当前位置:首页 » 服务存储 » 存储的样品量达到最大值
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

存储的样品量达到最大值

发布时间: 2022-08-17 09:41:43

㈠ 加工处理类样品及采集要求

1.基岩光谱分析样(Gp)

地化剖面或地质剖面测量中的基岩光谱样品主要用于了解各类地质体、各填图单元地质体等的主要成矿元素的含量及其变化特征,并发现高值岩性、高值区段或是特定的高值地质体,总结填图区各类地质体的背景值和值区段等信息,提供找矿信息。

基岩光谱样品的采集主要在剖面上进行,剖面中每一岩性层或与矿化作用有关的地质体都要进行基岩光谱样的采集。对重要的间层、夹层等可适当加密采集。样品质量一般为50g。当剖面中某层岩性较单一时,通常情况下至少每100m采集一样,并采用多点小拣块组合成一样更有代表性。光谱分析元素是各图幅或各资源靶区的地质体,尤其是主要矿化类型和已有的区域性异常元素而确定,分析元素一般10~15个为宜。所选用分析方法检出限、报出率、准确度,精度应达到1∶5万化探规范要求。

2.微体化石样

微体化石(含小壳化石)是指大小从1μm~1cm的化石,主要包括有孔虫、介形虫、纺锤虫、钙质超微体浮游生物、牙形刺(锥齿类)、放射虫、硅藻、硅质鞭毛藻、孢子、花粉等。微体化石样一般都需要通过方法处理制样,才能进行光学显微镜及电子显微镜观察。主要用于研究古生物的分类、命名及进化特征,确定地层的时代及地层对比,研究古海洋、古气候和古环境等。多用在地层较厚、动植物化石较少的前寒武纪地层及中新生代地层。采样要求如下:

1)研究化石年代变化,须沿着地层层序的方向(厚度方向)分层分别采样(切层采样法)。

2)研究化石环境变化,须顺着同一地层展布的方向分别采样(顺层采样法)。

3)不论是顺层采样或切层采样,各采样点的间距应大致相等。样品间距根据研究的精度而定,一般为10~100㎝。

4)有孔虫、介形虫、纺锤虫、浮游生物等样,主要采泥质、泥砂质及钙质岩;牙形刺样主要采泥质岩、钙质岩及硅质岩;放射虫、硅藻等样主要采泥质岩、硅质岩;花粉、孢子等样主要采泥质岩、炭泥质岩及泥炭、煤。此类样品尽量采集于颜色较暗的间层或夹层中,这样获得化石的概率要更大些。

5)若在地层剖面中采样,应按顺序逐层采取,每个采样点沿地层展布方向以数十厘米至数米的间距,取几十立方厘米的沉积物,聚合成一个样品。花粉、孢子鉴定样要求重量较小,一般为200g左右。

6)路线调查时,可对某些地层作适量采集。按一定的间距进行采集,原则上在有利于赋存孢粉厚度较薄的岩层中进行,在地层分界线的上下应加密采集;在不利于孢粉赋存的夹层中,可适当放宽采集,甚至可不受采样间距限制。通常在厚约10m的单一岩层中,仅在其上下界线处各取一个样,中部大致以相等间距取1~2个样;在厚约100m的单一岩层中,可在上下界线处以3~5m间距连续取2~3个样,然后以10m间距在中间部位采集;在厚1000m以上、岩性基本相同的岩层中,可在相邻层位交接处以5~10m间距连续取3~4个样,余下的以30m间距连续取样。

7)野外所采样品要求岩石新鲜、未风化,样重0.5~1kg。采集方法可用拣块法或刻槽法。样品应妥善保存,严防上下层位样品混染。

8)对于疏松的土质样品,在野外须用试样袋封装。

9)每个样品都要用清洁、坚实的牛皮纸包装好,或置于密封容器内。

3.人工重砂(副矿物)样(RZ)

主要用于了解岩石(或矿石)中副矿物的种类及含量,对岩石进行分类、对比;根据副矿物的各种标型特征,研究矿物形成时的物理、化学条件及岩石成因;挑选单矿物作其他用途测定(如单矿物的化学分析样、同位素年龄样等);发现矿化异常等。采样要求如下:

