当前位置:首页 » 服务存储 » 热能存储技术分为哪些
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

热能存储技术分为哪些

发布时间: 2022-08-27 15:15:03

Ⅰ 储能材料与技术的目录

第1章 绪论1
1.1 气候变化与能源效率1
1.2 储能技术及其应用2
1.2.1 什么是储能2
1.2.2 什么是储能技术2
1.2.3 能量储存方法4
1.2.4 储能系统的评价指标7
1.2.5 储能技术的应用7
1.3 储能技术发展状况与展望11
1.3.1 储能技术发展的历史11
1.3.2 储能技术发展的前景14
1.3.3 储能技术面临的挑战15
1.3.4 需要研究的课题15
参考文献15
第2章 储能技术原理17
2.1 能量转换原理17
2.1.1 能量的基本转换过程17
2.1.2 热力学基本定律18
2.1.3 热力学第二定律19
2.2 热机的原理22
2.3 机械能储存技术24
2.4 热能储存技术27
2.5 化学能储存技术34
2.6 电能储存技术38
2.7 气体水合物储能技术39
参考文献42
第3章 储能材料的基本特性45
3.1 相变的焓差(Δ??H??) 45
3.2 相平衡特性47
3.3 相变过程的特性54
3.4 气体水合物的特性56
3.5 水的特性60
3.6 冰的特性61
3.7 水合盐的特性62
3.8 高分子储能材料的特性63
3.9 储能材料的热物性及测定方法65
3.10 储能材料的遴选原则70
3.11 常用材料的储能特性对比71
参考文献73
第4章 冰蓄冷空调技术及其应用74
4.1 发展蓄冷空调的效益分析74
4.1.1 社会效益74
4.1.2 经济效益76
4.2 空调蓄冷方式及其技术77
4.2.1 水蓄冷77
4.2.2 冰蓄冷79
4.2.3 共晶盐蓄冷85
4.3 空调蓄冷系统运行方式85
4.3.1 水蓄冷系统85
4.3.2 冰蓄冷系统87
4.4 蓄冷空调系统设计方法92
4.4.1 典型设计日空调冷负荷92
4.4.2 蓄冰装置的形式选择95
4.4.3 确定蓄冰系统的形式和运行策略96
4.4.4 确定制冷主机和蓄冰装置的容量97
4.4.5 选择其他配套设备98
4.4.6 蓄冷空调工程实例简介102
4.5 蓄冷空调发展106
参考文献108
第5章 电能储存技术及应用110
5.1 概述110
5.2 抽水蓄能的应用111
5.2.1 抽水蓄能电站的工作原理111
5.2.2 抽水蓄能电站的类型112
5.2.3 抽水蓄能电站的组成部分114
5.2.4 抽水蓄能电站在电力系统中的作用115
5.2.5 近年国内抽水蓄能电站发展状况117
5.3 超导储电能技术的应用119
5.3.1 超导磁储能技术119
5.3.2 超导磁悬浮飞轮储能技术126
5.4 电容器储能技术的应用131
5.4.1 电容器储能原理131
5.4.2 箔式结构脉冲电容器132
5.4.3 自愈式高能储能密度电容器132
5.4.4 高能储能密度电容器的发展趋势133
5.5 压缩空气储电技术的应用135
5.5.1 压缩空气储电技术简介135
5.5.2 利用压缩空气储存电能的原理136
5.5.3 压缩空气储能技术的发展现状137
参考文献141
第6章 热能储存技术的应用143
6.1 热的传递方式144
6.2 热能储存方式146
6.2.1 显热储存(sensible heat storage) 146
6.2.2 潜热储能(latent heat storage) 148
6.2.3 化学反应热储存(chemical reaction heat storage) 149
6.3 蓄热技术的应用149
6.3.1 太阳能热储存149
6.3.2 电力调峰及电热余热储存150
6.3.3 工业加热及热能储存151
6.4 几种蓄热系统的实现方法151
6.4.1 水蓄热151
6.4.2 冰蓄热152
6.4.3 蒸汽蓄热154
6.4.4 相变材料蓄热156
6.5 蓄热系统用于北方供暖159
6.5.1 蓄热式电锅炉159
6.5.2 推广应用蓄热式电锅炉的意义161
6.5.3 蓄热式电锅炉的设计计算实例162
参考文献167
第7章 气体水合物储能技术及其应用168
7.1 概述168
7.2 气体水合物的性质169
7.2.1 气体水合物的定义169
7.2.2 气体水合物的物理性质169
7.3 气体水合物蓄冷现状170
7.4 气体水合物蓄冷工质的选择174
7.5 气体水合物相平衡175
7.5.1 气体水合物相平衡实验175

