新疆等省找钾之急需;1978~1979年与重庆地质仪器厂协作研制了小口径深井JHW—1型四道能谱测井仪,该项目列为国家重点科研项目,通过鉴定后由重庆厂投产。在仪器研制中主要突破的技术关键是:3600m长电缆的脉冲传输,井下仪承受100℃的高温,以及能谱峰位稳定装置。研制的仪器从电子管发展到集成电路,从单道到四道,性能不断提高,分辨率(Cs—137)从15%左右提高到10%,灵敏度提高一倍多。1983年全国原子能应用技术展览会上,将JHW—1型仪器列入重要成果介绍的材料里。
为了在我部推广这一方法,曾多次去四川,云南、新疆与生产队共同实验,在扩大试制 NC-76型仪器时,邀请了生产队技术人员参加,因而这些生产队较好地掌握了方法技术与仪器,在生产上发挥了一定的作用。如四川710队用能谱测井能有效地识别含钾的杂卤石和四川盆地下、中三叠统地层界限的标志层——绿豆岩(凝灰岩)。又如,在川—25井1979、1983年的两次能谱测井,利用回归分析剔除铀,钍干扰,揭示出富钾卤水及存在部位,估算卤层间相对含钾量的高低作了尝试,解释了活动卤层由于铀随时间富集造成1983年自然伽玛测井强度增高的原因,为寻找固相或非固相钾盐矿体积累了经验。
总之,自然伽玛能谱测井找钾的方法技术是我们自己开创的,仪器是自己设计的。实践证明找钾是有效的。
除能谱测井找钾外,李寿田等同志与重庆地质仪器厂共同研制了地面单道能谱仪,在青海盐湖实验,能有效地指示出沉积的钾盐矿体。
10年浩劫窒息了科学技术的发展。而就在那个时期,世界上工业强国的科学技术突飞猛进。20世纪70年代后期,核技术采用了大规模集成电路、计算机技术,新的探测器元件,因而有长足进步,出现了用于野外地面、井中,航空及实验室的智能多道谱仪。地质勘探应用上有了新的突破。
面对国外的这种状况,当务之急的是从国外引进先进技术,培养一批技术人员,建立本专业实验室,以将核技术应用提高到一个新的水平。经过两年的前提实验和充分的技术论证,1979年底从美国引进了当时最新产品朱比特多道能谱仪小型计算机系统。廊坊实验室尚未建成前,安装在北京师范大学低能所,两家共用。
确定要引进这套设备的技术路线是:“一机二用”;“近处入手,远处着眼”,“科研生产兼顾”。“一机二用”是该系统既可测量伽玛射线(可用于中子活化及自然放射性测量),又可测量X射线(可用于同位素源激发能量色散X荧光测量)。“近处人手,远处着眼”是指近期先开展易掌握的地样中子活化和X荧光分析,并准备力量开展核技术应用的其他方法和仪器的研究。“科研生产兼顾”是指这台大型设备是核技术应用研究的基本工具,并以生产性工作维持其长年运转,充分发挥作用,以使科研基础更为牢固。
选择堆照地样中子活化分析方法作为近期的突破口,是基于我们曾在1960~1962年做过铜矿床Po—Be源中子活化测井,1967年室内Po—Be源中子活化样品实验,1971年快中子活化样品实验及1978年堆中子活化地样实验,经过比较、探讨所得出来结论的。堆照地样中子活化分析具有多元素、高灵敏度及高准确度的优势,在地学上的应用前景广阔,能较快在牛产上立足。同位素源激发X荧光分析虽灵敏度不高,但具有快速分析的特点,与中子活化分析配合可相得益彰。该方法技术还可发展到野外现场元素测定。由于这套设备具有较宽的能量区域,较高的分辨率,较实用的解谱分析软件,因此也是开展核技术方法和仪器研制的基本工具。
到1984年底先后取得了一批科研成果。对化探标样GSD1—8的定值提交了32个元素含量数据及粒度分析数据,金的分析灵敏度达到0.05ppb,前富集稀土元素中子活化分析可测出12个元素,同时还承担了部分生产样品的分析工作;对同位素源激发X荧光分析进行了初步实验;一批年青的技术人员成长起来,还选派了宋林山到英国专业进修。取得的科研成果分别在国内外专业杂志上发表。1985年物探局组织了对该设备的消化,吸收、开发成果的鉴定。
放射性工作因涉及人身安全和环境污染,建立核技术专业实验室就显得至关重要。过去没有专业实验室,有些实验不得不在地下室、岩芯仓库,偏僻的地方搭帐蓬进行,不仅影响实验进度,还影响科研成果的应用。如,取得中子吸收测硼分析方法,光致中子测铍分析方法的研究成果后,没能承担生产的一个重要原因,就是没有专业实验室。为此,在设计和建造廊坊核技术实验室过程中,我们专门抽调了技术人员投入工作。
1985年8月根据所领导的决定完成了朱比特系统迁往廊坊的安装任务。
我所核技术应用研究30年的历史,是几十位同志用心血谱写的历史。由于时间和篇幅所限,写作匆忙,总不尽其意,尤其是未能反映出同志们勤奋好学、忘我工作的精神面貌,实为憾事。此文就算是对走过的崎岖小路的一点反思,是对过去许多同志同舟共济度过风风雨雨的留恋吧!
