当前位置:首页 » 服务存储 » 运筹存储论总存储量怎么计算
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

运筹存储论总存储量怎么计算

发布时间: 2022-08-25 14:34:29

⑴ 运筹学问题,求助

运筹学 (管理类专业基础课) 编辑 讨论2 上传视频
本词条由“科普中国”科学网络词条编写与应用工作项目 审核 。
运筹学,是现代管理学的一门重要专业基础课。它是20世纪30年代初发展起来的一门新兴学科,其主要目的是在决策时为管理人员提供科学依据,是实现有效管理、正确决策和现代化管理的重要方法之一。该学科应用于数学和形式科学的跨领域研究,利用统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答。
运筹学经常用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。 研究运筹学的基础知识包括实分析、矩阵论、随机过程、离散数学和算法基础等。而在应用方面,多与仓储、物流、算法等领域相关。因此运筹学与应用数学、工业工程、计算机科学、经济管理等专业相关 [1] 。
TA说

用什么理论指导商铺选址?2020-08-16 16:14
逻辑上,商业选址是根据现有环境及其预测,分析出合理的商业区位候选,再由经营者决定地点。但是,如果能够提前了解城市规划方案,甚至干脆一切反过来,商家先选址,再影响城市的未来规划,那么还需要费力分析、预测吗? ...详情
内容来自
中文名运筹学外文名Operational Research(英国)简 称O.R.又 称作业研究相关学科管理学、经济学、应用数学等应用领域现代管理学
目录
1 发展历程
▪ 历史起源
▪ 发展
2 研究对象
3 学科特点
4 研究方法
5 应用重点
6 具体内容
▪ 规划论
▪ 库存论
▪ 图论
▪ 排队论
▪ 可靠性理论
▪ 对策论
▪ 决策论
▪ 搜索论
7 运筹学展望
发展历程编辑
历史起源
运筹学作为一门现代科学,是在第二次世界大战期间首先在英美两国发展起来的,有的学者把运筹学描述为就组织系统的各种经营作出决策的科学手段。P.M.Morse与G.E.Kimball在他们的奠基作中给运筹学下的定义是:“运筹学是在实行管理的领域,运用数学方法,对需要进行管理的问题统筹规划,作出决策的一门应用科学。”运筹学的另一位创始人定义运筹学是:“管理系统的人为了获得关于系统运行的最优解而必须使用的一种科学方法。”它使用许多数学工具(包括概率统计、数理分析、线性代数等)和逻辑判断方法,来研究系统中人、财、物的组织管理、筹划调度等问题,以期发挥最大效益。
现代运筹学的起源可以追溯到几十年前,在某些组织的管理中最先试用科学手段的时候。可是,普遍认为,运筹学的活动是从二次世界大战初期的军事任务开始的。当时迫切需要把各项稀少的资源以有效的方式分配给各种不同的军事经营及在每一经营内的各项活动,所以美国及随后美国的军事管理当局都号召大批科学家运用科学手段来处理战略与战术问题,实际上这便是要求他们对种种(军事)经营进行研究,这些科学家小组正是最早的运筹小组。
第二次世界大战期间,“OR”成功地解决了许多重要作战问题,为“OR”后来的发展铺平了道路。当战后的工业恢复繁荣时,由于组织内与日俱增的复杂性和专门化所产生的问题,使人们认识到这些问题基本上与战争中所曾面临的问题类似,只是具有不同的现实环境而已,运筹学就这样潜入工商企业和其它部门,在50年代以后得到了广泛的应用。对于系统配置、聚散、竞争的运用机理深入的研究和应用,形成了比较完备的一套理论,如规划论、排队论、存贮论、决策论等等,由于其理论上的成熟,电子计算机的问世,又大大促进了运筹学的发展,世界上不少国家已成立了致力于该领域及相关活动的专门学会,美国于1952年成立了运筹学会,并出版期刊《运筹学》,世界其它国家也先后创办了运筹学会与期刊,1959年成立了国际运筹学协会(International Federation of Operations Research Societies ,IFORS) [2] 。
发展
1955年我国从“运筹帷幄之中,决胜千里之外”(见《史记》)这句话摘取“运筹”二字,将O.R.正式译作运筹学。
在中国古代文献中就有记载,如田忌赛马、丁渭主持皇宫修复等。说明在已有的条件下,经过筹划、安排,选择一个最好的方案,就会取得最好的效果。可见,筹划安排是十分重要的。
普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。前者提供模型,后者提供理论和方法。
运筹学的思想在古代就已经产生了。敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外”的说法。
但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。也可以说,运筹学是在二十世纪三十年代才开始兴起的一门分支 [1] 。
研究对象编辑
运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。当然,随着客观实际的发展,运筹学的许多内容不但研究经济和军事活动,有些已经深入到日常生活当中去了。运筹学可以根据问题的要求,通过数学上的分析、运算,得出各种各样的结果,最后提出综合性的合理安排,以达到最好的效果。
运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型和制定解法。虽然不大可能存在能处理极其广泛对象的运筹学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题。随着科学技术和生产力的发展,运筹学已渗入到很多领域,发挥着越来越重要的作用。运筹学本身也在不断发展,涵盖线性规划、非线性规划、整数规划、组合规划、图论、网络流、决策分析、排队论、可靠性数学理论、库存论、博弈论、搜索论以及模拟等分支。