Ⅱ 热贮存的温度最低是

热储存的温度最低是60℃以上。

不管采用水浴保温还是明火加热保温,必须把食品的温度保持在60℃以上,保温温度低于这个温度,则可能加速细菌的生长繁殖。

盛放在大容器的热菜散热较慢,降温的时间较长,延长了食物在适合于细菌繁殖的温度范围内的存放时间。一旦加热后的食物中有耐热的细菌芽孢残存或通过容器使食物再次受到污染,使食物变质甚至引起食物中毒。因此热食品储存应尽量避免使用过大容器。

热力学基础:

储热技术包括两个方面的要素,其一是热能的转化,它既包括热能与其它形式的能之间的转化,也包括热能在不同物质载体之间的传递;其二为热能的储存,即热能在物质载体上的存在状态,理论上表现为其热力学特征。

虽然储热有显热储热、潜热储热和化学反应储热等多种形式,但本质上均是物质中大量分子热运动时的能量。因而从一般意义上讲,热能存储的热力学性质与热力学性质相同,均有量和质两个衡量特征,即热力学中的第一定律和第二定律。

Ⅲ 存储技术的分类

网络存储技术(NetworkStorageTechnologies)是基于数据存储的一种通用网络术语。网络存储结构大致分为3种:直连式存储(DirectAttachedStorage,DAS)、网络存储设备(NetworkAttachedStorage,NAS)和存储网络(StorageAreaNetwork,SAN)。
1.DAS
DAS是一种直接与主机系统相连接的存储设备,如作为服务器的计算机内部硬件驱动。到目前为止,DAS仍是计算机系统中最常用的数据存储方法。DAS英文全称是DirectAttachedStorage,中文翻译成“直接附加存储”。顾名思义,在这种方式中,存储设备是通过电缆(通常是SCSI接口电缆)直接连接到服务器的。I/O(输入/输出)请求直接发送到存储设备。DAS也可称为服务器附加存储(Server-AttachedStorage,SAS)。它依赖于服务器,其本身是硬件的堆叠,不带有任何存储操作系统。
2.NAS
NAS的中文意思是“网络附加存储”。按字面意思简单地理解就是连接在网络上,具备资料存储功能的装置,因此也称为“网络存储器”或者“网络磁盘阵列”。从结构上讲,NAS是功能单一的精简型计算机,因此在架构上不像个人计算机那么复杂,在外观上就像家电产品,只需电源与简单的控制钮。
NAS是一种专业的网络文件存储及文件备份设备,它是基于LAN(局域网)的,按照TCP/IP协议进行通信,以文件的I/O方式进行数据传输。在LAN环境下,NAS已经完全可以实现异构平台之间的数据级共享,比如NT、Unix等平台的共享。
一个NAS系统包括处理器、文件服务管理模块和多个硬盘驱动器(用于数据的存储)。NAS可以应用在任何网络环境当中。主服务器和客户端可以非常方便地在NAS上存取任意格式的文件,包括SMB格式(Windows)、NFS格式(Unix,Linux)和CIFS(CommonInternetFileSystem)格式等。
3.SAN
SAN是指存储设备相互连接且与一台服务器或一个服务器群相连的网络。其中的服务器用作SAN的接入点。在有些配置中,SAN也与网络相连。SAN将特殊交换机当作连接设备,这些特殊交换机看起来很像常规的以太网络交换机,是SAN中的连通点。SAN使得在各自网络上实现相互通信成为可能,同时带来了很多有利条件。
具体来说,SAN是一种通过光纤集线器、光纤路由器、光纤交换机等连接设备将磁盘阵列、磁带等存储设备与相关服务器连接起来的高速专用子网。SAN由3个基本的组件构成:接口(如SCSI、光纤通道、ESCON等)、连接设备(交换设备、网关、路由器、集线器等)和通信控制协议(如IP和SCSI等)。这3个组件再加上附加的存储设备和独立的SAN服务器,就构成一个SAN系统。SAN提供一个专用的、高可靠性的基于光通道的存储网络,SAN允许独立地增加存储容量,也使得管理及集中控制(特别是对于全部存储设备都集群在一起的时候)更加简化。而且,光纤接口提供了10km的连接长度,这使得物理上分离的远距离存储变得更容易。

