当前位置:首页 » 服务存储 » 钢琴销售的存储策略的代码
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

钢琴销售的存储策略的代码

发布时间: 2022-09-10 16:00:51

1. 高分求 C语言 商品销售管理系统 代码~ 简单的~

#include <stdio.h>
#include <malloc.h>
#include <string.h>
typedef struct
{
char num[10];
char name[20];
float price;
int amount;
}Proct;
typedef struct node
{
Proct p;
struct node *pre;
struct node *next;
}node,*linklist;

linklist head,last;

void setData(linklist p)
{
printf("产品编号:");
scanf("%s",&p->p.num);
printf("产品名称:");
scanf("%s",&p->p.name);
printf("产品单价:");
scanf("%f",&p->p.price);
printf("产品数量:");
scanf("%d",&p->p.amount);
}

void Insert(linklist p)
{
setData(p);
p->next=last;
last->pre->next=p;
p->pre=last->pre;
last->pre=p;
}
void Add()
{
char ch;
do
{
linklist p=(linklist)malloc(sizeof(node));
system("cls");
Insert(p);
printf("是否继续?");
scanf(" %c",&ch);
}while(ch=='y'||ch=='Y');
}

linklist Qur()
{
char num[10];
linklist p=head->next;
printf("输入产品编号:");
scanf("%s",num);
while(p!=last)
{
if(strcmp(num,p->p.num)==0) break;
p=p->next;
}
if(p==last) {printf("未找到\n");system("pause");}
return p;
}

void Del()
{
linklist p=Qur();
if(p==last) return;
p->pre->next=p->next;
p->next->pre=p->pre;
free(p);
printf("删除成功\n");
system("pause");
}

void Modify()
{
linklist p=Qur();
if(p==last) return ;
setData(p);
}
void printTitle()
{
printf("编号\t名称\t单价\t数量\n");
}

void show(linklist p)
{
printf("%s\t%s\t%.2f\t%d\n",p->p.num,p->p.name,p->p.price,p->p.amount);
}
void Tongji()
{
linklist p=head->next;
int i=0;
printTitle();
while(p!=last)
{
show(p);
p=p->next;
i++;
}
printf("共%d项商品\n",i);
system("pause");
}

void Sort()
{
linklist p,q;
for (p=head->next;p!=last;p=p->next)
{
for (q=p->next;q!=last;q=q->next)
{
if(strcmp(p->p.num,q->p.num)<0)
{
Proct temp=p->p;
p->p=q->p;
q->p=temp;
}
}
}
printf("完成\n");
system("pause");
}

void Save()
{
linklist p=head->next;
FILE *fp=fopen("d:\\record.txt","w");
if(fp==NULL)
{
printf("保存失败\n");
return;
}
fprintf(fp,"编号\t名称\t单价\t数量\n");
while(p!=last)
{
fprintf(fp,"%s\t%s\t%.2f\t%d\n",p->p.num,p->p.name,p->p.price,p->p.amount);
p=p->next;
}
fclose(fp);
printf("完成\n");
system("pause");
}
void Disp()
{
linklist p=head->next;
printTitle();
while(p!=last)
{
show(p);
p=p->next;
}
system("pause");
}
void Wrong()
{
printf("输入错误!\n");
system("pause");
}
void menu(void)
{
system("cls");
printf("********商品销售管理系统*******\n");
printf("* *\n");
printf("* 1:添加 *\n");
printf("* 2:删除 *\n");
printf("* 3:查询 *\n");
printf("* 4:修改 *\n");
printf("* 5:插入 *\n");
printf("* 6:统计 *\n");
printf("* 7:降序排列 *\n");
printf("* 8:存储 *\n");
printf("* 9:显示数据 *\n");
printf("* 0:退出 *\n");
printf("* *\n");
printf("*******************************\n");
}

int select()
{
int choose;
scanf("%d",&choose);
switch(choose)
{
case 1:Add();break;
case 2:Del();break;
case 3:
{
linklist p=Qur();
if(p!=last) {show(p);system("pause");}break;
}
case 4:Modify();break;
case 5:
{
linklist p=(linklist)malloc(sizeof(node));
Insert(p);break;
}
case 6:Tongji();break;
case 7:Sort();break;
case 8:Save();break;
case 9:Disp();break;
case 0:break;
default:Wrong();break;
}
return choose;
}
void destroy()
{
linklist p=head->next;
while(p!=last)
{
head->next=p->next;
free(p);
p=head->next;
}
free(head);
free(last);
}
int main(void)
{
head=(linklist)malloc(sizeof(node));
last=(linklist)malloc(sizeof(node));
head->next=last;
last->next=NULL;
last->pre=head;
head->pre=NULL;
do
{
menu();
} while (select()!=0);
destroy();
return 0;
}