运筹学有广阔的应用领域,它已渗透到诸如服务、搜索、人口、对抗、控制、时间表、资源分配、厂址定位、能源、设计、生产、可靠性等各个方面。
运筹学是软科学中“硬度”较大的一门学科,是系统工程学和现代管理科学中的一种基础理论和不可缺少的方法、手段和工具。运筹学已被应用到各种管理工程中,在现代化建设中发挥着重要作用 [3] 。
学科特点编辑
运筹学已被广泛应用于工商企业、军事部门、民政事业等研究组织内的统筹协调问题,故其应用不受行业、部门之限制;
运筹学既对各种经营进行创造性的科学研究,又涉及到组织的实际管理问题,它具有很强的实践性,最终应能向决策者提供建设性意见,并应收到实效;
它以整体最优为目标,从系统的观点出发,力图以整个系统最佳的方式来解决该系统各部门之间的利害冲突。对所研究的问题求出最优解,寻求最佳的行动方案,所以它也可看成是一门优化技术,提供的是解决各类问题的优化方法 [2] 。
研究方法编辑
从现实生活场合抽出本质的要素来构造数学模型,因而可寻求一个跟决策者的目标有关的解;
探索求解的结构并导出系统的求解过程;
从可行方案中寻求系统的最优解法 [2] 。
应用重点编辑
1.市场销售:在广告预算和媒体的选择、竞争性定价、新产品开发、销售计划的制定等方面。如美国杜邦公司在五十年代起就非常重视将作业研究用于研究如何做好广告工作、产品定价和新产品的引入。通用电力公司对某些市场进行模拟研究。
2.生产计划:在总体计划方面主要是从总体确定生产、储存和劳动力的配合等计划以适应变动的需求计划,主要用线性规划和仿真方法等。此外,还可用于生产作业计划、日程表的编排等。还有在合理下料、配料问题、物料管理等方面的应用。
3.库存管理:存货模型将库存理论与计算器的物料管理信息系统相结合,主要应用于多种物料库存量的管理,确定某些设备的能力或容量,如工厂的库存、停车厂的大小、新增发电设备容量大小、计算机的主存储器容量、合理的水库容量等。
4.运输问题:这里涉及空运、水运、公路运输、铁路运输、捷运、管道运输和厂内运输等。包括班次调度计划及人员服务时间安排等问题。
5.财政和会计:这里涉及预算、贷款、成本分析、定价、投资、证券管理、现金管理等。用得较多的方法是:统计分析、数学规划、决策分析。此外,还有盈亏点分析法、价值分析法等。
6.人事管理:这里涉及六方面。(1)人员的获得和需求估计;(2)人才的开发,即进行教育和训练;(3)人员的分配,主要是各种指派问题;(4)各类人员的合理利用问题;(5)人才的评价,其中有如何测定一个人对组织、社会的贡献;(6)薪资和津贴的确定等。
7.设备维修、更新和可靠度、项目选择和评价:如电力系统的可靠度分析、核能电厂的可靠度以及风险评估等。
8.工程的最佳化设计:在土木、水利、信息、电子、电机、光学、机械、环境和化工等领域皆有作业研究的应用。
9.计算器和讯息系统:可将作业研究应用于计算机的主存储器配置,研究等候理论在不同排队规则对磁盘、磁鼓和光盘工作性能的影响。有人利用整数规划寻找满足一组需求档案的寻找次序,利用图论、数学规划等方法研究计算器讯息系统的自动设计。
10.城市管理:包括各种紧急服务救难系统的设计和运用。如消防队救火站、救护车、警车等分布点的设立。美国曾用等候理论方法来确定纽约市紧急电话站的值班人数。加拿大亦曾研究一城市警车的配置和负责范围,事故发生后警车应走的路线等。此外,诸如城市垃圾的清扫、搬运和处理;城市供水和污水处理系统的规划等等 [2] 。
具体内容编辑
运筹学的具体内容包括:规划论(包括线性规划、非线性规划、整数规划和动态规划)、库存论、图论、决策论、对策论、排队论、可靠性理论等。
规划论
数学规划即上面所说的规划论,是运筹学的一个重要分支,早在1939年苏联的康托洛维奇(H.B.Kahtopob )和美国的希奇柯克(F.L.Hitchcock)等人就在生产组织管理和制定交通运输方案方面首先研究和应用线性规划方法。1947年旦茨格等人提出了求解线性规划问题的单纯形方法,为线性规划的理论与计算奠定了基础,特别是电子计算机的出现和日益完善,更使规划论得到迅速的发展,可用电子计算机来处理成千上万个约束条件和变量的大规模线性规划问题,从解决技术问题的最优化,到工业、农业、商业、交通运输业以及决策分析部门都可以发挥作用。
从范围来看,小到一个班组的计划安排,大至整个部门,以至国民经济计划的最优化方案分析,它都有用武之地,具有适应性强,应用面广,计算技术比较简便的特点。非线性规划的基础性工作则是在1951年由库恩(H.W.Kuhn)和塔克(A.W.Tucker)等人完成的,到了70年代,数学规划无论是在理论上和方法上,还是在应用的深度和广度上都得到了进一步的发展。
数学规划的研究对象是计划管理工作中有关安排和估值的问题,解决的主要问题是在给定条件下,按某一衡量指标来寻找安排的最优方案。它可以表示成求函数在满足约束条件下的极大极小值问题。
数学规划和古典的求极值的问题有本质上的不同,古典方法只能处理具有简单表达式,和简单约束条件的情况。而现代的数学规划中的问题目标函数和约束条件都很复杂,而且要求给出某种精确度的数字解答,因此算法的研究特别受到重视。
这里最简单的一种问题就是线性规划。如果约束条件和目标函数都是呈线性关系的就叫线性规划。要解决线性规划问题,从理论上讲都要解线性方程组,因此解线性方程组的方法,以及关于行列式、矩阵的知识,就是线性规划中非常必要的工具。
线性规划及其解法—单纯形法的出现,对运筹学的发展起了重大的推动作用。许多实际问题都可以化成线性规划来解决,而单纯形法有是一个行之有效的算法,加上计算机的出现,使一些大型复杂的实际问题的解决成为现实。