30年,在科学发展史上只是极其短暂的一瞥。过去的已经过去了。我们衷心希望我所的核技术应用工作能得到所领导的足够重视,在总结历史经验的基础上及时决策,放射性物探是物探事业不可缺少的分支,希望它在物探所能够结出更加丰硕的成果。
(1987年6月于北京)
载《物探所庆祝建所三十周年纪念专刊》,1987。
㈥ 石油方面的宣传报道怎么写啊,求大神指教,最好有范文~~
???油田?井全部顺利投产
--------------------------------------------------------------------------------
??分公司??油田巴18平8井顺利投产,日产液43.3立方米,日产油20.35吨。截至目前,该分公司2010年巴18井区完钻的3口水平井已全部投产并喜获高产。
巴18井区是二连分公司宝力格油田的主要产油区块。年初以来,这个分公司的地质研究人员紧密围绕巴18井区非主力层开展水平井研究工作,经过小层对比、地震解释等基础性工作落实小断层和单砂层的微构造,采用钻井资料和测井解释数据分析,明确了单砂层的岩性分布和油层分布情况,强化对单砂层展开物性和流动单元研究,确定钻井有利区域目标,为成功钻探目的层打下了坚实基础。
同时,通过优化地质设计以及导向小组在现场对水平轨迹跟踪监督,提前预测和制定应对措施,确保水平井成功入靶和轨迹控制得到精准性,使得钻井成功率达到100%。
㈦ 大陆科学钻探概述
刘宝林
科学钻探是为地学研究目的而实施的钻探,是通过钻孔获取岩心、岩屑、岩层中的流体(气体和液体)以及进行地球物理测井和在钻孔中安放仪器进行长期观测,来获取地下岩层中的各种地学信息,进行地学研究。在陆地上施工的科学钻探称为大陆科学钻探。
国际地球科学界认为只有通过钻探直接观察和研究地壳内部正在活跃进行的物理、化学和生物的作用、特征及其过程,才能取得对地球科学真实的、精细的认识,验证远距离探测的论断,提高探测的可靠性。
按1993年9月在德国召开的国际大陆科学钻探会议商定,科学钻孔深度的定义是:浅孔为2000~4000m(用深型岩心钻机施工),深孔为4000~6000m(用旋转钻机施工),超深孔为6000~15000m(用巨型钻机施工)。此外,湖泊钻探也是科学钻探的一部分,钻孔深度一般在10~500m。
大陆科学钻探是当代地球科学具有划时代意义的大型科学工程,是解决当代人类面临的人口、资源、环境等问题的必由之路,是带动21世纪地球科学和相关学科技术发展的大科学。大陆科学钻探是由地质超深钻探发展而来的,预期目标主要是为了研究深部地质学问题。实际上,经过科学选址而实施一些浅钻孔同样可以研究某些重大地球科学问题以及与人类生存密切相关的诸如气候、环境、地震以及有毒废料的安全处理等课题。
1 ICDP(International Continental Scientific Drilling Program)简介
1.1 成立背景
1992年11月,经济合作发展组织(OECD)举办的大科学论坛评述了大洋和大陆钻探全面进行国际合作的问题。1993年8月31日到9月1日,在德国Potsdam国际大陆科学钻探会议上提出了ICDP框架;9月2日,在KTB现场“国际大陆科学钻探会议管理者会议”上,15个国家的代表参加,决定成立ICDP筹备组,由德国地学研究中心的R.Emmermann教授负责草拟ICDP的有关章程。1996年2月正式发布“ICDP发起书”。
1.2 ICDP的任务
获得可靠的资金,进行有效的规划,履行可行的对全局有重大意义的计划;
确认适合科学钻探的国际合作场址;
确保进行适宜的前期场址调查;
为钻探项目提供技术支撑核心;
确保对计划进行恰当的监控;
确保项目成果有效地发布传播。
1.3 ICDP的准则
国际性——地质科学、工程技术、资金等进行国际合作;
全球性——开展具有全球意义的大课题;
必须经过钻探——必须通过钻探才能解决的问题;
社会需要——如解决能源、矿产、地质灾害、气候、环境等问题;
钻孔深度与成本——在满足科学目标的前提下,尽量降低钻探难度;
活动的过程——研究目前活动的地质现象。
1.4 ICDP与ODP的差别
ICDP——钻探地点在某个国家,首先获益;研究世界级的科学问题;研究38亿年的地球历史;必须冠以“Scientific”。