2. 数据结构中二叉树的顺序存储结构代码怎么编写

(以下有一段代码,自己先看看学学吧)
数据结构C语言版 二叉树的顺序存储表示和实现
P126
编译环境:Dev-C++ 4.9.9.2
日期:2011年2月13日
*/
#include <stdio.h>
typedef char TElemType;
// 二叉树的顺序存储表示
#define MAX_TREE_SIZE 100 // 二叉树的最大结点数
typedef TElemType SqBiTree[MAX_TREE_SIZE]; // 0号单元存储根结点
typedef struct
{
int level, //结点的层
order; //本层序号(按满二叉树计算)
}position;
typedef int QElemType;
// 队列的顺序存储结构(可用于循环队列和非循环队列)
#define MAXQSIZE 5 // 最大队列长度(对于循环队列,最大队列长度要减1)
typedef struct
{
QElemType *base; // 初始化的动态分配存储空间 相当于一个数组
int front; // 头指针,若队列不空,指向队列头元素,相当于一个数组下标
int rear; // 尾指针,若队列不空,指向队列尾元素的下一个位置
// 相当于一个数组下标
}SqQueue;
#define ClearBiTree InitBiTree // 在顺序存储结构中,两函数完全一样
TElemType Nil = ' '; // 设空为字符型的空格符
// 构造空二叉树T。因为T是固定数组,不会改变,故不需要&
int InitBiTree(SqBiTree T)
{
int i;
for(i=0;i<MAX_TREE_SIZE;i++)
T[i]=Nil; // 初值为空
return 1;
}
void DestroyBiTree()
{
// 由于SqBiTree是定长类型,无法销毁
}
// 按层序次序输入二叉树中结点的值(字符型或整型), 构造顺序存储的二叉树T
int CreateBiTree(SqBiTree T)
{
int i = 0, l;
char s[MAX_TREE_SIZE];
printf("请按层序输入结点的值(字符),空格表示空结点,结点数≤%d:\n",
MAX_TREE_SIZE);
printf("例如:abcefgh\n");
gets(s); // 输入字符串
l = strlen(s); // 求字符串的长度
for(;i<l;i++) // 将字符串赋值给T
{
T[i]=s[i];
// 此结点(不空)无双亲且不是根,T[(i+1)/2-1] == Nil表示T[i]无双亲
if(i!=0 && T[(i+1)/2-1] == Nil && T[i] != Nil)
{
printf("出现无双亲的非根结点%c\n",T[i]);
exit(0);
}
}
for(i=l;i<MAX_TREE_SIZE;i++) // 将空赋值给T的后面的结点
T[i]=Nil;
return 1;
}
// 若T为空二叉树,则返回1,否则0
int BiTreeEmpty(SqBiTree T)
{
if(T[0]==Nil) // 根结点为空,则树空
return 1;
else
return 0;
}
// 返回T的深度
int BiTreeDepth(SqBiTree T)
{
int i,j=-1;
for(i=MAX_TREE_SIZE-1;i>=0;i--) // 找到最后一个结点
if(T[i] != Nil)
break;
i++; // 为了便于计算
do
j++;
while(i>=pow(2,j)); //i > pow(2, depth-1) && i <= pow(2, depth)
return j; //j = depth;
}
// 当T不空,用e返回T的根,返回1;否则返回0,e无定义
int Root(SqBiTree T,TElemType *e)
{
if(BiTreeEmpty(T)) // T空
return 0;
else
{
*e=T[0];
return 1;
}
}

// 返回处于位置e(层,本层序号)的结点的值
TElemType Value(SqBiTree T,position e)
{
// 将层、本层序号转为矩阵的序号
return T[((int)pow(2,e.level-1) - 1) + (e.order - 1)];
// ((int)pow(2,e.level-1) - 1)为该e.level的结点个数,
// (e.order - 1)为本层的位置
}