Ⅳ 怎样贮存太阳热能

太阳能的采集受天气影响,而太阳能的贮存更是不易。如何贮存太阳能,各国科学家想了许多办法。1981年,芬兰在凯拉瓦地区建造了一座太阳能村,采用地下岩石洞贮热技术,把收集到的太阳热能储蓄起来,以备使用。

太阳能村的建筑面积约67825平方米,有44幢小楼房组成。它的供热系统的组成部分有2个:一个是太阳热能收集器。表层是玻璃,里层是黑色薄铝片吸热层,总平面11000平方米。另一个是冷水池和热水库。冷水池容1500立方米,热水库容11000立方米。当收集器吸收了太阳热后,传导到冷水池的水中,把水加热,再流进热水库贮存起来。需用时,打开热水泵就可以了。热水库是由开凿的地下岩石洞而成的,能长期保温。据测定,这座太阳能村全年供热中,有75%是从太阳热能获得的,只有25%才是用电加热的。

日本科学家创造出一种能够像罐头一样将太阳能储存备用的方法。他们采用的储能物质是由烃类及甲基和氰化物组成的。这种物质能把太阳能储存数年而不会消失,每千克可储存418.68焦的热量,足以把1000克水烧热到100℃。这种物质吸收热量后,会改变结构,成为透明状。使用时只需要加入一种含有银盐的催化剂就可释放出热量,装置能反复使用。这样,就找到了一种把夏天的炽热移入酷寒的冬天使用的办法。

Ⅳ 存储热量,什么材料能大量存储热能呢马上就到冬季了,把夏天的热能存到冬季用,多好啊

这个主意非常好!关于储能的技术,目前大家都在研究,包括特斯拉在内,有很多办法,但还不是最好,例如特斯拉的能量墙技术,也就是电池板,把白天吸收的太阳能储存等到晚上使用,还有电容储能等等。一旦储能技术成熟,对人类的影响将是巨大的。