ODP——钻探地点、条件、孔深和工艺技术多样化;在公海钻探,是全球性的计划;研究1.8亿年的地球历史;本身就是科学目的,不必冠以“Scientific”;主要设备为钻探船,工艺技术比较成熟。
2 大陆科学钻探的作用
研究地震、火山喷发的物理化学过程以及降低其影响的最佳方法;
研究近期地球气候变化的模式和原因;
研究陨击事件对气候和集群灭绝的影响;
研究深层生物圈的性质及其与碳氢化合物和矿床的形成、生物演化等地质过程的关系;
放射性和其他有毒废料的安全处理;
沉积盆地和碳氢化合物的来源及演化;
矿床在各种地质体中是如何形成的;
研究板块构造、热力学、物质和流体在地壳中运移的基本物理学过程;
如何更好地解释用于了解地壳结构和性质的地球物理数据。
3 大陆科学钻探的现状
目前美国、俄罗斯、德国、加拿大、日本、法国、英国、瑞典、新西兰、比利时、冰岛、澳大利亚、奥地利和瑞士等国家都开展了科学钻探。全世界计划完成近百口科学钻孔,其中深钻孔10余口。具有代表性的科学钻探计划如下:
已经完成的有:
1960年,美国提出国际上地幔计划(IUMP)。
1965年,开始实施深海钻探计划(DSDP)。
1970年,苏联开始SG-3大陆超深钻孔施工。
1983年,开始实施大洋钻探计划(ODP)。
1984年,美国组建DOSECC,计划完成29口科学钻孔。
1987年,德国开始KTB先导孔施工,1989年完成,终孔深度4000.1m。
1990年,KTB主孔开始施工,1994年9月完成,终孔深度9101m。
2001年,ICDP计划已批准的项目及执行情况(见下表)。
地球科学进展
3.1 原苏联
原苏联的大陆科学钻探实施最早,钻孔最多,开始于第二次世界大战后,实施了几十口基准井。1965年确立了超深钻实施步骤,地质学家别科亚耶夫斯基等根据深部地球物理资料提出,为获得完整的地壳剖面,至少要在6个地区打科学超深孔。原苏联国家科委为这一庞大规划组建了“地球地下资源与超深钻探部门科学委员会”,有95个单位参加,由原地质部部长E·A·科兹洛夫斯基任主席。设计施工超深孔18口,其中SG-1孔设计深度12000m,SG-2、SG-3孔深15000m,其他15口是深6000m左右的先导孔(卫星孔)。1970年SG-3超深井开钻,设计15000m,1986年3月终孔深度12262m,为目前世界第一深井。1988年在亚罗斯拉夫国际科学钻探学术会议上公布原苏联科学钻探取得了40项重大科研成果。
3.2 美国
从1961年开始至今,执行了一系列海上科学钻探计划,如莫霍计划、DSDP深海钻探计划、ODP大洋钻探计划等,都取得了辉煌的成就。但海上钻探设备复杂、费用昂贵。1993年他们提出了一个口号:“把船开到陆地上来”,要大力发展大陆科学钻探。
美国大陆科学钻探计划(US/CSDP):
已经完成的钻探项目有:伊尼欧(INYO)井1~4号、巴耶斯破火山口1号、伊利诺斯井(VC1,VC2A,VC2B)、索尔顿湖、长谷、卡洪山口及上地壳项目。
计划实施的项目有30多个,深度超过6km的有:阿巴拉契亚深部取心钻孔、伊利诺斯盆地超深孔、得克萨斯海湾海岸超深孔、夏威夷岛深钻项目(正在实施中)。
90年代美国将主要实施五个项目:即卡特迈的诺瓦拉普塔、卡洪山口第三阶段、巴耶斯破火山新项目、纽克克盆地钻、基础钻探项目等。
1974年美国在俄克拉何马钻成了大陆科学钻孔罗杰斯1号孔(Betha Rogers N0.1),孔深9583m。1985年在国家科学基金会领导下,制定“大陆科学钻探计划”(CSDP),选定孔位29处,陆续取得重大成果:①1985年在索尔顿S2-14#孔执行以研究高温地热为中心的科学钻探(SSSDP)计划,1986年3月钻到3220m,贯穿沉积层到达下部闪长岩相角岩,中靶温度为353℃,为世界第一口高温地热井;②1986年陆续沿圣安得烈斯大断层施工10口科学钻孔,平均深度为5000m,以监测研究加利福尼亚州大地震发生机制。