// 给处于位置e(层,本层序号)的结点赋新值value
int Assign(SqBiTree T,position e,TElemType value)
{
// 将层、本层序号转为矩阵的序号
int i = (int)pow(2,e.level-1) + e.order - 2;
if(value != Nil && T[(i+1)/2-1] == Nil) // 叶子非空值但双亲为空
return 0;
else if(value == Nil && (T[i*2+1] != Nil || T[i*2+2] != Nil))
// 双亲空值但有叶子(不空)
return 0;
T[i]=value;
return 1;
}

// 若e是T的非根结点,则返回它的双亲,否则返回"空"
TElemType Parent(SqBiTree T,TElemType e)
{
int i;
if(T[0]==Nil) // 空树
return Nil;
for(i=1;i<=MAX_TREE_SIZE-1;i++)
if(T[i]==e) // 找到e
return T[(i+1)/2-1];
return Nil; // 没找到e
}

// 返回e的左孩子。若e无左孩子,则返回"空"
TElemType LeftChild(SqBiTree T,TElemType e)
{
int i;
if(T[0]==Nil) // 空树
return Nil;
for(i=0;i<=MAX_TREE_SIZE-1;i++)
if(T[i]==e) // 找到e
return T[i*2+1];
return Nil; // 没找到e
}

// 返回e的右孩子。若e无右孩子,则返回"空"
TElemType RightChild(SqBiTree T,TElemType e)
{
int i;
if(T[0]==Nil) // 空树
return Nil;
for(i=0;i<=MAX_TREE_SIZE-1;i++)
if(T[i]==e) // 找到e
return T[i*2+2];
return Nil; // 没找到e
}

// 返回e的左兄弟。若e是T的左孩子或无左兄弟,则返回"空"
TElemType LeftSibling(SqBiTree T,TElemType e)
{
int i;
if(T[0]==Nil) // 空树
return Nil;
for(i=1;i<=MAX_TREE_SIZE-1;i++)
if(T[i] == e && i%2 == 0) // 找到e且其序号为偶数(是右孩子)
return T[i-1];
return Nil; // 没找到e
}

// 返回e的右兄弟。若e是T的右孩子或无右兄弟,则返回"空"
TElemType RightSibling(SqBiTree T,TElemType e)
{
int i;

if(T[0]==Nil) // 空树
return Nil;
for(i=1;i<=MAX_TREE_SIZE-1;i++)
if(T[i]==e&&i%2) // 找到e且其序号为奇数(是左孩子)
return T[i+1];
return Nil; // 没找到e
}

// 把从q的j结点开始的子树移为从T的i结点开始的子树
// InsertChild()用到
void Move(SqBiTree q,int j,SqBiTree T,int i)
{
if(q[2*j+1] != Nil) // q的左子树不空
Move(q,(2*j+1),T,(2*i+1)); // 把q的j结点的左子树移为T的i结点的左子树
if(q[2*j+2] != Nil) // q的右子树不空
Move(q,(2*j+2),T,(2*i+2)); // 把q的j结点的右子树移为T的i结点的右子树
T[i]=q[j]; // 把q的j结点移为T的i结点
q[j]=Nil; // 把q的j结点置空
}

// 根据LR为0或1,插入c为T中p结点的左或右子树。p结点的原有左或
// 右子树则成为c的右子树
int InsertChild(SqBiTree T,TElemType p,int LR,SqBiTree c)
{
int j,k,i=0;
for(j=0;j<(int)pow(2,BiTreeDepth(T))-1;j++) // 查找p的序号
if(T[j]==p) // j为p的序号
break;
k=2*j+1+LR; // k为p的左或右孩子的序号
if(T[k] != Nil) // p原来的左或右孩子不空
Move(T,k,T,2*k+2); // 把从T的k结点开始的子树移为从k结点的右子树开始的子树
Move(c,i,T,k); // 把从c的i结点开始的子树移为从T的k结点开始的子树
return 1;
}

// 构造一个空队列Q
int InitQueue(SqQueue *Q)
{
(*Q).base=(QElemType *)malloc(MAXQSIZE*sizeof(QElemType)); //分配定长的空间,相当于一个数组
if(!(*Q).base) // 存储分配失败
exit(0);
(*Q).front=(*Q).rear=0; //初始化下标
return 1;
}