1)样品要有代表性,一般在同一露头用10块左右的标本聚合成一个样品。

2)样品要纯净(无包体及脉体)。

3)用于岩石学研究的样品,一般应当是未遭受风化、蚀变、交代的新鲜岩石。采样方法可用拣块法、刻槽法、剥层法,样重10~20kg。

4)用于找矿或矿床评价的样品,可采用刻槽法或全巷法。

5)除采集原岩中样品外,有时还可在风化残积层中采取,样重按矿物分布均匀程度不同而定,一般为20~30kg。

6)挑单矿物的样品,其重量依单矿物的需要量而定。

7)同时还要采集岩矿鉴定、岩矿光谱及陈列标本等样品。

多数人工重砂样品在鉴定副矿物后,还要进行部分单矿物的挑选,用于测定同位素年龄样。随着ICP-MS技术的普及,近年来,常用单颗粒锆石进行U-Pb年龄测定。因此,采集此类人工重砂样品时,一定要注意保持样品的足够重量。一般情况下,样品粒度愈粗大者,获得单颗粒锆石的概率愈大,愈是酸性的岩石获得单颗粒锆石的概率也愈大,因此,对于花岗岩类单就挑选锆石而言,5kg左右就足够了,但同样粒度的辉长岩类要30kg以上,如是玄武岩类,样品重量最好在50kg为宜。送样时最好注明各类单矿物的挑选质量和数量要求,一般情况下,要求挑选的重矿物晶形要完好、颜色和大小尽量相近,表面干净。锆石等颗粒数量要求最好不少于100粒。同时要求实验室进行详细鉴定,对主要锆石进行晶体形态素描等。

4.岩石化学全分析样(简称全岩样,YQ)

主要用于了解岩石的化学组成,进行化学分类、命名;做矿物含量及参数的计算;研究岩石成分在成岩过程中的变化;研究岩石成分在时间、空间上的演化;判别岩浆岩的成因,恢复变质岩的原岩,研究沉积岩的沉积环境;研究岩石成分与成矿的关系等。采样要求如下:

1)样品要新鲜(研究风化、蚀变者除外)、纯净(不应有外来的包体、脉体等混入)。

2)一般采用拣块法,样品重量约2kg,粗粒、不均匀的岩石样品重5kg,采样点必须采薄片样进行对照研究。

3)一般用同一露头上5块左右的岩石小块聚合成一个样品。

4)有条件时,可对样品进行破碎、缩分,最后过200目筛,取50g送样;否则原样送出。

5)送样时要注明是硅酸盐样还是碳酸盐样(两者分析流程不同)。

6)实际工作中往往将岩石化学成分的研究与岩石矿物成分及微量元素,甚至与重矿物的研究相结合进行。因此,同时应采集岩矿鉴定、岩矿光谱、陈列标本和人工重砂样等。

5.岩石微量元素定量分析样(简称微量样,WL)

微量元素一般是指岩石样品中含量不超过1%的元素,常以10-6表示。主要用于了解岩石(矿石)中微量元素的种类及含量,为找矿提供信息;了解成岩(成矿)过程中元素的地球化学行为;划分或对比地质体;为研究岩石的成因及温压条件提供信息等。

6.岩石稀土元素分析样(简称稀土样,XT)

主要用于判别岩石、矿石的成因;研究成岩、成矿过程中稀土元素的演化;计算岩浆熔体的氧逸度;发现稀土矿化等。

多数情况下,用于各项地球化学研究时,全岩样、微量元样、稀土样这3种分析结果总是要求配套性研究。因此,设计样品的数量等是最好做到一致性。样品采集时最好只采一样,确保样品足量,样品经加工后分别进行3项分析测试,这样既减少了多样采集的麻烦,又确保了同一样品岩性的完全相同,使得样品结果在用于各项地球化学研究时有很好的配套性。采样要求:①每个样品重500g左右;②样品要新鲜、纯净(无风化,无外来包体、脉体)。

7.K-Ar(钾—氩法)年龄样(K-Ar)

适合测新生代—中生代样品的年龄,主要用于测定未受后期热变质岩石的成岩年龄和研究成岩后的热事件等。由于矿物中氩(Ar)容易丢失,所以所测年龄常偏低。采样方法如下:

1)采未受后期热变质岩石中未蚀变的矿物。

2)常用的测定对象为云母类、角闪石类、辉石类、钾长石类、海绿石、伊利石、霞石及火山玻璃、玄武岩、隐晶质全岩。

3)取单矿物样时,时代越新样品越重,矿物含钾量越低则样重越大,测中、新生代单矿物样重25~100g,全岩样500g。

4)单矿物样品粒径>0.25mm,全岩样粒径0.3~1mm。

5)样品纯度98%以上。

6)样品野外加工时不能用酸碱处理及80℃以上温度烘烤。

8.40Ar-39Ar(氩—氩中子活化)年龄样(Ar-Ar)

该方法只需测定氩的同位素比值,分析精度高;可多阶段加热测定样品的结晶年龄及后期多次热事件的年龄;可测定硫化物的年龄。主要用于测定岩浆岩的结晶年龄及后期热事件,测定沉积岩的沉积年龄及后期热事件,测定变质作用的年龄和测定矿床中硫化物的年龄等。采样要求如下:

1)测定岩浆岩的结晶年龄,要采岩浆结晶时生成的含钾矿物:辉石(2g)、角闪石(2g)、云母类(0.5g)、钾长石(0.5g)、斜长石(2g),火山熔岩全岩样需250~500g,样品要求新鲜,未受后期的交代、蚀变、风化。