在卡洪隘口(Cajon Pass Hole)施工的第一孔经岩心磁法定向(占10%)、热导率、热辐射、应力场、波速等测试,发现断层带摩擦应力近100MPa,产生局部热导率异常1HFU(=40 MW/m2),美国地调局以此孔作地震观测孔,以上述量化临界数据提供多次地震预报,均大大减少了灾害损失;③美国Los Alamos国家实验室用10年时间在Fenton Hill在水平相距30m处钻两口以勘探与开发“干热岩”直接发电的科学钻孔,深度分别达3200m、4500m,直达火山岩体,用水力压裂使两孔相通,形成“热仓”,孔底温度达300℃,一孔注入冷水,另一孔排出温度为200℃以上的干蒸气,并用此蒸气直接发电。④沿圣安得烈斯施工的科学钻孔在2000m处的结晶岩基底岩中发现嗜温菌(Thermophilic bacteria),为研究地表以下生物活动提供依据。它的分布、总的数量、对油气生成的关系、它同地表生物活动的关系、以至同生物起源的关系、地下生物圈边界等等,留待科学钻探去勘探解决。
3.3 瑞典和西欧各国
在原苏联科学钻探发现深部地下有碳氢化合物等流体的成果鼓舞下,瑞典以及欧洲共同体等缺乏石油的国家,建立了OECD(欧洲经合与开发组织)将科学钻探列为大科学项目(Mega-Science)。瑞典首先在锡利扬(Silijan)大陨石坑施工Gravberg 1号孔,深6350m,取得油气样品85桶(约合18.5 t),化验后,其成分无异于普通石油天然气,并含有极细磁铁矿粉末,引起世界瞩目。科学家们推断油气来自上地幔裂隙,属非生物源油气,其后又布置另一口Stanberg No.1号科学钻孔。
3.4 德国
德国大陆深部钻探(KTB)到1993年9月2日钻深为8312.5m,(在孔深为8008.6m时,地温为215℃)。KTB目前获得的主要科学成果是:①证实了深部的温度变化和热转移,查明了深达6km多的地壳热结构;②修正了深部地球物理探测资料(反射地震、地电、重磁异常等),查明了地球物理结构性质和非均一性;③发现了地壳中流体的来源、成分和运动规律,对于开拓新的能源和探讨矿床成因有重要的意义;④测出了深达6km、目前世界上最深的应力分布资料,对于预测地震、火山等灾害有重要意义;⑤发现在莫霍面以下还存在地球磁场,在理论上这是一个重大突破。
KTB在实践中还研发了一系列的新技术和新工艺,其中最主要的是:①研制和使用了巨型钻机,在钻探设备自动化上取得重大进展。KTB的钻探设备主要技术指标:钻塔高度83m,设备总重2500t,10000m钻杆重400t,最大大钩负荷800t,总功率9500kW,泥浆泵流量1000~4000L/min,工作泵压350bar,泥浆箱总体积450m3;②研制和使用一套垂直钻进系统(VDS),KTB的主孔通过采用这一技术,使钻孔深度达到7000m时钻孔顶角不超过2°,钻孔水平移距不超过20m。而先导孔由于没有采用VDS系统,钻孔深度为4000m时水平移距达到了180多m;③在施工的组织管理,信息的获取、利用、发布和现场实验室等方面也积累了宝贵的经验。
4 大陆科学钻探在技术上面临的挑战
孔深大——需要重型设备、钻孔结构复杂、管材强度极限、钻孔弯曲严重、回转阻力增大、辅助时间长等;
结晶岩——钻进效率低、钻头寿命短、钻孔弯曲严重、纠斜困难等;
高温高压——泥浆性能变坏、管材强度下降、孔壁稳定性差、测井仪器性能降低等;高信息量——高取心率和取心质量、泥浆录井系统、流体样品的获取、深部现场实验室等。
5 中国大陆科学钻探(CCSD)简况
5.1 历史回顾
1988年,开始建议制定中国大陆科学钻探计划。
1991年,原地矿部开始组织进行“中国大陆科学钻探先行研究和选址研究”。
1992年,地质科学钻井工程列入“国家中长期科学技术发展纲要”。
1995年11月,国务院领导批准中国加入“国际大陆科学钻探计划(ICDP)”。
1996年2月中国正式成为ICDP三个发起国之一。
1996年8月,原地矿部与德国地学中心签订了在大别-苏鲁进行科学钻探的合作协议书。
1997年6月,国家科技领导小组批准“中国大陆科学钻探工程”列入“九五”国家重大科学工程项目。
1997年8月,由ICDP资助的“大别-苏鲁超高压变质带大陆科学钻探选址国际研讨会”召开,中外专家一致赞同在江苏北部东海县实施5000m的科学深钻。
1998年4月,国际大陆钻探计划组织(ICDP)审议通过了“中国大别-苏鲁超高压变质带大陆科学钻探”项目正式建议书,并予以150万美元经济资助。
1998年12月至1999年6月,在江苏东海县毛北镇境内完成了1000m深的预先导孔施工,目的是为CCSD的施工设计和主孔施工提供必要的信息,并积累了施工经验。