// 插入元素e为Q的新的队尾元素
int EnQueue(SqQueue *Q,QElemType e)
{
if((*Q).rear>=MAXQSIZE)
{ // 队列满,增加1个存储单元
(*Q).base=(QElemType *)realloc((*Q).base,((*Q).rear+1)*sizeof(QElemType));
if(!(*Q).base) // 增加单元失败
return 0;
}
*((*Q).base+(*Q).rear)=e;
(*Q).rear++;
return 1;
}

// 若队列不空,则删除Q的队头元素,用e返回其值,并返回1,否则返回0
int DeQueue(SqQueue *Q,QElemType *e)
{
if((*Q).front==(*Q).rear) // 队列空
return 0;
*e=(*Q).base[(*Q).front];
(*Q).front=(*Q).front+1;
return 1;
}

// 根据LR为1或0,删除T中p所指结点的左或右子树
int DeleteChild(SqBiTree T,position p,int LR)
{
int i;
int k=1; // 队列不空的标志
SqQueue q;
InitQueue(&q); // 初始化队列,用于存放待删除的结点
i=(int)pow(2,p.level-1)+p.order-2; // 将层、本层序号转为矩阵的序号
if(T[i]==Nil) // 此结点空
return 0;
i=i*2+1+LR; // 待删除子树的根结点在矩阵中的序号
while(k)
{
if(T[2*i+1]!=Nil) // 左结点不空
EnQueue(&q,2*i+1); // 入队左结点的序号
if(T[2*i+2]!=Nil) // 右结点不空
EnQueue(&q,2*i+2); // 入队右结点的序号
T[i]=Nil; // 删除此结点
k=DeQueue(&q,&i); // 队列不空
}
return 1;
}

int(*VisitFunc)(TElemType); // 函数变量

void PreTraverse(SqBiTree T,int e)
{
// PreOrderTraverse()调用
VisitFunc(T[e]); //先调用函数VisitFunc处理根
if(T[2*e+1]!=Nil) // 左子树不空
PreTraverse(T,2*e+1); //然后处理左子树
if(T[2*e+2]!=Nil) // 右子树不空
PreTraverse(T,2*e+2);
}

// 先序遍历T,对每个结点调用函数Visit一次且仅一次。
int PreOrderTraverse(SqBiTree T,int(*Visit)(TElemType))
{
VisitFunc=Visit;
if(!BiTreeEmpty(T)) // 树不空
PreTraverse(T,0);
printf("\n");
return 1;
}

// InOrderTraverse()调用
void InTraverse(SqBiTree T,int e)
{
if(T[2*e+1]!=Nil) // 左子树不空
InTraverse(T,2*e+1);
VisitFunc(T[e]);
if(T[2*e+2]!=Nil) // 右子树不空
InTraverse(T,2*e+2);
}

// 中序遍历T,对每个结点调用函数Visit一次且仅一次。
int InOrderTraverse(SqBiTree T,int(*Visit)(TElemType))
{
VisitFunc=Visit;
if(!BiTreeEmpty(T)) // 树不空
InTraverse(T,0);
printf("\n");
return 1;
}

// PostOrderTraverse()调用
void PostTraverse(SqBiTree T,int e)
{
if(T[2*e+1]!=Nil) // 左子树不空
PostTraverse(T,2*e+1);
if(T[2*e+2]!=Nil) // 右子树不空
PostTraverse(T,2*e+2);
VisitFunc(T[e]);
}

// 后序遍历T,对每个结点调用函数Visit一次且仅一次。
int PostOrderTraverse(SqBiTree T,int(*Visit)(TElemType))
{
VisitFunc = Visit;
if(!BiTreeEmpty(T)) // 树不空
PostTraverse(T,0);
printf("\n");
return 1;
}

// 层序遍历二叉树
void LevelOrderTraverse(SqBiTree T,int(*Visit)(TElemType))
{
int i=MAX_TREE_SIZE-1,j;
while(T[i] == Nil)
i--; // 找到最后一个非空结点的序号
for(j=0;j<=i;j++) // 从根结点起,按层序遍历二叉树
if(T[j] != Nil)
Visit(T[j]); // 只遍历非空的结点
printf("\n");
}