2)测定沉积岩的年龄,要采沉积同时生成的含钾矿物,如海绿石(0.5g),尽量挑选绿色粗大颗粒。

3)测定变质作用的年龄,要采变质形成的新生矿物如云母类(0.5g)、钾长石类(0.5g)、石榴子石(2g)、透辉石(2g)、绿帘石(2g)等,样品要未遭受后期的再改造。

4)测定矿床的成矿时代,要采与矿床同期的硫化物,如黄铁矿、黄铜矿、方铅矿、辉钼矿等,样品重量为5g。

5)样品纯度要接近100%,尽量挑选1~2mm级的样品。

6)样品加工时不能用酸碱处理及高温烘烤。

9.U-Th-Pb(铀—钍—铅法)年龄样(U-Pb)

适用于中生代及其以前的样品。一组样品数据可以进行多种数学方法处理,信息量大。采样要求如下:

1)在新鲜岩石中碎样、分离,挑选含铀单矿物,分离过程要严防铅污染。

2)送样对象主要为晶质铀矿、锆石、独居石及磷灰石。

3)每种单矿物应按物性不同、色调不同、粒度不同、晶形不同等,分别进行测定,每份样品重1.5g~2g,纯度>98%。

10.Rb-Sr(铷—锶法)年龄样(Rb-Sr)

适用于中生代及以前的样品。可同时获得岩石的年龄数据及物质来源信息,主要用于用一组同源、同期的中酸性岩及沉积岩的全岩样品,测定、计算岩石的生成年龄;用一组遭受同期变质的单矿物样或变质矿物样,测定、计算变质年龄等。采样要求如下:

1)测定中、酸性岩的生成年龄,采同期、同源、不同岩性的标本10~30块,对于成分、结构均匀的岩石,样品重1kg左右;对于不均匀的岩石,样品重量可加大到10kg。样品要新鲜,避开外来包体及脉体。

2)测定沉积岩生成年龄,采同层位的海绿石或泥质页岩标本10~30块。海绿石样重1g,纯度>90%;全岩样重1kg,尽量避免混有陆屑成分及后期风化蚀变。

3)测定变质年龄,采同地点、同变质期的数种单矿物3~6个,每个单矿物样重1g,纯度>98%。

4)全岩样需研磨至200目,缩分至30~50g送样,注意防止样品污染。

11.Sm-Nd(钐—钕法)年龄样(Sm-Nd)

适用于古生代以前岩石和超基性岩年龄。由于岩石中的Sm、Nd保存好,所以比其他方法要更可靠,可同时获得岩石的年龄数据及物质来源信息。主要用于测定岩浆岩、变质岩和沉积岩的原岩年龄,研究岩浆岩的物质来源等。采样要求:①采同期、同源全岩标本5~10块。②样品研磨至200目,缩分至50g送样。

12.14C(碳法)年龄样(14C)

主要用于测定200~50000年间含碳物质的年龄,是获得最新年龄较好的方法。采样方法:①测定对象为沉积泥炭、动植物化石、陶瓷文物等。②样品重量约0.5g。

13.热释光样(HL)

测定受热受光样品,如古陶瓷、断层泥和黄土、沙丘等(测石英、长石),测年范围1000a~1Ma;采样深度为30~40cm,采样需避光进行,不透光包装。样重1000g左右。

14.光释光样(OSL)

测定河流相、洪积相、湖相、海相、冰水相、风积物、火山喷发物及断层摩擦生热烘烤的产物及考古样的最后一次曝光或受热以来所经历的年龄,测年范围2000年~50万年。采样要求基本同热释光样。

15.裂变径迹(FT)

测定对象磷灰石、锆石、硝石、云母、火山玻璃等。测年范围几百年至几百万年。采样要求:①样品要新鲜,矿物充分结晶。②测抬升速率沿不同高度系统取样,样品量足以保证选出几十个矿物颗粒,送单矿物100~500颗,送岩石2kg。

16.氧同位素(δO)

测定样品的氧同位素组成和同位素平衡温度取样。根据用途不同而不同:

1)计算成岩温度常采同一世代矿物对,岩石要新鲜,矿物纯度98%以上,矿物样重0.2g;计算碳酸盐岩古海水温度要用腕足类及软体动物贝壳。

2)判别岩石物质来源采单矿物(或全岩),岩石要新鲜,矿物纯度98%以上,粒径小于0.3mm。判别水的来源主要用矿物包裹体。

3)测定第四纪古气候变化,采集冰块和雪装入玻璃瓶,蜡封,样品体积50~100ml。

17.氢同位素(δD)

用于计算温度,判别物质来源,结合氧同位素研究地下水成因。测定对象主要有云母、角闪石、蛇纹石、天然水,测定包裹体的矿物有石英、萤石、硫化物、碳酸盐等;样重,单矿物20~50g,水10~15ml。

18.碳同位素(δC)

测定碳同位素组成,δ13C,用于计算温度,判别有机碳和无机碳、淡水和海水碳酸盐岩。采样对象主要为碳酸盐岩、含石墨变质岩及含碳地下水、气体和植物,样重0.5g,气体5~10ml;测定包裹体碳同位素组成的矿物主要有石英和硫化物,样重150g。

19.铅同位素(δPb)

分析铅同位素比值。主要用于研究成矿物质的来源和矿床成因,计算含铅矿物的生成年龄等。测定矿物主要为方铅矿、闪锌矿、钾长石,样品要新鲜,取矿物重1~2g,同一地质体应取三个以上样。采样要求如下:

1)测定矿物主要是方铅矿、闪锌矿,特殊情况也可以用钾长石、黄铁矿、磁铁矿,矿物中不能有呈固溶体状态的硫化物。

2)样品要新鲜,不能在风化、淋滤带及放射性强的地段取样。

3)样品重1~2g,纯度>98%,不碾碎。

4)由于同一地质体铅同位素组成有一定的变化范围,因此同一地质体的样品应在3个以上。

20.硫同位素样(δS)

主要用于判别成岩、成矿物质来源,计算成矿温度等。采样要求如下:

1)判别成岩、成矿物质来源的样品,一定要采与研究对象同源的硫化物样品;作岩体与矿体硫化物对比的样品,最好采同一种矿物;作为试样的矿物不能有固溶体状态的其他硫化物存在。样品质量0.5g左右,粒度0.2~0.4mm,纯度>98%。挑样时避免高温烘烤,同一地质体的样品,至少应在5个以上。

2)计算成矿温度的样品,要采硫化物(或硫酸盐)的矿物对,样品应经矿相学研究,证实确属同一世代的共生矿物,为保证同位素分馏达到平衡,应采集2~3对矿物来计算温度,互相验证。最常用的矿物对是黄铁矿—方铅矿、闪锌矿—方铅矿、黄铁矿—闪锌矿。样品质量0.5g±,粒度0.2~0.4mm,纯度>98%,挑样时避免高温烘烤。样品不能含有其他硫化物包体或固溶体。

21.电子探针X射线显微分析样(DT)

主要用于矿物中微小固体包裹体成分测定,矿物环带结构的成分研究,金—银连续固溶体的成分分析,铂族矿物的成分分析,矿物中元素成分及赋存状态,微量元素的地球化学特征,造岩矿物常量元素的快速分析等。制样要求如下:

1)样品不得大于试样座的内径(一般直径为10mm)。

2)样品表面应尽可能光滑平坦,尤其在做定量分析时,样品表面磨得越平越好。

3)要防止样品表面的污染(甚至用手也不能摸),磨好的样品不能在空气中久置。

22.X射线衍射粉末样(Xf)

主要用于用粉末数据鉴定未知矿物;用不同温度下的衍射反映特征,鉴定黏土矿物的种属;测定造岩矿物的成分、结构状态等。采样要求:①一般样品挑几粒矿物晶体或晶体碎屑即可,黏土矿物鉴定采黏土100g±送样。②研究地质体造岩矿物的成分、结构,需要对同一地质体采集3个以上的样品,因为同一地质体的成分、结构也会有一定的变化。

23.激光光谱分析样(Gg)

激光光谱分析可以检测电子探针所不能检测的低浓度微量元素,其制样简单,分析简便快速。主要用于定性分析,包括“新、微、细、杂”矿物的鉴定,矿物中微量元素(含量万分之几)的测定等。定量分析很困难。制样要求如下:

1)不需要特殊制样,在显微镜载物台上能放下的光片、薄片、重砂、手标本都可进行分析。

2)只有固体样品才能进行分析(粉末样及液体样需作某些处理)。

3)样品表面要磨光,切忌污染。

4)样品分析区最好在1μm以上,并应在样品上圈出。

24.古地磁样(GD)

主要用于测定样品的极性,对地层进行划分和对比;测定样品的磁极方位,了解古地磁极或地块的迁移;测定岩石的天然剩余磁场,计算古磁极方位,对比极性事件等。采样要求如下:

1)样品应垂直于地层走向逐层采取,采样间距1~10m,侵入岩在中心相采10块左右。

2)样品主要采磁性较高的岩石,如基性岩、超基性岩、红色沉积岩、黄土、黏土及花岗岩类等。

3)样品要新鲜,未经后期变质、蚀变、交代、破坏。

4)每块样品大于12cm×12cm×12cm,保证能在室内切成四块4cm×4cm×4cm大的立方体。

5)采样前必须在样品某一平面(层面、片理面、节理面)上标明该面的倾向及倾角,误差不得超过1°。

6)送样时要附采样地质图及剖面图,送样单要详细写明采样位置及经纬度。

25.土壤样(TR)

分析与矿产、农业、牧业、林业、污染、环境生态有关的元素和成分。样品采集系统采集有机层、淋积层、母质层,样品质量100~150g。

常用地球化学测试方法的测试样品类型和送样要求简列见表9-6。

续表9-6

注:1ppm=10-6

㈡ 色差仪储存的样品达到最大数量怎么弄

把它挑逗最大的储存量手指的东西自然就多了,所以要检查也方便了。

㈢ 怎样计算样本量是否足够

您好,具体地说,以确定适当的样本大小有一个公式的基础上,计算样本量,我们知道,样本大小不依赖于多少整体,但根据变化(1)研究对象的范围; (2)要求或允许的大小的误差; (3)置信度所需的推断。也就是说,当正在研究更复杂的现象,更大的差异,样品的量越大;当要求的精度是较高的要求,可以推断出,较大的样本大小。因此,如果推论分别在不同的城市,对这一论点的原则“城市花费更多,一个小城市开刀”是错误的。抽样是一种浪费在大城市也一样,在一个小城镇不能由此推断样品的值太小。
考虑样本大小中的要考虑定性因素的条件是:的决策,该研究的性质的重要性的性质,变量,数据分析的数量,在类似的研究中使用的样品的量,发病率,完成率和资源限制。具体而言,更为重要的决定,需要更多的信息和更准确的信息,这需要更大的样本;探索性研究,样本规模普遍较小,以及研究为描述性调查的结论,则需要更大的样本;收集许多变量数据,样本量要大一些,以减少抽样误差的累积效应;如果您需要使用多元统计方法对复杂数据的高级分析,样品尺寸会更大;如果您需要在特定的详细分析,像许多类别,而且还需要大量的样本。对于子样本分析比总样本分析是有限的,所需的样本大小要大得多。
总之,在确定抽样方法和样本量,在必要时考虑调查的目的,调查的性质,精度要求(抽样误差)等,还要考虑实际控制操作可以执行,非抽样误差,资金预算。专业调查公司在这方面根据你的情况和调查的性质,全面权衡,以达到最佳的样本大小的选择。

㈣ 样品量为什么不能过大

样品量不能过大的原因:样本量过大则会使试验的规模过大,增加实际工作的困难,从而大量浪费人力、物力和时间;样本量过大还会增加试验条件控制的难度,使得样本人群包含较多的混杂因素,对试验结果造成影响。

样本量过小不能达到所要求的检验效能,很难得到试验中组与组之间存在的真实差异,即得出假阴性或假阳性的结论;因此如何正确估算临床试验的样本量是临床研究中进行试验设计的重要问题之一。


确定样本量的大小

确定样本容量的大小是比较复杂的问题,既要有定性的考虑也要有定量的考虑。从定性的方面考虑样本量的大小,其考虑因素有:决策的重要性,调研的性质,变量个数,数据分析的性质,同类研究中所用的样本量,发生率,完成率,资源限制等。

具体地说,更重要的决策,需要更多的信息和更准确的信息,这就需要较大的样本;探索性研究,样本量一般较小,而结论性研究如描述性的调查,就需要较大的样本;收集有关许多变量的数据,样本量就要大一些,以减少抽样误差的累积效应。

如果需要采用多元统计方法对数据进行复杂的高级分析,样本量就应当较大;如果需要特别详细的分析,如做许多分类等,也需要大样本。针对子样本分析比只限于对总样本分析,所需样本量要大得多。

以上内容参考:网络-样本

㈤ 选购分析仪器应注意哪些方面

分析仪器的选择对实验的要求和使用单位的其他方面都很重要,直接涉及到公司的利益,一般用

户可以根据以下几点来选购:

1、根据企业产品需要订购

根据企业产品需要,选购仪器的目的是为了保证企业自身产品质量得到控制,所以要讲究仪器对企业

产品的适应性,像炉前测试尽可能测试时间要快,来料检验最好要能打印测试报告,而成品检验则要

考虑到仪器的权威性。而单一产品如钢材、钢丝绳等生产单位对仪器的专业性要求可适当降低,而像

铸造铜合金、铝合金、不锈钢等企业就应特别注重仪器的专业性,一般说来专业性强的仪器测试较精

2、选购质量稳定、服务及时的产品

在仪器的质量、价格和服务方面主要是考虑仪器供应厂商的服务能力,目前高档产品仪器像大型直读

光谱国外着名产品的质量要优于国内产品,价格上也不具可比性,国内中档仪器产品质量、性能多大

同小异,功能上略有差异。

3、根据企业规模决定订购

根据企业规模对仪器需求一般分为大、中、小三类。大型企业一般可配置高频红外碳硫分析仪,直读

光谱仪二种仪器,化验室造价可控制在100万元左右。像条件比较简陋、经济暂不富裕的企业可以考

虑配置非水法碳硫分析仪、721型分光光度计、国产分析天平来筹建化验室,筹建一个15平方的化

验室总价低于一万元。像目前我国国内绝大部分企业,既要满足质量控制需要,又要做到测试及时准

确,可配置一台自动化程度较高的气体容量法碳硫高速分析仪和一台微机元素分析仪,整个化验室造价

在1.5万元至1.8万元人民币之间。有色金属生产厂家若不需测定碳硫元素的含量,只要选购一台微机

多元素分析仪和称样天平,加上全部化学玻璃器皿和全套化学试剂,总价也就在一万元左右。

4、选购价格合理的产品

在服务上一般来说厂家比商家服务质量要好,有销售网点的服务比较及时,但还要看各个厂家对社会

的公开服务。承诺内容、特别考虑仪器保修期外的保养和零配件、耗材的供应。

㈥ 样本容量需要多大才能最大限度地满足调查要求

在95%的置信度下,允许误差5%,样本容量需要400才能最大限度地满足调查要求。
样本容量又称“样本数”。指一个样本的必要抽样单位数目。在组织抽样调查时,抽样误差的大小直接影响样本指标代表性的大小,而必要的样本单位数目是保证抽样误差不超过某一给定范围的重要因素之一。因此,在抽样设计时,必须决定样本单位数目,因为适当的样本单位数目是保证样本指标具有充分代表性的基本前提。
样本容量的大小涉及到调研中所要包括的单元数。样本容量是对于你研究的总体而言的,是在抽样调查中总体的一些抽样。比如:中国人的身高值为一个总体,你随机取一百个人的身高,这一百个人的身高数据就是总体的一个样本。某一个样本中的个体的数量就是样本容量。注意:不能说样本的数量就是样本容量,因为总体中的若干个个体只组成一个样本。样本容量不需要带单位。
在假设检验里样本容量越大越好。但实际上不可能无穷大,就像你研究中国人的身高不可能把所有中国人的身高都量一量一样。
样本容量问题
回归分析是从已经发生的经济活动的样本数据中寻找经济活动中内含的规律性,它对样本数据具有很强的依赖性。样本的容量太小会导致参数估计值的大小和符号违反经济理论和实际经验。从建模需要来讲,样本容量越大越好,但收集与整理样本数据是一件困难的工作,因此,选择合适的样本容量,既能满足模型估计的需要,又能减轻收集数据的困难,是一个重要的实际问题。
(1) 最小样本容量
所谓“最小样本容量”,即从普通最小二乘法原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限,它是:n≥k+1
其中,k为解释变量的数目。
(2) 满足基本要求的样本容量
一般经验认为,当n≥30或者至少n≥3(k+1)时,才能满足模型估计的基本要求。

㈦ 有关使用<sup></sup>C年龄数据的几个问题

业渝光王雪娥刁少波

(地质矿产部海洋地质研究所)

14C测年已广泛应用于晚第四纪地质学、考古学、海洋学、古地理和古气候学等学科,全世界一百多个能够进行14C测年的实验室每年的14C测年数据多达1~2万个。如何正确使用这些数据,是地质人员关心的问题。我们试就一些基本概念问题作一说明,至于地质背景和样品的代表性以及14C的起始比度等问题,因篇幅所限,恕不赘述。

114C年龄和真实年龄

14C测年是放射性同位素测年中最精确的一种,准确度可达99%以上,这是否意味着样品的真实年龄和14C年龄之间的误差也在1%以下?显然不是这样。因为上述14C年龄的准确度是经过与真实年龄间的校正之后得到的,目前大多用树轮样品的测量结果来校正,树轮的年龄可以认为代表真实年龄。遗憾的是,目前还没有发现已经用年轮分析鉴定并超过10000a的树木样品,所以大多数树轮校正表的使用范围都不超过8000a。1982年美国几个有影响的14C年龄实验室共同分析并发表了一个最详细的校正表,其示意图见图1。

图1树轮校正年龄(AD-BC)

图2真实年龄与准确年龄间关系图

由图1可以看出14C年龄从距今3000a向前就逐渐呈现出较大的偏差,对于8000a以内的样品均可由此得到校正,校正后14C年龄与真实年龄间的偏差在1%以下。目前国内地质样品的14C年龄都不用树轮校正,也没有用δ13C校正,在这一相同的时间尺度上,数据间也可以进行对比。但是,由于某些课题的特殊要求,需要使用不同的时间尺度,例如14C年龄和树轮年龄、冰层年龄、纹泥年龄以及有记载的考古年龄等,为了便于对比,就一定要进行校正(详细的校正方法见《Radiocarbon》,Vol.24,No.2,1982,p.103~119)。由此可见,由于种种因素的影响,14C年龄并不是样品的真实年龄,它们是两个完全不同的概念。那么对于8000a的样品的14C年龄的准确度应如何评价?根据与其他独立测年方法的年龄数据的比较,一般认为14C年龄与真实年龄间的差别不大于10%,可能偏年轻。

还有一个值得注意的问题是,使用不同的14C半衰期也会得出不同的年龄。国外文献多使用的14C半衰期为5568a(Libby半衰期),我国各实验室根据1975年全国同位素地质会议建议,使用的新半衰期是5730a。用这两个半衰期计算出的年龄值相差3%,在与国外文献中的14C年龄数据对比时,如果国外采用的是Libby半衰期,就需要将其14C年龄数据乘以1.03才能对比。

2年龄误差范围±δ

14C实验室在提交测年报告时,要标明年龄误差范围±δ,例如,距今20000±350a。有人认为14C测年的误差小于1%,δ值就不应大于20000a的1%,即200a;还有人认为该样品的年龄为19650~20350a。这些看法的产生,是由于对14C年龄数据误差的定义不够了解所致。如果测量的放射性强度很低,衰变统计的涨落特别明显,统计误差往往占测量误差的主要部分,所以现在的国内14C实验室提供的年龄误差仅仅是放射性测量的统计误差。20000±350a仅表明测量的年龄在19650~20350a间出现的几率为68%(1δ范围内),在19300~20700a间出现的几率为95%(2δ范围内)。这个误差概念与14C年龄的真实年龄准确度是截然不同的,不能混淆,如图2所示。

3统计误差δ值的大小

有的人在查阅文献时发现,报道的14C年龄差不多,而提出的误差δ有大有小,由此就怀疑δ大的数据是否可靠。实际并非如此,由误差公式可知,δ的大小与被测物质量(在液闪计数法中即合成苯)多少、测量时间的长短、仪器的本底值高低有关。样品量充足、合成苯多、仪器本底值低,延长测量时间或增加重复测量次数都可以减小δ。某些样品的14C年龄虽然相差不多,但是上述各个条件可能不尽相同,因而δ的大小不同,这是可以理解的。如果统计误差比其他实验误差小,用延长测量时间和增加样品量的办法以减小统计误差就没有多大意义。实际上延长测量时间不难将统计误差缩小到几十年,但这并不意味着总的测量精度也达到了几十年。

4测量的精度同一样品如果在不同的实验室内检测,得出的数据往往不完全相同,这是什么原因呢?首先,要考虑送测样品的均一性;其次,各个实验室的化学制样流程、操作条件、仪器稳定性都不完全相同,测量的结果不可能完全一致。我国的标准样品,特制均一的“中国糖碳”是由国内三家经验丰富的14C实验室标定的,尽管采取了许多措施避免统计误差以外的实验误差,但是,最大偏差仍达1.5%左右。只有通过大量的实验误差统计分析工作,才能判断不同的14C年龄数据中哪一个更接近真实年龄。

5样品的用量

在条件许可的情况下,应尽可能地多送样品,以便实验室能对这些样品做更好的预处理,使样品具有更好的代表性。一般文献中提出的参考样品数量,是对8L CO2气体计数管而言,国内的实验室目前全部采用液闪计数法进行14C测量,一般一个样品需要10~12L CO2气体,故样品用量较国外文献中介绍的偏多。样品量较少,测量的精度必然降低。一般做一个14C样品需要在处理后仍含有5~10g纯碳的物质,所以应根据样品的含碳量来计算样品的重量,原始样品应为处理后样品的2~3倍为宜。

614C测年的最大年限

采用不同的仪器和不同的测定方法,14C测量的最大年限是不同的。液体闪烁计数法14C测定的最大年限,一般为4万a左右。仪器的本底值低,测量的年限长一些;仪器的本底值高,测量的年限短一些。如果样品量不受限制。使用热扩散富集技术后,可测到7.5万a。采用加速器法,可测到10万a。我所实验室使用国产FJ-2101型液闪计数器,测量的最大年限为3万a;使用日本Aloke公司的LB I低本底液闪计数器,测量的最大年限为4万a。在这个年龄范围内,数据是可靠的。

综上所述,尽管14C测年是目前放射性同位素测年中最精确的一种,但仍受到种种因素的影响,只能做到14C测年方法的假设前提基本合理。就地质样品而言,由于地质事件本身时间较长,含碳物质形式多样,在地质过程中受到外界影响又较大,因此,在使用14C年龄数据时,应与错综复杂的地质背景紧密地联系在一起,并应与其他年代学数据配合使用,才能发挥14C年龄数据应起的作用。

(海洋地质动态,1985,第7期,7~9页)