1999年9月底,经历近10年的努力,在建国五十周年大庆前夕国家计委正式批准了中国大陆科学钻探工程项目立项建议书,这标志着该工程项目正式开始实施。
2000年3月28日至3月29日,由国家计委中咨公司组织十余位专家在北京对《中国大陆科学钻探工程工程可行性研究报告》(工程部分)进行了专家论证,与会十余位专家一致同意通过此报告,从此,中国大陆科学钻探工程正式进入设计施工阶段。
2001年6月25日中国大陆科学钻探工程先导孔终于在江苏省东海县开始试钻。
2001年8月2日,国家计委批准了中国大陆科学钻探工程的初步设计和开工。
2001年8月4日,中国大陆科学钻探工程在江苏东海钻探现场举行了开工仪式,全国政协副主席万国权等出席,各新闻单位竞相报道。
2002年4月15日,井深2046.5m,结束了取心钻进,先导孔完工。
2002年5月7日开始主孔的扩孔钻进。
2002年8月27日零时45分扩孔深度2028m,扩孔完工。
2002年10月10日开始主孔取心钻进。
2005年3月8日胜利完钻,终孔深度5158m。
2005年4月18日在中国大陆科学钻探施工现场举行了竣工典礼,国务院副总理曾培炎出席典礼仪式并发表重要讲话。
2006年3月18日,国际大陆科学钻探中国委员会(ICDP-CHINA)在北京成立。孟宪来任主任,许志琴、安芷生和黄宗理等任副主任。刘东生院士、孙枢院士、刘光鼎院士、李庭栋院士、刘广志院士等被聘为该委员会顾问组专家。
5.2 施工基本要求和条件
设计井深:5000m
终孔直径:
取心要求:全井连续采取岩心
地层条件:坚硬的结晶岩,如片麻岩、榴辉岩、角闪岩等
温度梯度:2.5℃/100m
5.3 CCSD的目的
通过最短的钻距获取最深部的垂向连续变化信息,建立真实的深部物质组成、结构、流变学、地球化学、岩石物理、流体、地热、地应力及现代微生物剖面,并校正地球物理遥测的结果,建立世界性的深部结晶岩地区地球物理标尺。
揭示超高压变质带形成与折返机制的奥秘,研究会聚陆壳边部的动力学,为大陆动力学理论的创立奠定基础。
研究超高压变质带中金刚石和金红石(国防及航天材料)等资源形成的地质背景和成矿机理,开拓新的找矿方向。
发现来自地幔深处的新矿物和新物质,探究超高压物理条件下的矿物化学和结构行为。
研究现代地壳流体的富集、分布及迁移规律,探索其深部来源,揭示深部水圈的活动及水-岩作用对成岩和成矿的影响;
通过地下深处存活的现代微生物的研究,揭示地下生物圈在极端条件下(高温高压)的生物钟时限、微生物的潜育条件及其对成岩、成矿和生油作用影响。
在钻孔中放置各种探测仪器,监测地震活动、研究发震机制,揭示现代地壳活动及地球深部正在进行的各种物理、化学及生物作用,同时可将钻孔作为一个长期的、动态的、高温高压的成岩成矿实验室和矿物合成腔,完成在地表条件下所不能进行的多种重要科学实验。
促进我国钻探工程技术和相关领域的发展。促进我国钻探技术的发展,其技术成果将使众多的钻探应用领域迅速赶上世界先进水平,并带动工程科学、实验测试、机械工艺及超硬材料等技术的开发与发展。大陆科学深钻系统将发展和提高深部地球物理遥测方法与技术,并成为检验深部地球物理正、反演理论的实验场。
培养造就上百名跨世纪的地学研究与管理专家,满足21世纪我国开展经常性科学钻探工程及相关科学研究的人才需求,促进地球科学与物理学、化学、生物学、工程学、经济学和管理科学的联合与交叉,为发展新学科生长点提供机遇。
5.4 CCSD的八大科学目标
(1)揭示超高压变质岩形成与折返机理。
(2)再造大陆板块会聚边界的深部物质组成与结构。
(3)建立结晶岩地区地球物理模型和解释标尺。
(4)研究板块会聚边缘的地球动力学和壳幔相互作用。
(5)揭示超高压变质成矿机理,发现新矿物与新物质。
(6)探索现代地壳流体-岩石相互作用与成矿机理。
(7)研究现代地壳中微生物类型和潜育条件。
(8)为资源开发及地震发生机制的探索提供科学依据。
5.5 工程选址及钻探子工程
选址原则:瞄准具重大关键地学意义的地区;服务于人类社会面临的资源、环境及灾害三大问题;地质及地球物理研究程度较高;地层尽可能平缓,能穿越尽量多的层位,无花岗岩干扰;技术上可行(特别是地温梯度应较低);交通便利,地势相对平坦,通讯方便。