Ⅵ 存储器技术指标有哪四种

存储器是具有“记忆”功能的设备,它用具有两种稳定状态的物理器件来表示二进制数码 “0”和“1”,这种器件称为记忆元件或记忆单元。记忆元件可以是磁芯,半导体触发器、 MOS电路或电容器等。 位(bit)是二进制数的最基本单位,也是存储器存储信息的最小单位,8位二进制数称为一 个字节(Byte),可以由一个字节或若干个字节组成一个字(Word)在PC机中一般认为1个或2个字节组成一个字。若干个忆记单元组成一个存储单元,大量的存储单元的集合组成一个 存储体(MemoryBank)。为了区分存储体内的存储单元,必须将它们逐一进行编号,称为地址。地址与存储单元之间一一对应,且是存储单元的唯一标志。应注意存储单元的地址和它里面存放的内容完全是两 回事。 根据存储器在计算机中处于不同的位置,可分为主存储器和辅助存储器。在主机内部,直接 与CPU交换信息的存储器称主存储器或内存储器。在执行期间,程序的数据放在主存储器内。各个存储单元的内容可通过指令随机读写访问的存储器称为随机存取存储器(RAM)。另一种存储器叫只读存储器(ROM),里面存放一次性写入的程序或数据,仅能随机读出。RAM和ROM共同分享主存储器的地址空间。RAM中存取的数据掉电后就会丢失,而掉电后ROM中 的数据可保持不变。因为结构、价格原因,主存储器的容量受限。为满足计算的需要而采用了大容量的辅助存储 器或称外存储器,如磁盘、光盘等.存储器的特性由它的技术参数来描述。 存储容量:存储器可以容纳的二进制信息量称为存储容量。一般主存储器(内存)容量在几十K到几十M字节左右;辅助存储器(外存)在几百K到几千M字节。 存取周期:存储器的两个基本操作为读出与写入,是指将信息在存储单元与存储寄存器(MDR)之间进行读写。存储器从接收读出命令到被读出信息稳定在MDR的输出端为止的时间间隔,称为取数时间TA;两次独立的存取操作之间所需的最短时间称为存储周期TMC。半导 体存储器的存取周期一般为60ns-100ns。 存储器的可*性:存储器的可*性用平均故障间隔时间MTBF来衡量。MTBF可以理解为两次故障之间的平均时间间隔。MTBF越长,表示可*性越高,即保持正确工作能力越强。 性能价格比:性能主要包括存储器容量、存储周期和可*性三项内容。性能价格比是一个综合性指标,对于不同的存储器有不同的要求。对于外存储器,要求容量极大,而对缓冲存储器则要求速度非常快,容量不一定大。因此性能/价格比是评价整个存储器系统很重要的 指标。

Ⅶ 电能在生活中是怎样储存的

电能不能直接储存,只能先通过能量形式转换,以其它的形式储存起来,使用时再转化成电能,或者直接利用。目前电能主要以下列形式贮存。化学能:通过蓄电池,把电能以化学能形式储存起来,使用时化学能释放出电能。蓄电池必须满足寿命长、高密度、无毒无腐蚀、操作方便等要求,因而最有希望的是锂电池,其次是钠—硫磺电池,锌—氯电池,锌—溴电池等。而铅电池因存贮效率低、能量密度低、管理费用高等缺点将日益被淘汰。大型锂电池机组可用于电力负荷调平,即夜间贮电,白天放电。电池驱动汽车即将取代现在的燃油汽车。热能:把夜间的余电通过蓄热器以高温热或者冷热贮存起来。由于将热能转换电能时造成能量质量的降低,因此直接以热的形式再利用情况较多。势能:即所谓的抽水发电。夜间驱动电动水泵,把水抽向高处的水池,把电能以势能形式储存起来;白天用电高峰时,高处的水落下推动水轮发电机再转换成电能。电能的存储方式主要可分为机械储能、电磁储能、电化学储能和相变储能等。机械储能主要有抽水蓄能、压缩空气储能和飞轮储能等;电磁储能包括超导磁储能和超级电容器储能等;电化学储能主要有铅酸蓄电池、钠硫电池、液流电池和锂离子电池储能;相变储能包括冰蓄冷储能、热电相变蓄热储能等。目前,大规模储能技术应用水平与电力系统的巨大需求之间还存在较大差距。适合新能源接入应用的储能技术主要是抽水蓄能、压缩空气储能和电化学储能。抽水蓄能技术相对成熟,而其他储能技术还处于试验示范阶段甚至初期研究阶段,其中钠硫电池、液流电池、锂离子电池等新型电化学储能技术水平进步较快,具有巨大的发展潜力和广泛的应用前景。

Ⅷ 储存太阳能的方法有哪些

地面上接受到的太阳能受气候、昼夜、季节的影响,具有间断性和不稳定性。如果可以把太阳能储存起来,就像水库把水积蓄起来发电一样,将是一个很不错的办法。因此,对于大规模利用太阳能的人来说把分散的太阳能储存起来变得很重要。太阳能可以直接储存,但是储存的能量有限。如果想有效储存太阳能,必须把太阳能转换成其他形式储存。目前由于技术所限,大容量、长时间、经济地储存太阳能还比较困难。实际上,储存太阳能的道理比较简单,比如我们在日常生活当中,用暖水瓶来保存热水,就是一种对热量的储存。目前,储存太阳能的方法主要有以下几种。

一、直接储存太阳能

我国东北地区有一种暖墙,用土坯、砖或混凝土砌成,墙里面中空,墙的下面是火炉。在寒冷的冬天,点燃火炉,火炉的烟经过暖墙排到室外,暖墙被加热之后,热量储存在暖墙里,需要十几个小时之后才会变凉。这样白天烧火炉,解决了夜间取暖问题。北方地区的火炕,也起到储存热量的作用。同样道理,利用蓄热材料也可实现太阳能的直接储存。太阳能的直接储存分为短期储存和长期储存两类。短期储存可以把太阳能储存几个小时或者几天;长期储存可以把太阳能储存几个月之久。例如太阳房的砂石,就可以起到短期储存太阳能的作用,夜间使用的能量就是白天吸收太阳辐射能量,用于。

太阳池对太阳能的储存就属于长期储存。太阳池是一种具有一定盐浓度梯度的盐水池,能用于采集和储存太阳能。太阳光照射到太阳池的底部,太阳池底部的高浓度盐水吸收太阳光的热量之后,因为含盐的水密度大,不会和上面的水发生对流,这样高温的水始终保存在水池的底部。另外,水池上部的清水像一层厚厚的玻璃,把水池底部的长波辐射阻挡回去,使水池的热量不会流失。这样,太阳能就可以在太阳池中被长期储存了。

在实际应用中,水、沙、石子、土壤等都可作为储能材料,但储能有限。其中水的比热容最大,应用较多。在太阳能低温储存中常用含结晶水的盐类储能,就是应用这个原理制造的太阳池。但在使用中要解决过冷和分层问题,以保证工作温度和使用寿命。太阳能中温储存温度一般在100℃以上、500℃以下,一般在300℃左右。可以作为中温储存的材料有高压热水、有机流体、共晶盐等。太阳能高温储存温度一般在500℃以上,目前正在试验的材料有金属钠、熔融盐等。1000℃以上极高温储存,可以采用氧化铝和氧化锗耐火球。

二、转化为电能储存

把太阳能转变为其他的能是比直接储存更先进的办法,这也是目前比较常见的做法。比如利用太阳能发电,把发出的电输入蓄电池进行储存。常用的是蓄电池,正在研究开发的是超导储能。世界上铅酸蓄电池的发明已有100多年的历史,它利用化学能和电能的可逆转换实现充电和放电。铅酸蓄电池价格较低,但使用寿命短,重量大,需要经常维护。

近来开发成功少维护、免维护的铅酸蓄电池,使其性能有一定提高。目前,与光伏发电系统配套的储能装置大部分为铅酸蓄电池。镍—铜、镍—铁碱性蓄电池使用维护方便,寿命长,重量轻,但价格较贵,一般在储能量小的情况下使用。现有的蓄电池储能密度较低,难以满足大容量、长时间储存电能的要求。最新开发的蓄电池还有银锌电池、钾电池、钠硫电池等。某些金属或合金在极低温度下成为超导体,理论上电能可以在一个超导无电阻的线圈内储存无限长的时间。这种超导储能不经过任何其他能量转换直接储存电能,效率高,启动迅速,可以安装在任何地点,尤其是在消费中心附近,不产生任何污染,但目前超导储能在技术上还不是很成熟,需要继续研究开发。