非线性规划是线性规划的进一步发展和继续。许多实际问题如设计问题、经济平衡问题都属于非线性规划的范畴。非线性规划扩大了数学规划的应用范围,同时也给数学工作者提出了许多基本理论问题,使数学中的如凸分析、数值分析等也得到了发展。还有一种规划问题和时间有关,叫做“动态规划”。近年来在工程控制、技术物理和通讯中的最佳控制问题中,已经成为经常使用的重要工具 [2] 。
库存论
库存论是一种研究物质最优存储及存储控制的理论,物质存储时工业生产和经济运转的必然现象。如果物质存储过多,则会占用大量仓储空间,增加保管费用,使物质过时报废从而造成经济损失;如果存储过少,则会因失去销售时机而减少利润,或因原料短缺而造成停产。因而如何寻求一个恰当的采购,存储方案就成为库存论研究的对象 [2] 。
图论
图论是一个古老的但又十分活跃的分支,它是网络技术的基础。图论的创始人是数学家欧拉。1736年他发表了图论方面的第一篇论文,解决了着名的哥尼斯堡七桥难题,相隔一百年后,在1847年基尔霍夫第一次应用图论的原理分析电网,从而把图论引进到工程技术领域。
20世纪50年代以来,图论的理论得到了进一步发展,将复杂庞大的工程系统和管理问题用图描述,可以解决很多工程设计和管理决策的最优化问题,例如,完成工程任务的时间最少,距离最短,费用最省等等。图论受到数学、工程技术及经营管理等各方面越来越广泛的重视 [2] 。
排队论
排队论又叫随机服务系统理论。最初是在二十世纪初由丹麦工程师艾尔郎关于电话交换机的效率研究开始的,在第二次世界大战中为了对飞机场跑道的容纳量进行估算,它得到了进一步的发展,其相应的学科更新论、可靠性理论等也都发展起来。
1909年丹麦的电话工程师爱尔朗(A.K.Erlang)排队问题,1930年以后,开始了更为一般情况的研究,取得了一些重要成果。1949年前后,开始了对机器管理、陆空交通等方面的研究,1951年以后,理论工作有了新的进展,逐渐奠定了现代随机服务系统的理论基础。排队论主要研究各种系统的排队队长,排队的等待时间及所提供的服务等各种参数,以便求得更好的服务。它是研究系统随机聚散现象的理论。
排队论又叫做随机服务系统理论。它的研究目的是要回答如何改进服务机构或组织被服务的对象,使得某种指标达到最优的问题。比如一个港口应该有多少个码头,一个工厂应该有多少维修人员等。
因为排队现象是一个随机现象,因此在研究排队现象的时候,主要采用的是研究随机现象的概率论作为主要工具。此外,还有微分和微分方程。排队论把它所要研究的对象形象的描述为顾客来到服务台前要求接待。如果服务台以被其它顾客占用,那么就要排队。另一方面,服务台也时而空闲、时而忙碌。就需要通过数学方法求得顾客的等待时间、排队长度等的概率分布。
排队论在日常生活中的应用是相当广泛的,比如水库水量的调节、生产流水线的安排,铁路分成场的调度、电网的设计等等 [2] 。
可靠性理论
可靠性理论是研究系统故障、以提高系统可靠性问题的理论。可靠性理论研究的系统一般分为两类:(1)不可修系统:如导弹等,这种系统的参数是寿命、可靠度等,(2)可修复系统:如一般的机电设备等,这种系统的重要参数是有效度,其值为系统的正常工作时间与正常工作时间加上事故修理时间之比 [2] 。
对策论
对策论也叫博弈论,前面讲的田忌赛马就是典型的博弈论问题。作为运筹学的一个分支,博弈论的发展也只有几十年的历史。系统地创建这门学科的数学家,冯·诺依曼。
最初用数学方法研究博弈论是在国际象棋中开始的,旨在用来如何确定取胜的算法。由于是研究双方冲突、制胜对策的问题,所以这门学科在军事方面有着十分重要的应用。数学家还对水雷和舰艇、歼击机和轰炸机之间的作战、追踪等问题进行了研究,提出了追逃双方都能自主决策的数学理论。随着人工智能研究的进一步发展,对博弈论提出了更多新的要求 [2] 。
决策论
决策论研究决策问题。所谓决策就是根据客观可能性,借助一定的理论、方法和工具,科学地选择最优方案的过程。决策问题是由决策者和决策域构成的,而决策域又由决策空间、状态空间和结果函数构成。研究决策理论与方法的科学就是决策科学。
决策所要解决的问题是多种多样的,从不同角度有不同的分类方法,按决策者所面临的自然状态的确定与否可分为:确定型决策、不确定型决策和风险型决策;按决策所依据的目标个数可分为:单目标决策与多目标决策;按决策问题的性质可分为:战略决策与策略决策,以及按不同准则划分成的种种决策问题类型。不同类型的决策问题应采用不同的决策方法。决策的基本步骤为:(1)确定问题,提出决策的目标;(2)发现、探索和拟定各种可行方案;(3)从多种可行方案中,选出最满意的方案;(4)决策的执行与反馈,以寻求决策的动态最优。
如果决策者的对方也是人(一个人或一群人)双方都希望取胜,这类具有竞争性的决策称为对策或博弈型决策。构成对策问题的三个根本要素是:局中人、策略与一局对策的得失。对策问题一般可分为有限零和两人对策、阵地对策、连续对策、多人对策与微分对策等 [2] 。
搜索论
搜索论是由于第二次世界大战中战争的需要而出现的运筹学分支。主要研究在资源和探测手段受到限制的情况下,如何设计寻找某种目标的最优方案,并加以实施的理论和方法。在第二次世界大战中,同盟国的空军和海军在研究如何针对轴心国的潜艇活动、舰队运输和兵力部署等进行甄别的过程中产生的。搜索论在实际应用中也取得了不少成效,例如二十世纪六十年代,美国寻找在大西洋失踪的核潜艇“打谷者号”和“蝎子号”,以及在地中海寻找丢失的氢弹,都是依据搜索论获得成功的 [2] 。
运筹学展望编辑
运筹学正朝着3个领域发展:运筹学应用、运筹科学和运筹数学。
现代运筹学面临的新对象是经济、技术、社会、生态和政治等因素交叉在一起的复杂系统,因此必须注意大系统、注意与系统分析相结合,与未来学相结合,引入一些非数学的方法和理论,采用软系统的思考方法。总之,运筹学还在不断发展中,新的思想、观点和方法不断出现