1997年8月,由ICDP资助在中国青岛举行了“大别-苏鲁超高压变质带大陆科学钻探选址国际研讨会”,中外专家一致赞同在江苏北部东海县毛北镇实施5000m的科学深钻。钻孔位于具有全球地学意义的大别苏鲁超高压变质带上,可以通过最短距离的钻探或取最深部的地学信息;东海县及附近地区的经济发达,交通与通讯便利,水电供应充足,是大陆钻探的理想场所。
5.5.1 钻探施工面临的技术难题
硬地层钻进(扩孔)效率问题、深孔硬岩大直径全孔取心技术、大倾角硬地层防斜纠斜技术、深孔小间隙孔段水力学设计及钻井液技术、难以预料的复杂情况等。
5.5.2 技术目标
形成一套完整的硬岩深孔(5000m)大直径(终孔直径不小于156mm)金刚石绳索取心钻进技术体系;使独具中国特色的液动锤钻进技术更加完善,进一步巩固我国在液动锤技术领域中的领先地位;研究与开发新型的以绳索取心为基础的组合式取心钻进系统,如孔底马达/绳索取心二合一钻具、液动锤/绳索取心二合一钻具及其相应的钻进工艺,其成果将居国际领先地位;带动我国钻探器具和钻探材料生产制造技术与使用技术的进一步发展,使其赶超世界先进水平。
5.5.3 双孔钻进方案:先导孔+主孔
钻先导孔后,主孔上部采用大直径液动锤全面钻进,有利于防止孔斜;先导孔小直径取心,代替主孔上部大直径取心,节省施工费用;获得主孔钻探技术方案精确设计所需的地下岩层信息;可在先导孔中试验将在主孔中使用的钻探器具和材料。
5.5.4 组合式钻探技术:石油转盘钻机+地质岩心钻探工艺
以金刚石绳索取心钻探技术为主体;采用金刚石取心钻头,回转速度高;孔壁间隙小,泵压高,排量小;采用低固相冲洗液;对钻压控制有较高要求。
5.5.5 先导孔钻进工艺
螺杆马达+金刚石双管取心钻进、螺杆马达+液动锤+金刚石双管取心钻进、转盘+金刚石双管取心钻进、螺杆马达+金刚石单管取心钻进。其中特别突出的是螺杆马达+液动锤+金刚石取心钻进工艺,属世界首创,效果显着,可显着提高机械钻速,延长回次取心进尺长度。
5.5.6 主孔钻进工艺
原设计拟采用金刚石绳索取心钻进,并加装了液压动力头装置。由于绳索取心钻杆加工质量问题以及动力头输出扭矩不足,放弃了绳索取心钻进工艺;主孔基本上还是以螺杆马达+液动锤+金刚石取心钻进工艺为主。
5.5.7 钻机-ZJ70D
宝鸡石油机械厂生产的新一代电驱动钻机。钻深范围5000~7000m;最大钩载:4500kN;最大钻柱重220t;绞车最大输入功率1470kW;大钩提升速度为0~1.6m/s;绞车档数为2+2R,无级变速;绞车档数为4+4R,无级变速;钻台高度9m;钻架高度45m。
5.5.8 钻具、钻头和冲洗液等(略)
5.6 地学成果
完成了5158m的系列金柱子包括岩性剖面、地球化学剖面、构造剖面、岩石伽马异常剖面、矿化剖面、岩石物性剖面、流体剖面等。
首次在国内完成了长井段岩心深度和方位测井归位。
首次完成结晶岩区的三维地震探测,揭示了精细的地壳结构。
中国大陆科学钻探主孔5000m岩性剖面揭示50多种丰富多彩的岩石类型。在原有的金红石矿体下又发现了400m厚的达到工业品位的新的金红石矿体。
证实了苏鲁地区2亿年前发生过巨量物质超深俯冲的壮观地质事件。证实了苏鲁地体在晚三叠纪发生超高压变质后经历了一个快速抬升的动力学演化过程。
查明了超高压榴辉岩的主要矿物都含有以OH存在的结构水
氧同位素研究表明超高压变质岩的原岩在近地表与大气降水发生交换“花岗岩体的侵入为其提供热源”为新元古代全球性雪球事件提供重要证据
建立了苏鲁高压-变质超高压构造格架,确定岩石-构造单元、构造边界的大型韧性剪切带系
涉及几何学、运动学、动力学。
揭示含金红石榴辉岩中锐钛矿、板钛矿、榍石和金红石的产出状态及其可能的相互转化关系。
发现了极端生存条件下的地下微生物。
5.7 钻探技术成果
完成了一口在坚硬的结晶岩中施工的、终孔直径为156mm、终孔深度为5158mm的连续取心科学钻探孔。
研究开发了具有自主知识产权的孔底马达驱动的冲击回转取心钻井方法及其钻进系统。
形成一套完整的、独具中国特色的硬岩深孔(大于5000m)钻井施工技术体系。包括:大直径(终孔直径不小于156mm)取心钻进技术、硬岩扩孔钻进技术、强致斜地层防斜纠斜技术、新型硬岩钻井液体系、硬岩小间隙套管固井技术、活动套管技术等。使独具中国特色的液动锤钻进技术更加完善,进一步巩固了我国在液动锤技术领域中的领先地位。