// 逐层、按本层序号输出二叉树
void Print(SqBiTree T)
{
int j,k;
position p;
TElemType e;
for(j=1;j<=BiTreeDepth(T);j++)
{
printf("第%d层: ",j);
for(k=1; k <= pow(2,j-1);k++)
{
p.level=j;
p.order=k;
e=Value(T,p);
if(e!=Nil)
printf("%d:%c ",k,e);
}
printf("\n");
}
}

int visit(TElemType e)
{
printf("%c ",e);
return 0;
}

int main()
{
int i,j;
position p;
TElemType e;
SqBiTree T,s;
InitBiTree(T);

CreateBiTree(T);
printf("建立二叉树后,树空否?%d(1:是 0:否) 树的深度=%d\n",
BiTreeEmpty(T),BiTreeDepth(T));
i=Root(T,&e);
if(i)
printf("二叉树的根为:%c\n",e);
else
printf("树空,无根\n");
printf("层序遍历二叉树:\n");
LevelOrderTraverse(T,visit);
printf("中序遍历二叉树:\n");
InOrderTraverse(T,visit);
printf("后序遍历二叉树:\n");
PostOrderTraverse(T,visit);
printf("请输入待修改结点的层号 本层序号: ");
scanf("%d%d%*c",&p.level,&p.order);
e=Value(T,p);
printf("待修改结点的原值为%c请输入新值: ",e);
scanf("%c%*c",&e);
Assign(T,p,e);
printf("先序遍历二叉树:\n");
PreOrderTraverse(T,visit);
printf("结点%c的双亲为%c,左右孩子分别为",e,Parent(T,e));
printf("%c,%c,左右兄弟分别为",LeftChild(T,e),RightChild(T,e));
printf("%c,%c\n",LeftSibling(T,e),RightSibling(T,e));
InitBiTree(s);
printf("建立右子树为空的树s:\n");
CreateBiTree(s);
printf("树s插到树T中,请输入树T中树s的双亲结点 s为左(0)或右(1)子树: ");
scanf("%c%d%*c",&e,&j);
InsertChild(T,e,j,s);
Print(T);
printf("删除子树,请输入待删除子树根结点的层号 本层序号 左(0)或右(1)子树: ");
scanf("%d%d%d%*c",&p.level,&p.order,&j);
DeleteChild(T,p,j);
Print(T);
ClearBiTree(T);
printf("清除二叉树后,树空否?%d(1:是 0:否) 树的深度=%d\n",
BiTreeEmpty(T),BiTreeDepth(T));
i=Root(T,&e);
if(i)
printf("二叉树的根为:%c\n",e);
else
printf("树空,无根\n");

system("pause");
return 0;
}

/*
输出效果:

请按层序输入结点的值(字符),空格表示空结点,结点数≤100:
例如:abcefgh
abcdefgh
建立二叉树后,树空否?0(1:是 0:否) 树的深度=4
二叉树的根为:a
层序遍历二叉树:
a b c d e f g h
中序遍历二叉树:
h d b e a f c g
后序遍历二叉树:
h d e b f g c a
请输入待修改结点的层号 本层序号: 3 2
待修改结点的原值为e请输入新值: i
先序遍历二叉树:
a b d h i c f g
结点i的双亲为b,左右孩子分别为 , ,左右兄弟分别为d,
建立右子树为空的树s:
请按层序输入结点的值(字符),空格表示空结点,结点数≤100:
例如:abcefgh
jk l
树s插到树T中,请输入树T中树s的双亲结点 s为左(0)或右(1)子树: i 0
第1层: 1:a
第2层: 1:b 2:c
第3层: 1:d 2:i 3:f 4:g
第4层: 1:h 3:j
第5层: 5:k
第6层: 9:l
删除子树,请输入待删除子树根结点的层号 本层序号 左(0)或右(1)子树: 2 1 0
第1层: 1:a
第2层: 1:b 2:c
第3层: 2:i 3:f 4:g
第4层: 3:j
第5层: 5:k
第6层: 9:l
清除二叉树后,树空否?1(1:是 0:否) 树的深度=0
树空,无根
请按任意键继续. . .
*/