⑵ 存贮论的介绍

早在1915年,哈李斯针对银行货币的储备问题进行了详细的研究,建立了一个确定性的存贮费用模型,并求得了最佳批量公式。1934年威尔逊重新得出了这个公式,后来人们称这个公式为经济订购批量公式。这是属于存贮论的早期工作。1958年威汀 发表了《存贮管理的理论》一书,随后阿罗等发表了〈存贮和生产的数学理论研究〉,毛恩在1959年写了《存贮理论》。此后,存贮论成了运筹学中的一个独立的分支,有关学者相继对随机或非平稳需求的存贮模型进行了广泛深入的研究。

⑶ 存储器存储容量怎么算

存储器的存储容量的基本单位是字节(Byte)。但由于目前存储器的容量都很大,因此常用KB、MB、GB以及TB作为存储容量的单位。

换算:

1B(byte,字节)= 8 bit;

1KB(Kilobyte,千字节)=1024B= 2^10 B;

1MB(Megabyte,兆字节,百万字节,简称“兆”)=1024KB= 2^20 B;

1GB(Gigabyte,吉字节,十亿字节,又称“千兆”)=1024MB= 2^30 B;

1TB(Terabyte,万亿字节,太字节)=1024GB= 2^40 B;

1PB(Petabyte,千万亿字节,拍字节)=1024TB= 2^50 B;

1EB(Exabyte,百亿亿字节,艾字节)=1024PB= 2^60 B;

1ZB(Zettabyte,十万亿亿字节,泽字节)=1024EB= 2^70 B。

(3)运筹存储论总存储量怎么计算扩展阅读

Megabyte(MB)=1024KB相当于一则短篇小说的文字内容。

Gigabyte(GB)=1024MB相当于贝多芬第五乐章交响曲的乐谱内容。

Terabyte(TB)=1024GB相当于一家大型医院中所有的X光图片资讯量。

Petabyte(PB)=1024TB相当于50%的全美学术研究图书馆藏书资讯内容。

Exabyte (EB)=1024PB;5EB相当于至今全世界人类所讲过的话语。

Zettabyte(ZB)=1024EB如同全世界海滩上的沙子数量总和。

Yottabyte(YB)=1024ZB相当于7000位人类体内的微细胞总和。

⑷ 请系统全面地讲讲军事运筹学

军事运筹学是应用数学工具和现代计算技术,对军事问题进行定量分析,为决策提供数量依据的一种科学方法。它是一门综合性应用学科,是现代军事科学的组成部分。

解决现代条件下国防建设和军事活动中一系列复杂的指挥控制问题,不但要有高度的指挥艺术,还必须有一整套进行高速计算分析的现代科学方法,军事运筹学就是这种科学方法。

军事运筹学发展简史

运筹一词出自中国古代史书《史记·高祖本纪》“夫运筹帷幄之中,决胜于千里之外。”

虽然军事运筹学作为一门学科,是在第二次世界大战后逐渐形成的,不过军事运筹思想在古代就已经产生了。中国春秋末期军事家孙武的《孙子兵法·形篇》中,就有许多关于军事运筹的论述,他把度、量、数、称等数学概念引入军事领域,通过双方对比计算,进行战争胜负的预测分析。他在《孙子兵法·计篇》中还说“夫未战而庙算胜者,得算多也;未战而庙算不胜者,得算少也。多算胜,少算不胜,而况于无算乎!”这里的“算”就是计算筹划之意。此外,《孙膑兵法》、《尉缭子》、《百战奇法》等历代军事名着及有关史籍,都有不少关于运筹思想的记载。

《史记·孙子吴起列传》载:战国齐将田忌与齐威王赛马,二人各拥有上、中、下三个等级的马,但齐王各等级的马均略优于田忌同等级的马,如依次按同等级的马对赛,田忌必连负三局。田忌根据孙膑的运筹,以自己的下、上、中马分别与齐王的上、中、下马对赛,结果是二胜一负。这反映了在总的劣势条件下,以己之长击敌之短,以最小的代价换取最大胜利的古典运筹思想,也是对策论的最早渊源。

成功地应用运筹思想而取胜的战例很多,如齐鲁长勺之战中曹刿对反攻时机的运筹,齐魏马陵之战中孙膑对出兵时间、决战时机、决战地点的运筹等。此外,在中国历史上还有不少善于运用运筹思想的人物,如张良、曹操、诸葛亮、李靖、刘基等。

第一次世界大战前期,英国工程师兰彻斯特发表了有关用数学研究战争的大量论述,建立了描述作战双方兵力变化过程的数学方程,被称为兰彻斯特方程。和兰彻斯特同时代的美国科学家爱迪生,在研究反潜斗争中也应用了数学方法,他主要是用概率论和数理统计,研究水面舰艇躲避和击沉潜艇的最优战术。但当时这些方法尚处探索阶段,未能直接用于军事斗争。后来,英国国防部成立以生理学教授希尔为首的研究雷达配置和高炮效率的防空试验小组(后改名为作战研究部),这是最早的运筹组织。

第二次世界大战中,英国空、海、陆军都建立了运筹组织,主要研究如何提高防御和进攻作战的效果。美国军队也陆续成立了运筹小组,其中海军设立最早,是由莫尔斯博士发起和组织的,主要研究反潜战。加拿大皇家空军也在1942年建立了运筹学小组。而运筹学作为一个独立的新学科,是于20世纪50年代初 才开始形成的。

军事运筹学的基本内容

军事运筹学的基本理论,是依据战略、战役、战术的基本原则,运用现代数学理论和方法来研究军事问题中的数量关系,以求对目标的衡量准则达到极值的择优化理论。它通过描述问题——提出假设——评估假设——使假设最优化,反映出假设条件下军事问题本质过程的规律。