研究并开发了多种新型的以绳索取心为基础的组合式取心钻进系统,如:孔底马达(螺杆马达或涡轮马达)+绳索取心二合一钻具、液动锤+绳索取心二合一钻具、螺杆马达+液动锤+绳索取心三合一钻具,及其相应的钻进工艺,成果居国际领先地位;极大地推动了我国钻探器具和钻探材料生产制造技术的进一步发展。
6 墨西哥Chicxulub大陆科学钻探(CSDP)简介
其科学目标是研究陨击事件和生物集群灭绝。钻孔位于墨西哥的Chicxulub陨击坑,距离撞击中心约60~80km,设计孔深2500~3000m。计划实施周期为1998~2005年,已经完成了几个浅钻,实际实施时间有些延后,2000年开始700m深的先导孔钻探。ICDP将资助100万美元。
大约在6500万年前,一个直径约10~15km的小行星或彗星撞击在当时的浅海区域(现今的尤卡坦地台),突然爆发释放出的能量约有100万亿吨梯恩梯当量,形成了直径200km的巨大陨击坑。引发大火,粉尘蔽日,使全球气候持续变冷;并喷发出大量的CO2和SO2气体,造成陆地和海洋生物大量窒息死亡。恐龙就是在这个地质年代突然消失。因此,科学家推测,这次撞击可能是造成恐龙灭绝的直接原因。撞击所抛出的尘埃、灰烬和小球体在空中形成的离散物质在白垩纪-第三纪界限的年代遍布全球。
CSDP预期解决的基本问题包括:陨击事件的基本性质,冲击变形的基本性质,陨击坑形成的基本性质和喷出过程的基本性质。
7 湖泊钻探
全球变化(Global Change)研究是ICDP的科学目标之一。目前全世界科学家非常重视。地球气候和环境的演化过程在海洋、湖泊、冰川、黄土、珊瑚、钟乳石等沉积物中以及树的年轮中都有记录。如果通过一些浅层科学钻探采集这些原状的沉积物样品等,利用现代的测试分析仪器进行多方面的研究,从而比较客观地建立全球变化模型。世界上开展全球变化研究的机构非常多,而且十分活跃,浅层科学钻探项目也很多。如International Geosphere/Biosphere Project(IGBP)中的Past Global Changes(PAGES),Palaeoclimates of the Northern and Southern Hemispheres(PANASH),the Pole-Equator-Pole transect from Europe through Africa(PEP Ⅲ),the CircumArctic PaleoEnvironments Programme(CAPE),the International Marine Global Change Study(IMAGES),International Continental Drilling Project(ICDP),Quaternary Environments of the Eurasian North(QUEEN),New Greenland Ice core Project(NGRIP)等。除了ODP(IODP)等海洋钻探之外,其中湖泊钻探占据主导位置。
参考文献
Mark D.Zoback,Rolf Emmermann.1993.Scientific Rationale for Establishment of an International Program of Continental Scientific Drilling,Report of the International Meeting on Continental Scientific Drilling,Potsdam,Germany,Aug.30 Sept.1
Mark D.Zoback,Rolf Emmermann 主编.1995.国际大陆科学钻探计划(ICDP):科学基础与科学目标(地质矿产部科学技术司、中国大陆科学钻探研究中心译)
赵国隆,刘广志.2003.中国勘探工程技术发展史集.北京:中国物价出版社
刘振铎等.2003.刘广志文集.北京:地质出版社
刘广志编着.汤风林,周国荣审校.2005.刘广志论科学钻探.北京:地质出版社
张良弼,吴荣庆.1999.国外地质勘探技术大陆科学钻探文集