3. 一个存储过程的统计代码怎么写

select distinct count(*)from 表名
distinct 去除重复值;
count(*) 统计记录数

4. 组策略的代码是什么怎么进入组策略

命令gpedit.msc
你打开我的电脑然后点搜索。输入文件名gpedit.msc把它搜索出来双击进入就是喽。
重新进入“控制面板”→“性能和维护”→“管理工具”→“计算机管理”,在“计算机管理”窗口左侧的列表中,选中“存储”下面的“磁盘管理”项,给被隐藏硬盘分配个驱动器名,就可以重新看见

5. 货物采购与存储的经营策略数学建模

个人认为,需求量得按天算才行,要不然无法计算缺货损失。而且缺货会不会影响需求量,这也是问题。比如C2商店需要M4商品1200件,但是第360天仓库才有此库存,那么这时C2商店的需求量依然是1200件吗?如果需求量按平均每天多少件来算的话,那么这样此商店对此商品的每天需求就会大大增加。缺货导致商店对商品的日需求增大,这样的假设并不合理吧?还有工厂产量如果和需求量如果不是平均分布的话,工厂供不上货也会导致商店缺货,这里得缺货损失也是不好假设的。
计算缺货损失时很多条件都不成熟,也不太好假设。个人认为,如果这些条件能够给得合理,那么计算这个题目非常简单。

6. 1、将钢琴销售模型中的存贮策略改为:当周末库存量为0或1的时候,订购,是下周初的库存达到3架;否则不定

建立马氏链模型,计算稳态下失去销售机会的概率和每周的平均销售量。

7. 库存存储策略一般包括哪些

库存存储策略一般包括:

1.t循环策略
2.(t,S)策略
3.(s,S)策略
4.(t,s,S)策略

8. 长鑫存储股票代码是什么

经查询,该企业为有限责任公司,未进行过股改,即没有上市,且在可以预见的一两年间不具备上市条件。查询上市公司的股票代码,登陆证券类网站进行查询即可。查询时股票XD表示股票除息,股票XD表示从当日买带有XD字样的股票,自当日起不会再享有派息的权利。一个公司的股票估值,可以认为跟是否上市没有关系,该值多少钱,还是多少钱,上市只是增加了流动性。况且牛市会溢价,熊市会负溢价。股票代码前需加上XD字样,股票XD是Ex-Dividend的缩写,股票XD表示股票除息,股票XD表示从当日买带有XD字样的股票,自当日起不会再享有派息的权利。在股票除息日的当天,股价的基准价要比前一个交易日的收盘价要低,原因是从中扣除了利息这一部分的差价。
拓展资料:
1、长鑫存储技术有限公司公布其最新的DRAM技术路线图,将采用19nm工艺生产4Gb和8GbDDR4,长鑫月产能约为2万片,规划到2020年底晶圆月产能将达12万片。另外,长鑫存储计划再建两座DRAM晶圆厂。从长鑫存储DRAM技术发展的路线规划来看,其研发的产品线包括DDR4,LPDDR4X、DDR5以及LPDDR5、GDDR6,产品发展线路与三星、SK海力士、美光等国际大厂DRAM发展大体一致。天风证券潘_认为,5G的快速发展为半导体行业带来巨大发展机遇,车用半导体、IoT和摄像头带来新增长点。另外,整机厂商供应链的国产化,也为半导体产业带来市场空间。
2、长鑫存储技术有限公司于2017年11月16日成立。法定代表人赵纶,公司总部在合肥,公司经营范围包括:存储技术服务;集成电路设计、制造、加工、技术开发、技术转让、技术咨询、技术服务、技术培训及技术检测;电子产品销售并提供售后服务及技术服务;半导体集成电路芯片研发、设计、委托加工、销售;计算机软硬件及网络软硬件产品的设计、开发;计算机软硬件及辅助设备、电子元器件、通讯设备的销售;设备、房屋租赁;产业并购;股权投资;自营和代理各类商品和技术的进出口业务(但国家限定企业经营或禁止进出口的商品和技术除外)等。

9. JAVA编写源代码,要求使用数组存储一年12个月份的天数,并按顺序输入

代码如下:

importjava.util.Scanner;

publicclassApp{

publicstaticvoidmain(String[]args){

Scannerscanner=newScanner(System.in);

int[]months=newint[12];

for(inti=0;i<months.length;i++){
months[i]=scanner.nextInt();
}

for(inti=0;i<months.length;i++){
System.out.println((i+1)+"月有"+months[i]+"天");
}
}
}

运行结果: