① TMS320C5402的存储器配置
DCSK的程序
以双DSP为核心的FM-DCSK通信系统方案设计
[日期:2005-8-14] 来源:国外电子元器件 作者:谌 丽 王 强 [字体:大 中 小]
摘要:采用FM-DCSK调制的混沌保密通信较其它混沌键控保密通信具有更优良的特性,但同时电路实现也更加复杂。DSP以其高效和灵活性在混沌通信中具有广阔的应用前景。文中根据TMS320C5402的特点,给出了用两块DSP来实现FM-DCSK通信系统的硬件方案,同时给出了系统独立工作时的硬件原理框图和软件设计流程。
关键词:数字信号处理器(DSP);调频-差分混沌键控(FM-DCSK);混沌通信;多通道缓冲串行口
1 引言
近年来,随着混沌同步和控制理论的提出与发展,混沌在信号处理、通信和控制领域的应用也日渐广泛。一般认为,在通信领域,混沌信号代替传统的正弦信号作信息载体有以下优势:其一是混沌信号的宽频特性可以实现某种意义上的扩频;其二是混沌信号的类似噪声难以预测,而这一特点正好可为信息的保密传输提供保证。
图1
混沌通信的类型很多,其中较有应用前景的有差动混沌键控(DCSK)和混沌扩频通信。它们的共同特点是信道中传送的信号不再是实现发送端和接收端同步的耦合信号,而是利用混沌信号的统计特性,即混沌信号的自相关和互相关特性来实现一定程度的保密通信。目前的研究工作主要是以理论研究和计算机仿真为主,而利用硬件来验证DCSK及其改进的FM-DCSK通信性能的设计还很少,因此,笔者设计了基于双数字信号处理器(DSP)的FM-DCSK通信系统方案,文中分别介绍了系统中的话音终端、 混沌序列的产生及其FM调制、 DCSK调制解调及数据通信等电路,分析了系统工作时程序的装载原理和可行性,同时给出了硬件原理框图和软件设计流程图。
2 系统硬件总体结构
本系统主要用来完成语音信号的采集、语音压缩编码以及对语音信号进行FM-DCSK调制,并将调制后的数据通过DSP的多通道缓冲串行口(McBSP)发送出去,同时对接收到的数据进行DCSK解调和语音解压缩、译码,并将译码后的数据进行D/A转换以还原出模拟话音。本系统利用串行数模/模数转换芯片TLV320AIC10来将输入语音信号转换成数字语音信号,待进行完处理后再将数字语音转换成模拟语音信号;低比特率声码器AMBE-1000则用来对数字语音信号进行低速率的语音压缩编码和对DCSK解调后的数据进行解码;TMS320C5402(主)不仅要对编码后的数据进行DC-SK调制和DCSK解调,而且还要作为整个系统的控制器来完成对各个功能芯片的设置、控制,并通过双口RAM芯片(IDT7206)与TMS320C5402(从)进行数据传递,同时通过多通道缓冲串行口(McBSP)与另一块TMS320C5402(从)进行双向的数据通信。TMS320C5402(从)则在TMS320C5402(主)控制下完成混沌序列的生成和序列的FM调制运算。整个系统的硬件原理如图1所示。
图中,C5402(主)采用并行方式装载程序�而C5402(从)则是采用HPI方式装载程序。由于没有通过双端口RAM采用并行方式装载程序,因而可以减少C5402(主)在C5402�从 装载程序时复杂的控制过程,有效地利用资源。在系统独立工作时,C5402主、从双方的通信主要通过双端口RAM来完成。
3 系统电路工作原理
本系统包括话音终端电路、混沌序列产生及其FM调制电路、DCSK调制及解调以及两个系统数据通信实现电路。各个部分在控制器的协调下完成双向的FM-DCSK通信。
3.1 话音终端电路
话音终端电路由声码器AMBE-1000与串行数模/模数转换芯片TLV320AIC10构成,可在DSP控制器的控制下完成模拟话音的数字化,并进行压缩编码以输出成帧的编码数据包,然后将其作为信息数据再经DSP做FM-DCSK调制后输出。同时将接收到的并经过DSP解调的数据包进行译码以还原出数字话音,最后经过D/A变换输出模拟话音。
在硬件连接中,AMBE-1000的发送、接收选通信号以及移位时钟均为TLV320AIC10产生的FS和CLKS信号。为满足AMBE-1000的时序要求,将TX_STRB、TX_O_CLK分别与TLV320AIC10产生的FS和CLKS直接相连,而RX_STRB、RX_O_CLK则经过CPLD逻辑转换后与FS、CLKS相连。AMBE-1000的编码速率、信道接口方式、AD接口方式以及各种控制都是由C5402(主)通过操作不同的I/O口并经CPLD锁存完成的,其中AMBE-1000的时序逻辑图如图2所示。
对TLV320AIC10中各控制寄存器的控制可用C5402(从)通过多通道缓冲串行口�McBSP0 向DCSI写入相应格式的数据来完成。与C5402(从)的连接工作在SPI模式,并同样由TLV320AIC10产生FS和CLKS信号。初始化完成后,TLV320AIC10则在8kHz的采样率和16bit的线性量化模式下与声码器交换数据。而声码器每20ms与C5402(主)交换一次数据。当然,所有的工作方式都可以通过软件编程来实现。
3.2 混沌序列的产生及其FM调制
混沌序列的产生及其FM调制主要由C5402(从)完成。可利用经典的Logistic映射:
然后经离散迭代运算产生所需要的混沌序列。由FM-DCSK通信方式的原理可知,所产生的混沌序列需经过FM调制,然后才能对话音数据作DCSK调制。FM-DCSK调制解调系统框图如图3所示。因为混沌序列的FM运算量比较大,因此,本设计选择TMS320C5402作为运算处理器,它的最高工作频率可达100MHz。
C5402(从)通过双口RAM将FM调制后的混沌序列送给C5402(主),也就相当于在FM-DCSK调制解调系统中完成了混沌发生器和FM调制器的功能。
3.3 DCSK调制解调及数据通信
用C5402�主 可完成低速率编码后话音信号的DCSK调制和接收数据的DCSK解调,同时可控制CPLD以产生各种控制信号。每次通信过程中,C5402(主)将从双口RAM中读取相应数目FM调制后的混沌序列,然后对接收到的话音数据按bit 进行DC-SK调制,同时通过McBSP用DMA方式接收DCSK调制数据并由C5402(主)进行DCSK解调。这两项工作都是通过中断来完成的
3.4 系统独立工作时的程序装载过程
本系统的程序装载分为C5402(主)自身的并行装载和C5402(从)的HPI装载两部分。
C5402(主)与Flash AT29LV1024和双口RAM之间的逻辑如图4所示。C5402(主)上电复位装载时,由于Bootloader程序在初始化时设置XF为高电平,因此,在系统进入并行引导装载模式后,C5402(主)将从数据寻址为0FFFFh的单元(A15=1,选中Flash)中读取将要载入的程序存储区首地址和并行装载数据流。此时,C5402可将 Flash地址08000h—0FFFFh单元中的数据读到C5402对应于0000h—7FFFh寻址区的片内DRAM和片外SRAM中。Boot-loader程序结束后,用户程序的第一条语句为RSBX XF,即置XF引脚为低电平, 那么Flash将始终不选通。这样,双端口RAM的高32k区域(08000h—0FFFFh)将被释放出来作为C5402�主 运行时的数据区或程序区使用。C5402�主 装载进来的程序数据主要分为三部分:给C5402(从)的装载程序、自身的运行程序及C5402(从)的运行程序。
在C5402(主)进行并行装载的过程中,C5402(从)将判断是哪种装载模式。因为C5402�从 的HINT和INT2连在一起,因此,DSP上电初始化时会将07FH单元清0,同时HINT置0会导致INT2的IFR相应标志位有效,C5402(从)在查询到INT2的标志位有效后,则判断为HPI装载模式。C5402(主)在进行并行装载后,将首先运行装载程序,以便将C5402(从)的运行程序数据传送到C5402(从)中,从而将C5402(从)的程序入口地址写到07FH单元,这样即表明HPI装载结束。
4 系统软件设计
4.1 程序流程
系统的软件设计主要包括对C5402�主 和C5402(从)的编程。C5402�主 的软件设计由C5402的初始化、AMBE-1000的初始化、McBSP0和McB-SP1初始化、DMA的初始化、DSP中断设置、接收数据中断设置程序和发送数据中断设置程序构成。图5为C5402(主)软件系统流程图,图6和图7分别为McBSP0接收中断设置和McBSP1接收中断设置流程图。C5402(从)的软件设计由C5402初始化、TLV320AIC10的初始化以及混沌序列产生和混沌序列的FM调制构成。
4.2 程序设计应注意的问题
在进行系统软件设计时,应注意以下几个问题:
(1)由于McBSP工作在数据接收中断方式,因此全局中断和串口中断的相应位要合理设置。同时,在设置中断向量表时,中断向量表的位置应与处理器模式状态寄存器PMST中的中断向量指针IPTR相对应,IPTR的9位地址指向128字的中断向量所在的程序页�同时,中断向量表也要严格按照C5402规定的格式编写,否则不能正确地产生需要的中断结果。
(2)要实现DSP数据采集系统的脱机独立运行,程序装载十分关键。C5402(主)进行并行装载时,AT29LV1024中的程序数据流要严格按照并行装载的格式依次把C5402�从 装载程序、C5402(主)自身执行程序和C5402(从)的程序装载到片内DRAM和片外双口SRAM中。
(3)当双端口RAM在两片DSP之间进行数据传递时,要合理分配空间,协调好读写时序,严格避免数据冲突。
5 结束语
本文利用两片TMS320C5402设计了FM-DCSK通信系统的硬件实现方案,给出了系统独立工作时的硬件原理框图和软件设计流程图。实践证明:并行装载模式和HPI装载模式同时使用,可有效利用系统资源、降低成本
参考资料:http://www.21ic.com/news/n8809c68.aspx
② 内存都有 什么参数呀
内存参数主要有以下几个.
主要参数
型号
适用类型
内存类型 内存容量
插脚数目
性能参数
芯片分布 内存主频 颗粒封装 延迟描述
内存电压 ECC校验
其它参数
包装 其他性能
③ 路由器的内存和作用
路由器是现在常用的网络连接设备,但很多人可能不太了解路由器,例如路由器内存之类的知识,下面是我整理的一些关于路由器内存的相关资料,供你参考。
路由器内存的种类
路由器的内存有几类:RAM(Random Access Memory),ROM(ROM image),NVRAM(Non-Volatile Random Access Memory)及EEPROM(Electronic Erasable Programmable Random Access Memory,又称为Flash)
只读内存(ROM)
只读内存(ROM)在Cisco路由器中的功能与计算机中的ROM相似,主要用于系统初始化等功能。ROM中主要包含:
(1)系统加电自检代码(POST),用于检测路由器中各硬件部分是否完好;
(2)系统引导区代码(BootStrap),用于启动路由器并载入IOS 操作系统 ;
(3)备份的IOS操作系统,以便在原有IOS操作系统被删除或破坏时使用。通常,这个IOS比现运行IOS的版本低一些,但却足以使路由器启动和工作。
顾名思义,ROM是只读存储器,不能修改其中存放的代码。如要进行升级,则要替换ROM芯片。
闪存(Flash)