大陆科学钻探工程专辑,中国地质大学学报,地球科学,2005年1月第30卷增刊
王达.2006.新型科学钻探技术体系的产生及其意义.探矿工程(岩土钻掘工程),第1期
许志琴,杨经绥等.2005.中国大陆科学钻探终孔及研究进展.中国地质,第32卷第2期
王达,张伟.2005.科钻一井钻探施工技术概览.中国地质,第32卷第2期
王达.2002.中国大陆科学钻探工程项目进展综述.探矿工程(岩土钻掘工程),第6期
赵国隆.2002.中国大陆科学钻探工程发展历程(上).探矿工程(岩土钻掘工程),第4期
赵国隆.2002.中国大陆科学钻探工程发展历程(下).探矿工程(岩土钻掘工程),第5期
张伟.2002.大陆科学钻探施工用钻探技术和施工战略.探矿工程(岩土钻掘工程),第3期
王达.2001.中国大陆科学钻探工程“科钻一井”钻探工程设计精要.探矿工程(岩土钻掘工程),增刊
张晓西.2001.论中国大陆科学钻探工程项目实施对我国钻探技术的推动作用.探矿工程(岩土钻掘工程),增刊
左汝强.2000.GLAD800型全球湖泊钻探系统及在大陆科学钻探中的应用计划.探矿工程(岩土钻掘工程),第4期
左汝强.2000.墨西哥奇克休罗伯陨石撞击构造科学钻探项目(CSDP)的实施.探矿工程(岩土钻掘工程),第6期
张伟.1999.夏威夷科学钻探项目的钻探技术和施工情况.探矿工程(岩土钻掘工程),第4期
http://www.ccsd.org.cn/(国际大陆科学钻探中国委员会、中国大陆科学钻探工程网站)
http://www.icdp-online.de/或http://icdp.gfz-potsdam.de(国际大陆科学钻探计划网站)
㈧ 从测井资料获得的储层特性
测井资料的价值取决于井孔作业者的目的,而测井信息与其他来源的信息(如煤心、试井)相结合,可使技术人员逐步获得某一矿区所有钻井全部潜在目标煤层的关键储层特性,以达到最佳的产量决策,这比单独考虑测井、煤心或试井获得的储层特性更为可靠。再者,利用经过选择的煤心和试井数据来标定测井数据,可以建立起矿区特有的测井曲线解释模型。然后再利用测井曲线模型获取以测井记录为基础的储层特性。这一方法显得尤为重要,因为我们可以根据每个钻井的测井记录和少数选定的“标准”井的煤心和试井数据,得出关键储层特性的综合估计。可以看出,随着开发深度的增加,测井记录和其他数据来源之间的关系更多地依赖于测井资料。
1.含气量
含气量是指煤中实际储存的气体含量,通常以m3/t来表示,它与实验室测得的吸附等温线确定的含气量不同在于煤的实际含气量通常包括3个分离的部分:逸散气、解吸气和残余气。目前,实际含气量往往通过现场容器解吸试验测得,精确确定含气量需要采用保压岩心。
间接计算含气量可使用Kim方程的修正形式,这种方法是由Kim提出的计算烟煤含气量的经验方法,即
现代煤炭地质勘查技术
式中:CLLD为深侧向测井电导率,ms/m;VFRAC为裂隙宽度,μm;cm为泥浆电导率,S/m;Cb为基质块电导率,mS/m。
该方法排除了在裂隙未扩展、无严重侵入或电阻性泥浆侵入情况下的判读误差,图8-6为这一技术的具体应用实例。
受人关注的微电阻率装置(MGRD、MLL、MSFL或PROX,取决于电极排列)常使用DLL来记录,并用于映射煤层的裂隙孔隙度。微电阻率装置具有极好的薄层解译能力,与VFRAC亦存在线性关系(图8-7),但应注意,微电阻率装置可能受井孔粗糙度影响。
确定煤层渗透率变化的另一种方法是依靠微电极测井,微电极测井历来用于识别常规储层中的渗透性岩层。微电极测井仪是一种要求与井壁接触的极板式电阻率仪,微电极仪记录微电位电阻率(探测深度10.2cm)和微梯度电阻率(探测深度3.8cm),微电极测井的多种探测深度使这种设备可用于渗透率指示仪。随钻井泥浆侵入渗透性岩层,在入口前方形成泥饼,泥饼对浅探测微梯度电阻率影响比深探测微电位电阻率影响要大,这种泥饼效应引起两种电阻率测值的差异,进而表明渗透性岩层的存在。尽管微电极测井也常常作为煤层渗透率指标,但由于在不同钻井中泥浆特性有变化和泥浆侵入程度有变化,所以微电极测井的定量解释是困难的,目前煤中裂隙定量评价的唯一方法仍是使用DLL测井技术来实现。
图8-6 由测井显示的低、中、高裂隙孔隙度
图8-7 井中裂隙宽度与微电阻率关系