此外,也可以利用太阳能提水储能,白天利用太阳能把水从低处提到高处的蓄水池中,夜里从蓄水池放水,利用水的落差进行发电,就实现太阳能储存了。

三、太阳能的化学储存

利用化学反应物吸收太阳热量,然后再通过化学反应放出热量,也是一种很好的办法。这种储能方式有不少优点,比如储热量大,体积小,重量轻,化学反应产物可分离储存,需要时才发生放热反应,储存时间长等。化学储能的要求比较严格,真正能用于储热的化学反应必须满足以下条件:反应可逆性好,无副反应;反应迅速;反应生成物易分离且能稳定储存;反应物和生成物无毒、无腐蚀、无可燃性;反应放热量大,反应物价格较低等。对化学反应储存热能尚需进行深入研究,一时难以实用。

四、转化为氢能储存

储存太阳能除了以上办法之外,还有一个好办法就是把太阳能转化为氢能储存起来。氢能是一种高品位能源。太阳能可以通过分解水或其他途径转换为氢能,氢可以大量、长时间储存。它能以各种形态或化合物(如氨、甲醇等)形式储存。气相储存储氢量少时,可以采用常压湿式气柜、高压容器储存;大量储存时,可以储存在地下储仓、由不漏水土层覆盖的含水层、盐穴和人工洞穴内。液相储存具有较高的单位体积储氢量,但蒸发损失大。将氢气转化为液氢需要进行氢的纯化和压缩,正氢—仲氢转化,最后进行液化。固相储氢是利用金属氢化物固相储氢,储氢密度较高,安全性好。目前,一般能满足固相储氢要求的材料主要是稀土系合金和钛系合金。金属氢化物储氢技术研究已有30余年历史,取得了不少成果,但仍有许多问题有待研究解决。我国对金属氢化物储氢技术进行了多年研究,取得一些成果,目前研究开发工作正在深入。

五、转化为机械能储存

太阳能转换为热能,推动热机压缩空气,能够储存太阳能。飞轮储能是机械能储存中最受人关注的。20世纪50年代,就有利用高速旋转的飞轮储能的设想,但一直没有突破性进展。近年来,由于高强度碳纤维和玻璃纤维的出现,以及电磁悬浮、超导磁浮技术的发展,使飞轮转速大大提高,增加了单位质量的动能储存量。

六、塑晶储存

美国在1984年推出一种塑晶家庭取暖材料。塑晶学名新戊二醇,它和液晶相似,有晶体的三维周期性,但力学性质像塑料。它能在恒定温度下储热和放热,塑晶在恒温44℃时,白天吸收太阳能而储存热能,晚上则放出白天储存的热能。目前我国对塑晶也进行了一些实验研究,但一直还没实际应用。

七、太阳能-生物质能转换

光合作用是植物、藻类和某些细菌利用叶绿素,在可见光的照射下,将二氧化碳和水转化为有机物,并释放出氧气的生化过程。通过植物叶片的光合作用,太阳能把二氧化碳和水合成有机物,并释放出氧气。地球上最大规模转换太阳能的过程就是光合作用了。我们现在大量应用的石油、煤炭都是远古光合作用固定的太阳能。虽然光合作用对太阳能的转换率很低,但是可以通过利用荒山荒地种植能源作物来间接扩大对太阳能的转换。

Ⅸ 电力调峰及电热余热存储技术有哪些

摘要 抽水蓄能电厂改发电机状态为电动机状态,调峰能力接近200%;(2)水电机组减负荷调峰或停机,调峰依最小出力(考虑震动区)接近100%;(3)燃油(气)机组减负荷,调峰能力在50%以上;(4)燃煤机组减负荷、启停调峰、少蒸汽运行、滑参数运行,调峰能力分别为50%(若投油或加装助燃器可减至60%)、100%、100%、40%;(5)核电机组减负荷调峰;(6)通过对用户侧负荷管理的方法,削峰填谷调峰。