闪存(Flash)是可读可写的存储器,在系统重新启动或关机之后仍能保存数据。Flash中存放着当前使用中的IOS。事实上,如果Flash容量足够大,甚至可以存放多个操作系统,这在进行IOS升级时十分有用。当不知道新版IOS是否稳定时,可在升级后仍保留旧版IOS,当出现问题时可迅速退回到旧版操作系统,从而避免长时间的网路故障。
非易失性RAM(NVRAM)
非易失性RAM(Nonvolatile RAM)是可读可写的存储器,在系统重新启动或关机之后仍能保存数据。由于NVRAM仅用于保存启动配置文件(Startup-Config),故其容量较小,通常在路由器上只配置32KB~128KB大小的NVRAM。同时,NVRAM的速度较快,成本也比较高。
随机存储器(RAM)
RAM也是可读可写的存储器,但它存储的内容在系统重启或关机后将被清除。和计算机中的RAM一样,Cisco路由器中的RAM也是运行期间暂时存放操作系统和数据的存储器,让路由器能迅速访问这些信息。RAM的存取速度优于前面所提到的3种内存的存取速度。
运行期间,RAM中包含路由表项目、ARP缓冲项目、日志项目和队列中排队等待发送的分组。除此之外,还包括运行配置文件(Running-config)、正在执行的代码、IOS操作系统程序和一些临时数据信息。
路由器内存的作用Flash:存储路由器的操作系统(IOS:Internet Operating system)。
NVRAM:存储用户对路由器的配置表。
RAM:路由器在加电后,配置表被从NVRAM中调入RAM中,并控制路由器的活动;存放路由器路由表及数据缓冲区。
NVRAM同RAM的区别用户对路由器配置的更改在RAM中进行
用户在存储配置表后,RAM将配置表的拷贝放置在NVRAM中
路由器掉电后,RAM的内容将丢失,NVRAM的内容将被保留。
路由器的相关 文章 :
1. 如何查看路由器地址
2. 教你简单安装路由器的方法大全
3.解除 路由器用户名及密码的详细图文教程
4. 如何挑一个最适合自己的路由器
5. 路由器有几种类型
6. 详细的介绍路由器是什么
④ 请说明路由器内部有哪四种存储器,各存储器分别存放什么内容
RAM:存储路由表信息,快速转换缓存,运行配置。
ROM:永久存储启动诊断代码及设备当前运行的命令。
NVRAM:存储设备启动配置文件。
FLASH:保存一个设备完整网络系统软件镜像。
⑤ 微机中常配的内存储器和外存储器有哪几种各自的特点是什么
按照与CPU的接近程度,存储器分为内存储器与外存储器,简称内存与外存。内存储器又常称为主存储器(简称主存),属于主机的组成部分;外存储器又常称为辅助存储器(简称辅存),属于外部设备。CPU不能像访问内存那样,直接访问外存,外存要与CPU或I/O设备进行数据传输,必须通过内存进行。在80386以上的高档微机中,就是现在所有的微机,还配置了高速缓冲存储器,这时内存包括主存与高速缓存两部分。
半导体存储器速度快,但价格高,容量不宜做得很大,因此仅用作与CPU频繁交流信息的内存储器。
磁盘存储器价格较便宜,可以把容量做得很大,但存取速度较慢,因此用作存取次数较少,且需存放大量程序、原始数据(许多程序和数据是暂时不参加运算的)和运行结果的外存储器。计算机在执行某项任务时,仅将与此有关的程序和原始数据从磁盘上调入容量较小的内存,通过CPU与内存进行高速的数据处理,然后将最终结果通过内存再写入磁盘。这样的配置价格适中,综合存取速度则较快。
内存储器速度快,但由于成本问题不能做到太大容量,而且有个致命弱点,就是需要电力维持数据,一旦断电,数据将会消失。比如CMOS是一种内存储器,在主板上保存BIOS设置的数据,例如主板的开机密码。所以我们可以拔掉主板上的电池来清除开机密码(所谓的清CMOS),就是利用内存这个弱点。没有了电池,保存在CMOS里的数据就丢失了,包括密码。
外存储器速度慢,但成本很低(80G硬盘才400元),容量可以做到很大。而且有内存没有的优点,就是不需要电力维持数据。所以你可以带硬盘到朋友家拷贝几十个G的电影,然后再带回自己家看,中途不需要背个电池来给硬盘通电维持它的数据。
⑥ 路由器的存储器有哪些分别有什么作用交换机的配置文件和ios分别放在哪个存储器
首先介绍Cisco路由器的存储器
路由器与计算机有相似点是,它也有内存、操作系统、配置和用户界面,Cisco路由器中,操作系统叫做
互连网操作系统(Internetwork Operating System)或IOS。下面主要介绍路由器的存储器。
ROM:只读存储器包含路由器正在使用的IOS的一份副本;
RAM:IOS将随机访问存储器分成共享和主存。主要用来存储运行中的路由器配置和与路由协议有关的IOS数据结构;
闪存(FLASH):用来存储IOS软件映像文件,闪存是可以擦除内存,它能够用IOS的新版本覆写,IOS升级主要是闪存中的IOS映像文件进行更换。
NVRAM:非易失性随机访问存储器,用来存储系统的配置文件。
下表是常用类型路由器的内存功能。
表:路由器内存详细信息一览表
内存类型
2500、2600、3600
4000、7000
ROM
不能升级的基本IOS
可升级IOS
共享RAM
存储缓冲区
⑦ 笔记本配置表上128emmc+128ssd是什么意思
笔记本配置表上128emmc+128ssd是什么意思?笔记本电脑128G+1T是128g固态硬盘加1T的机械硬盘,区别就是多一个机械硬盘,速度是一样的。
笔记本电脑128G+1T:是128g的固态硬盘加上一个1T容量的的机械硬盘,因为固态硬盘的速度更快,所以用固态硬盘作为系统盘,机械硬盘用来存储。
区别:区别就是128G+1T多一个大容量机械硬盘,存储的文件会更多,可以存储更多的视频或者游戏,。
运行速度:运行速度都是一样的,因为都是用128g固态硬盘作为系统盘。多出来的硬盘只能用来存储,不会增加系统运行速度。
(7)存储器的配置表扩展阅读:
固态硬盘的存储介质分为两种,一种是采用闪存(FLASH芯片)作为存储介质,另外一种是采用DRAM作为存储介质。
基于闪存的固态硬盘:采用FLASH芯片作为存储介质,这也是通常所说的SSD。它的外观可以被制作成多种模样,例如:笔记本硬盘、微硬盘、存储卡、U盘等样式。这种SSD固态硬盘最大的优点就是可以移动,而且数据保护不受电源控制,能适应于各种环境,适合于个人用户使用。
基于DRAM的固态硬盘:采用DRAM作为存储介质,应用范围较窄。它仿效传统硬盘的设计,可被绝大部分操作系统的文件系统工具进行卷设置和管理,并提供工业标准的PCI和FC接口用于连接主机或者服务器。应用方式可分为SSD硬盘和SSD硬盘阵列两种。它是一种高性能的存储器,而且使用寿命很长。
⑧ 存储器的类型
根据存储材料的性能及使用方法的不同,存储器有几种不同的分类方法。1、按存储介质分类:半导体存储器:用半导体器件组成的存储器。磁表面存储器:用磁性材料做成的存储器。
下面我们就来了解一下存储器的相关知识。
存储器大体分为两大类,一类是掉电后存储信息就会丢失,另一类是掉电后存储信息依然保留,前者专业术语称之为“易失性存储器”,后者称之为“非易失性存储器”。
1 RAM
易失性存储器的代表就是RAM(随机存储器),RAM又分SRAM(静态随机存储器)和DRAM(动态随机存储器)。
SRAM
SRAM保存数据是靠晶体管锁存的,SRAM的工艺复杂,生产成本高,但SRAM速度较快,所以一般被用作Cashe,作为CPU和内存之间通信的桥梁,例如处理器中的一级缓存L1 Cashe, 二级缓存L2 Cashe,由于工艺特点,SRAM的集成度不是很高,所以一般都做不大,所以缓存一般也都比较小。
DRAM
DRAM(动态随机存储器)保存数据靠电容充电来维持,DRAM的应用比SRAM更普遍,电脑里面用的内存条就是DRAM,随着技术的发展DRAM又发展为SDRAM(同步动态随机存储器)DDR SDRAM(双倍速率同步动态随机存储器),SDRAM只在时钟的上升沿表示一个数据,而DDR SDRAM能在上升沿和下降沿都表示一个数据。
DDR又发展为DDR2,DDR3,DDR4,在此基础上为了适应移动设备低功耗的要求,又发展出LPDDR(Low Power Double Data Rate SDRAM),对应DDR技术的发展分别又有了LPDDR2, LPDDR3, LPDDR4。
目前手机中运行内存应用最多的就是 LPDDR3和LPDDR4,主流配置为3G或4G容量,如果达到6G或以上,就属于高端产品。
2 ROM
ROM(Read Only Memory)在以前就指的是只读存储器,这种存储器只能读取它里面的数据无法向里面写数据。所以这种存储器就是厂家造好了写入数据,后面不能再次修改,常见的应用就是电脑里的BIOS。
后来,随着技术的发展,ROM也可以写数据,但是名字保留了下来。
ROM中比较常见的是EPROM和EEPROM。
EPROM
EPROM(Easerable Programable ROM)是一种具有可擦除功能,擦除后即可进行再编程的ROM内存,写入前必须先把里面的内容用紫外线照射IC上的透明视窗的方式来清除掉。这一类芯片比较容易识别,其封装中包含有“石英玻璃窗”,一个编程后的EPROM芯片的“玻璃窗”一般使用黑色不干胶纸盖住, 以防止遭到紫外线照射。
EPROM (Easerable Programable ROM)
EPROM存储器就可以多次擦除然后多次写入了。但是要在特定环境紫外线下擦除,所以这种存储器也不方便写入。
EEPROM
EEPROM(Eelectrically Easerable Programable ROM),电可擦除ROM,现在使用的比较多,因为只要有电就可擦除数据,再重新写入数据,在使用的时候可频繁地反复编程。
FLASH
FLASH ROM也是一种可以反复写入和读取的存储器,也叫闪存,FLASH是EEPROM的变种,与EEPROM不同的是,EEPROM能在字节水平上进行删除和重写而不是整个芯片擦写,而FLASH的大部分芯片需要块擦除。和EEPROM相比,FLASH的存储容量更大。
FLASH目前应用非常广泛,U盘、CF卡、SM卡、SD/MMC卡、记忆棒、XD卡、MS卡、TF卡等等都属于FLASH,SSD固态硬盘也属于FLASH。
NOR FLAHS & NAND FLASH
Flash又分为Nor Flash和Nand Flash。
Intel于1988年首先开发出Nor Flash 技术,彻底改变了原先由EPROM和EEPROM一统天下的局面;随后,1989年,东芝公司发表了Nand Flash 结构,强调降低每比特的成本,有更高的性能,并且像磁盘一样可以通过接口轻松升级。
Nor Flash与Nand Flash不同,Nor Flash更像内存,有独立的地址线和数据线,但价格比较贵,容量比较小;而Nand Flash更像硬盘,地址线和数据线是共用的I/O线,类似硬盘的所有信息都通过一条硬盘线传送一样,而且Nand Flash与Nor Flash相比,成本要低一些,而容量大得多。
如果闪存只是用来存储少量的代码,这时Nor Flash更适合一些。而Nand Flash则是大量数据存储的理想解决方案。
因此,Nor Flash型闪存比较适合频繁随机读写的场合,通常用于存储程序代码并直接在闪存内运行,Nand Flash型闪存主要用来存储资料,我们常用的闪存产品,如U盘、存储卡都是用Nand Flash型闪存。
在Nor Flash上运行代码不需要任何的软件支持,在Nand Flash上进行同样操作时,通常需要驱动程序。
目前手机中的机身内存容量都比较大,主流配置已经有32G~128G存储空间,用的通常就是Nand Flash,另外手机的外置扩展存储卡也是Nand Flash。