模型方法是指运用模型对实际系统进行描述和试验研究的方法。反映实际系统的模型方法很多,有逻辑模型、数学模型、物理模型、混合模型等,军事模拟活动中应用最多的是数学模型。数学模型是用来描述研究对象活动规律并反映其数量特性的一套公式或算法,其复杂程度随实际问题的复杂程度而定,一般简单的问题可用单一的数学方法解决。如兰彻斯特方程,就是确定性数学模型,可宏观地描述双方战斗的毁伤过程。

对复杂的军事问题,必须根据问题的需要,选择各数学分支方法,构成一个整体的混合模型或组合模型,此项工作称之为构模。运用模型方法研究军事问题,以协助指挥员分析判断,是军事运筹学发展的重要途径。

作战模拟是研究作战对抗过程的仿真实验,即对一个在特定态势下的作战过程,根据预定的规则、步骤和数据加以模仿复现,取得统计结果,为决策者提供数量依据。过去运用沙盘对阵、图上作业和实兵演习等进行模仿战争全部或部分活动的过程,都是作战模拟。

由于现代战争的规模增大,复杂程度日益增加,上述传统的作战模拟方法已难于进行较精确的定量描述。在新的数学方法及电子计算机出现后,开始有可能对较大规模的复杂战斗过程作近似描述,现代作战模拟开始得到广泛应用。

现代作战模拟可以看成是一种“作战实验”技术。它可部分地解决军事科学研究中难以通过直接实验的手段进行反复检验的难题,还可节省时间和人力、物力,因而是军事科学研究方法上的一个重大进步。通过现代作战模拟,能对有关兵力、装备使用的复杂关系,从数量上获得深刻了解。

作战模拟可用于作战训练、武器装备论证、后勤保障以及军事学术研究等各个方面。其分类因角度不同而异。按军种、兵种分:有合成军作战模拟,陆军、空军海军作战模拟;按规模分:有战役模拟、战术模拟;按现代化程度分:有手工作战模拟、计算机辅助作战模拟和计算机化作战模拟。

决策论是研究如何选择最佳有效决策方案的理论和方法。无论是平时还是战时,指挥员的重要职责就是分析判断情况,选择可行的或满意的决策方案,定下决心进而组织实施,以完成上级赋予的各项任务。决策论可以引导指挥人员根据所获得的各种信息,按照一定的衡量标准进行综合研究,从而使指挥员的思维条理化,决策科学化。

搜索论是研究如何合理地使用人力、物力、资金及时间,以取得最佳效果的一种理论和方法。搜索论用在军事方面,主要是研究提高对某一区域内的目标进行侦察搜索的效果。在第二次世界大战中,英国为研究提高飞机对德国潜艇的搜索效率,首先运用并发展了这种理论。由于现代战争中搜索问题比较复杂,涉及的因素 比较多,所以搜索理论尚在发展中,还难于建立统一的通用模式。

规划论是研究在军事行动中,如何适当地组织由人员武器装备、物资、资金和时间等要素构成的系统,以便有效地实现预定的军事目的。规划论分线性规划、非线性规划、整数规划和动态规划。

线性规划是当约束条件及目标函数均为线性函数时的规划,可用于解决对目标或作战地域分配同类兵力、兵器问题等。非线性规划是当约束条件或目标函数为非线性方程的规划,可用来解决向目标或作战地域分配不同类型的兵力、兵器等问题。人们在实际应用中为计算方便,常把非线性问题近似地处理成多级线性规划问题。

整数规划是规划论的特殊问题,要求变量和目标函数采用整数进行运算。因为有时人员、武器装备等只有整数才有意义。动态规划是解决多级决策过程员优化的一种数学方法,可把多级决策过程作为总体决策,构成决策空间,并对每个决策找出其定量评估优劣的准则函数,选出准则函数为员优值的决策方案。这即是决策过程的最优化。动态规划多用于多级指挥控制、计算使目标遭受最大损失的火力分配问题等。

排队论亦称“等待理论”、“公用服务系统理论”或“随机服务系统理论”。是研究系统的排队现象而使顾客获得最佳流通的一种科学方法。在军事系统中出现的排队现象很多,如指挥系统收发军事情报信息,反坦克武器对敌坦克的射击,防空系统对空中目标的射击,以及飞机的批次侦察轰炸,武器装备的修理等。

这些军事活动在排队论中被称为“服务”,而服务系统则为指挥控制系统、反坦克系统、防空系统、侦察轰炸系统、修理系统等。其中“顾客”是被指挥的部队,被射击的坦克和飞机,被侦察轰炸的目标,以及需要修理的武器装备等。当顾客要求服务的数量超过服务系统的能力时,就会出现排队现象。排队论即由此得名。

排队论可以用来解决指挥系统的信息处理能力及反坦克武器射击效率的估计分析;对空中侦察及防空武器提出相应的要求,估计不同设施的防空系统效率;武器装备维修及后勤保障的合理安排;人员、物资、装备等按时间序列流动的组织安排等。

对策论是研究冲突局势下局中人如何选择最优策略的一种数学方法。由于这门学问最初是从赌博和弈棋中提出的,因此亦称“博奕论”。

对策论的基本思想是立足于最坏的情况,争取最好的结果。在军事斗争中,通常并不掌握对方如何打算和行动的充足情报,在这种不确定情况下应用对策论最为合宜。如在对方采用一系列不同战术条件下,选择己方的有效战术问题;受对方攻击情况下设置假情报和实施伪装的问题;以及选择与对方对抗的各种武器装备的合理配置问题等。

随着科学技术和军事斗争的发展,航天技术中出现了机动追击的对策问题,原来的对策论就难以适应,于是美国兰德公司等在20世纪60年代开创了新的“微分对策”理论,从而使对策论的军事应用进入了一个新的发展阶段。

存储论亦称“库存论”,是研究在何时何地从什么来源保证必需的军用物资储备,并使库存物资及补充采购所需的总费用最少的理论和方法,它主要用于军队的后勤保障和物资管理方面。采用这种方法,可以确定维持军事系统的组织活动或经营管理正常运转所需的武器装备、备品备件、材料,及其他物资的最佳经济储备量。最佳经济储备量是由最佳经济采购量决定的,而采购量又与消耗量有关。

除上述各论外,军事运筹学常用的理论和方法还有网络法、火力运用理论、指挥控制理论、最优化理论、概率论和数理统计、信息论、控制论等。

应用军事运筹学需要特别注意其局限性。主要是运筹分析系统的简化和本质抽象中人的主观性,以及对军事问题中一些非定量因素,诸如人的水平、能力、爱好个性、士气、心理因子等,只能在假定条件下作近似的分析。

军事运筹学作为军事科学的一个组成部分,是定量研究其他军事学科的有关问题的手段和工具,其他军事学科是军事运筹学的应用领域。随着现代战争日趋复杂多变,且有大量随机现象出现,以及数学方法的研究上取得了新的成果,并且计算机技术的高速发展和大量使用,使得在军事上广泛应用运筹学方法日益有效,并且费用也越来越低。不过,现代战争仍然需要指挥人员的经验和创造性思维,需要科学方法和指挥艺术的有机结合。

随着现代科学技术的迅速发展,军事运筹学的基本理论和方法也将进一步发展。其发展方向主要是,如何提高描述精度,如何通过直接和间接的数学方法以及其他科学方法,对目前难于用数量表示的那部分军事问题予以量化。以及如何通过人机联系的最新途径——人工智能等进行作战模拟。军事运筹学的应用范围将更加广泛,对研究解决作战、训练、武器装备、后勤管理等军事问题的作用将越来越大。

其它军事学分支学科

军事学概述、射击学、弹道学、内弹道学、外弹道学、中间弹道学、终点弹道学、导弹弹道学、军事地理学、军事地形学、军事工程学、军事气象学、军事医学、军事运筹学、战役学、密码学、化学战

军事运筹学
系统研究军事问题的定量分析及决策优化的理论和方法的学科。军事学术的组成部分。以军事运筹的实践活动为研究对象。研究领域涉及作战指挥、军事训练、武器装备研制与发展、军队体制编制、军队管理、后勤保障等各个方面。主要任务是为各类军事运筹分析活动提供理论和方法,用以揭示各类军事系统的功能、结构和运行规律,科学地辅助军事决策和军事实践,合理利用资源,提高军事效能,启发新的作战思想。词源 “运筹”一词,出自中国《史记·高祖本纪》:“运筹策帷帐之中,决胜于千里之外”。最早有“军事运筹学”含义的英文词operationalresearch出现于1938年,是由当时英国的鲍德西雷达站负责人A.P.罗威就整个防空作战系统的运行研究工作而提出的,原意为“作战研究”。在美国称为operationsresearch。英文缩写均为OR。自50年代起,虽然欧美一些国家将这种用于作战研究的理论和方法广泛用于社会经济各领域,但仍沿用原词,使OR的含义有了扩展。OR传入中国后,曾一度译为“作业研究”、“运用研究”。1956年,中国有关专家共同商定将OR译为“运筹学”。其译意恰当地反映了该词源于军事谋划又军民通用的特点,并赋予其作为一门学科的含义。随着适用于军事领域的这些理论和方法应用的不断扩展,军事运筹理论研究工作得到深入与发展,军事运筹理论逐渐形成为一门独立的军事学科,在中国称之为“军事运筹学”。简史 军事运筹学的形成经历了一个漫长的过程。早期的军事运筹思想可追溯到古代军事计划与实际作战运算活动中的选优求胜思想。如公元前6世纪孙武在《孙子》一书中,就有关于作战力量的运用与筹划的论述(见《孙子》中的运筹思想)。又如《史记·孙子吴起列传》中记载的春秋战国时期孙膑辅助齐将田忌与齐威王赛马,田忌采用孙膑建议的取胜策略,就体现了对策论中的最优策略思想。再如11世纪沈括的《梦溪笔谈》中根据军队的数量和出征距离,筹算所需粮草的数量,将人背和各种牲畜驮运的几种方案与在战场上“因粮于敌”的方案进行了比较,得出了取粮于敌是最佳方案的结论,反映了当时后勤供应中多方案选优的思想。古希腊数学家阿基米德利用几何知识研究防御罗马人围攻叙拉古城的策略,也是体现军事运筹思想最早的典型事例之一。中国共产党和毛泽东在领导中国革命战争中,继承和发展了古今中外的军事运筹思想。毛泽东的《中国革命战争的战略问题》、《论持久战》、《三个月总结》、《目前形势和我们的任务》、《党委会的工作方法》等一系列着作,均有关于军事运筹方面的论述。例如,土地革命战争时期,科学地分析战略形势,确定以农村包围城市的斗争道路;抗日战争时期,分析敌我力量对比,确定以持久战胜敌的思想;解放战争时期,计算战争进程,确定在3~5年内从根本上消灭国民党军队,推翻国民党反动统治等,都科学地运用了定量分析的方法。此外,他还利用作战经验及大量统计数据,提出作战理论原则,并把一些重要的数量依据,直接纳入原则体系,指导作战。十大军事原则中“每战集中绝对优势兵力(两倍、三倍、四倍、有时甚至是五倍或六倍于敌之兵力),四面包围敌人,力求全歼,不使漏网”(《毛泽东选集》,第二版,人民出版社,北京,1991,第1247页)的原则,就是一例。随着近代工业的兴起,大量新的科学技术开始应用于军事运筹活动,军事运筹学的理论与方法逐步成熟,其发展大致经历了以下三个阶段。萌芽阶段 1909年,丹麦工程师A.K.埃尔朗首次提出了排队模型,用于研究排队系统运行效率和提高服务质量问题。1914年,英国工程师F.W.兰彻斯特提出了描述作战双方兵力变化关系的微分方程组,该方程组被称为兰彻斯特方程。1915年,俄国人M.奥西波夫独立推导出类似于兰彻斯特方程的奥西波夫方程,并用历史上的战例数据作了验证;同年,美国学者F.W.哈里斯首创库存论模型,用于确定平均库存与经济进货量,提高了库存系统的综合经济效益。第一次世界大战期间,美国人T.A.爱迪生应用“战术对策板”研究商船运行策略,减少了敌方潜艇对商船的毁伤;1921~1927年,法国数学家E.波莱尔发表的一系列论文,为对策论的创建奠定了基础,其中证明了极小极大定理的特殊情形。这些均是为适应不同的军事需要而逐步发展起来的早期运筹理论和方法。形成阶段 第二次世界大战初,为研究雷达在实战中的有效使用,英国皇家空军于1939年吸收多个学科的专家建立了最早的运筹学研究小组。1940年成立由着名物理学家P.M.S.布莱克特领导的英国防空指挥研究小组,对机载雷达发现船只、潜艇等作战问题进行研究。通过改变深水炸弹的爆炸深度,使皇家海军、皇家空军摧毁敌方潜艇的成功率分别增加了3倍、6倍。此后,英国的陆军、海军也都相继设立了运筹分析机构,专门从事军事运筹的理论和应用研究。美国的运筹分析工作开始于1940年。1942年成立了由P.M.莫尔斯领导的美国海军反潜战运筹小组,主要研究反潜作战效果等问题。如1943年的研究表明,使用B-29飞机夜间单机布雷效果最好,飞机损失率由10%~15%降低到1%~1.5%。第二次世界大战期间,加拿大军队中也建立了运筹组织。至战争结束时,英、美、加三国的军事运筹人员总数已超过700人。1945年,苏联学者A.H.柯尔莫哥洛夫提出了多发齐射毁伤目标的火力运用理论。1947年,美国学者G.B.丹齐克等创立了线性规划解法——单纯形法。1948年,美国组建了兰德公司。1951年,莫尔斯教授等在总结战时经验基础上公开出版了《运筹学方法》一书;同年,美国为培养高级军事运筹分析人员,在美国海军研究生院设置了运筹分析课程。1952年成立了美国运筹学会。此后,搜索论、决策分析等新的理论和方法相继产生。这些均标志着军事运筹学的理论和方法体系已基本形成。发展阶段 由于军事技术的不断发展和现代战争的日益复杂,指挥决策问题对科学理论方法的发展提出了更高的要求。电子计算机技术与现代数学方法的适时出现,有力地推进了军事运筹学的发展。50年代中期以来,许多国家广泛推广应用了军事运筹学的理论和方法。美国自1960年R.S.麦克纳马拉任国防部长后,军事运筹学在国防管理等领域中得到了进一步发展。如相继发展了计划评审技术、图示评审技术、风险评审技术等网络分析方法,规划计划预算系统,以及在武器装备研制过程中发展的费用一效果分析方法等。同时,国防系统有关部门还建立了数百个军事模型。这些模型除了用于武器装备论证外,还用于国际局势分析、战争预测、作战指挥、军事训练、后勤保障等方面的辅助决策。取得成功的事例有:确保美国对苏联具有核反击能力所需的最少弹头数的计算分析、阿波罗登月计划的制订、B一1轰炸机的研制等。特别是在1991年的海湾战争中,以美国为首的多国部队,在战场管理、军队指挥、后勤保障等方面,成功地应用了军事运筹学的理论与方法。在中国,军事运筹学的研究始于50年代初期军队院校有关火力运用理论的教学工作。1956年,在钱学森、许国志教授的倡导下,中国科学院成立了第一个运筹学专业研究机构,对军事运筹学的发展,起了积极促进作用。60年代中期至70年代初期,华罗庚教授提出的优选法和统筹法,在军事领域中也得到了推广和应用。1978年5月,中国航空学会在北京召开了军事运筹学座谈会,与会人员向有关部门提出了在中国人民解放军中开展军事运筹与系统工程研究试点工作的建议。1978年底,中国人民解放军成立了第一个由多个学科的专家组成的“反坦克武器系统工程试点小组”,开展了反坦克武器系统工程试点工作。1979年10月,中国第一个军事运筹学研究机构——中国人民解放军军事科学院军事运筹分析研究所正式成立。1981年5月,成立了中国系统工程学会军事系统工程委员会。1984年12月,成立了中国人民解放军军事运筹学会。许多机关、部队也先后建立了各种专业性论证分析机构,在军内有组织地开展军事运筹学的研究与推广应用,并逐步扩大到军队工作的各个方面。1990年,中国国务院学位委员会和国家教育委员会发布的《授予博士、硕士学位和培养研究生的学科专业目录》,把军事运筹学列为军事学的二级学科。此后,大多数军事院校陆续招收和培养了一批军事运筹学硕士研究生。1994年,开始招收第一批军事运筹学博士研究生。这一阶段的主要特点是:研究队伍的规模越来越大,研究问题的层次不断提高,应用范围已由战术规模逐步发展到战役规模和战略规模,研究的内容不断拓宽。基本理论 军事运筹学的基本理论主要有:概率论与统计学 概率论与统计学是军事运筹学中最基本的数学工具,在军事运筹分析中广泛应用。概率论是从数量角度研究大量随机现象,并从中获得规律的理论。统计学则是研究如何有效地搜集、整理随机数据,找出随机现象数量指标分布规律及其数字特征的理论。很多军事问题和基础数据均可运用上述理论进行描述或获取。数学规划理论 研究如何将有限的人力、物力、资金等资源进行最适当最有效的分配和利用的理论,即研究可控变量X=(x1,x2,···,xn)在某些约束条件下求其目标函数在X�处取极大(或极小)值的理论。根据问题的性质与处理方法的不同,它又可分为线性规划、非线性规划、整数规划、动态规划、多目标规划等不同的理论。在军事资源分配等方面的运筹分析中有着广泛的应用。决策论 研究决策者如何有效地进行决策的理论和方法。决策论指导军事决策人员根据所获得的各种系统的状态信息,按照一定的目标和衡量标准进行综合分析,使决策者的决策既符合科学原则又能满足决策者的需求,从而促进决策的科学化。通常在军事决策问题的运筹分析中有广泛的应用。排队论 研究关于公用服务系统的排队和拥挤现象的随机特性和规律的理论。军事上常用于作战、通信、后勤保障、C�I系统的运行管理等领域的运筹分析。库存论 研究合理、经济地进行物资储备的控制策略的理论。军事上主要用于后勤管理领域的运筹分析。网络分析 通过对系统的网络描述,应用网络理论,研究系统并寻求系统优化方案的方法。广泛应用于作战指挥、训练演习、武器装备研制、后勤管理等军事活动的组织计划、控制协调等方面的运筹分析。对策论 研究冲突现象和选择最优策略的一种理论。适用于军事对抗和冲突条件下的决策策略等方面的运筹分析。搜索论 研究在探测手段和资源受到限制的情况下,如何以最短时间和最大可能、最有效地找到某个特定目标的理论和方法。通常用于军事目标搜索、边防巡逻、搜捕逃犯以及军事情报检索等方面的运筹分析。武器射击运筹理论 关于武器系统射击效率及火力最佳运用的理论。主要用于武器系统的设计、研制与使用过程中的毁伤效果计算、精度分析、靶场试验及综合评价等方面的运筹分析。兰彻斯特方程 描述敌对双方交战过程中兵力变化关系的微分方程组。包括第一线性律、第二线性律与平方律。用以揭示在特定的初始兵力兵器条件下,敌对双方战斗结果变化的数量关系。主要用于作战指挥、军事训练、武器装备论证等方面的运筹分析。军事模型与模拟 对军事问题的抽象描述与仿真。军事模型是现实世界军事活动本质特征的近似描述,而不是全部属性的复制。模拟是指运用模型进行实验的过程。作战模拟是作战对抗过程的仿真实验。广泛应用于各类军事问题的运筹分析。相关的理论与方法 在研究解决军事运筹问题中,还经常用到一些相关理论和方法,如模糊数学、系统动力学、决策支持系统等。应用理论 随着自然科学与军事科学的不断发展,军事运筹学在军事领域中的应用研究日益广泛和深入,在各专门领域运筹分析实践的基础上,已经或正在形成一系列面向专门领域的理论和方法,主要有:军事战略运筹分析 对与军事战略有关的全局性问题进行定量研究和方案选优的理论和方法。它涉及的问题包括:战略环境、战略目标、常备力量与后备力量建设、国防动员体制、战略后勤、国防经济、军事外交、军备控制和裁军、军事威慑与军事冲突、局部战争与全面战争、常规战争与核战争等方面的分析、预测和评估。由于战略问题不确定因素多,有些问题难于单纯用定量方法解决,因此需要定量分析与定性分析结合,计算机与人的判断结合。国防科技发展运筹分析 对国防科技发展的方针、政策、目标、规划等有关问题进行定量分析和方案选优的理论和方法。可用于解决诸如重大项目评价、国防科技投资方向以及新技术在国防中应用的可行性研究等问题。作战运筹分析 对作战的有关问题进行定量分析和方案选优的理论和方法。内容主要包括:综合分析判断敌情、评估交战双方作战能力、优化兵力编成、部署和协调作战及各种保障计划等。主要用于作战辅助决策等。军事训练运筹分析 对军事训练的组织与实施进行定量分析和方案选优的理论和方法。主要内容包括:训练体制和训练内容、训练的组织实施、训练效果评估等方面的论证分析。后勤保障运筹分析 对后勤保障进行定量分析和方案选优的理论和方法。内容主要包括:后勤指挥、军费需求与分配、武器装备保管与维修、卫生勤务保障、军队运输方面的优化分析等。武器系统运筹分析 对武器系统的发展、部署和使用进行定量分析与方案选优的理论和方法。主要内容包括:武器系统作战效能、武器系统全寿命费用、武器系统费用效能、武器系统可靠性、易损性与生存能力等方面的分析、预测与评估等。军队组织结构与干部管理运筹分析 对军队组织的各部分或要素的组合方式与干部队伍结构、需求和规划控制等进行定量分析与方案选优的理论和方法。涉及的问题包括:军队整体的宏观分析与具体单位的微观分析;军队结构的控制幅度、指挥层次、职权区分、单位编制、相互关系以及干部编制结构、培养任用、流动规律、考核评估、进退升流等管理方面的分析。与相关学科的关系 军事运筹学是不同领域的科学家运用自然科学、社会科学、军事科学的相关理论,在研究分析军事问题的运筹实践活动中产生的边缘学科。它与数学、物理学和电子计算机技术等有着密切联系,在军事科学领域中与相关学科也有着密切的关系。与军事系统工程的关系 军事运筹学与军事系统工程,都是在早期作战研究的基础上发展起来的。它们都强调定量分析和整体效益,注重优化决策等。但军事运筹学侧重于定量分析现有系统的作业情况,而军事系统工程则是以定量与定性相结合的方法,解决工程技术及其他方面的组织管理技术问题。有的学者认为军事运筹学是军事系统工程的基础理论,也有的学者认为两者同多

硬盘存储空间的大小怎么计算

楼主你好:

理论计算,操作系统计算方法:1T=1024,G1G=1024M,1M=1024K,1K=1024字节(Byte)
硬件厂家计算方法:
1T=1000G,1G-1000M,1M=1000K,1K=1000字节(Byte)
这样就导致我们买回来的硬盘或者U盘在实际使用时,实际空间减少。。。

希望能帮助到你

⑹ 如何计算仓库最大容量

算仓库最大容量没有意义的。没有仓库傻到把整个仓库都放满的,那你的运作就一塌糊涂了。

⑺ 运筹学的基本内容

运筹学的具体内容包括:规划论(包括线性规划、非线性规划、整数规划和动态规划)、图论、决策论、对策论、排队论、存储论、可靠性理论等。