㈧ 水产品罐头储藏标准温度

品保质期的确定 1 食品保质期的确定
目前国内省级疾控中心是这样做的:
将产品放在恒温恒湿培养箱中,质量卫生指标每月测一次,如果三个月各项指标稳定,则产品的保质期可定为三年.
培养条件:温度约37,湿度约75%.
当然,如果你的产品质量卫生指标本来就不理想的情况下,你可以适当缩短检测周期.相应产品保质期可以推算
在做饮料保质期实验时,一般设置三个温度,即将样品分别存放于5度、25度、37度三个恒温箱中,5度的样品作为标准样品或对照样品,25度的样品作为模拟货架上的样品,37度的样品作为环境破坏性样品。每隔5天左右对37度条件下的样品进行品评,品评时与5度的样品进行比较。当37度下的样品出现与5度的样品有较大差异或出现不能被接受的差异时,37度条件下的样品停止实验,那末在37度条件下样品存放的时间乘以3得到的时间即为产品的大致保质期。25度条件下的样品继续进行实验,当25度下的样品也出现与5度条件下的样品相比不能接受的差异时,25度条件下的实验也停止,其保存的期限作为产品的实际保质期。
饮料的保质期试验应分成三块:微生物、外观、口感,应分别设计试验来比较。微生物预测较简单;外观主要是发现变色、沉淀、分层问题,试验者首先要根据产品配方、工艺、经验预期会最可能出现的问题,如无色饮料的变黄、有色饮料的退色,奶类的沉淀加剧及分层,用37℃与冷藏样来预测沉淀分层问题,50℃与冷藏样来预测变色问题。口感要分是否柑橘属、是清淡还是浓郁风味,模拟市场销售环境来预测。
这主要是提供一种思路和方法。方法是大同小异的,但应用起来还要具体产品具体分析。
加速试验(也就是破坏性实验)一般都会做,和温度与时间有直接的关系,比如说,在酸奶中做37度保温试验一星期,证明市场上可保持半个月。纸巾在54度下半个月,证明可保持一年,若在37度下保温一个月,证明可保持一年.
我知道有一种实验数学的方法,可使实验次数以最小的代价取得最优的结果;即优选法(又称黄金分割法);或称0.618法;此法为做实验最基本,也是最简单的方法;其实这种方法在证券分析中也经常使用!早在六、七十年代由数学家华罗庚推出,当时即被普遍使用;
具体地讲,即您在做各项试验时,比如:假设您在做酸奶37度保鲜试验时,如果保温一个月后早已变质;此时您可以用30乘0.618的天数,即18.5天重新做此实验;结果如果仍已变质,则用18.5天继续乘以0.618,即约11.5天进行实验;而如果在18.5天还没有变质,则您可用30天减18.5天后的数乘以0.618再加上18.5天,即约25天做此实验,如此反复;就可以以最少的实验次数,取得最佳的实验数据,从而确定出您的食品的实际保鲜数据;
运用此实验法也可用于食品配方的研究工作;98年我曾用此法帮一个朋友进行过“采石茶干”配方的实验;只做了六次实验,用了不到六十斤黄豆(还是因为磨浆机较大,一次最少即需用10斤)即取得了最佳的配方数据;做出来的茶干较市面上的不论是韧劲还是口感均有大幅度的提高;
食品储存期加速测试及其应用
摘要:利用化学动力学的原理,改变储存环境来缩短食品储存期,从而在短时间内可得到长寿食品(一年以上)的储存期,以及应用于食品稳定性的测试,确保食品的商业储存期。
A.基本原理
食品储存期加速测试的原理就是利用化学动力学来量化外来因素如温度、湿度、气压和光照等对变质反应的影响力。通过控制食品处于一个或多个外在因素高于正常水平的环境中,变质的速度将加快或加速,在短于正常时间内就可判定产品是否变质。因为影响变质的外在因素是可以量化的,而加速的程度也可以计算得到,因此可以推算到产品在正常储存条件下实际的储存期。
由于许多包装食品通常可以储存超过一年,评价对储存期产生影响的外在因素,如产品本身配料的改变(采用新的抗氧化剂或增稠剂),加工过程的改变(采用不同消毒时间或温度),或包装材料的改变(采用新的聚合体薄膜),都会希望储存期尽可能持续到产品所要求的时间(商业储存期)。但许多公司都等不起这么长的时间来知道这些新产品/新加工过程/新包装材料能否提供足够的储存期,因为会影响到其他决定(如新工厂的合同,采购新设备,或者安排供应新包装材料等都有时间限制)。因此需要有一些方法来加快产品储存期的测试,食品储存期加速测试(ASLT)因此产生了。制药工业早就广泛应用类似的方法来进行储存期及药效测试。
2 食品保质期的确定
在给定的条件下,产品质量的衰退与时间成反比例。温差为10°C的两个任意温度下的储存期的比率Q10=温度为T时的储存期 / 温度为(T+10°C)时的储存期,对储存期有极大的影响:

Q10对储存期的影响
储存期(周数)
温度°C Q10=2 Q10=2.5 Q10=3 Q10=5
50 2* 2* 2* 2*
40 4 5 6 10
30 8 12.5 18 50
20 16 31.3 54 4.8年
* 假设50°C时的储存期为2周。
通常来说,罐头食品的Q10为1.1~4,脱水产品为1.5~10;冷冻产品为3~40。

B.食品储存期加速测试(ASLT)步骤
可采用以下步骤来设定食物产品的储存期:
c. 测定产品的微生物安全及质量指标;
d. 选择关键的变质反应,哪些会引致产品品质衰退,而这些品质衰退是消费者所不能够接受的,并决定哪些测试必须在产品试验过程中进行(感官上或仪器上的);
e. 选择使用的包装材料:测试一系列的包装材料,这样可以选择出一个最为划算的材料(即经济又满足一定的储存期)。
f. 选择哪些将作用于加速反应的外在因素,见下表所建议温度,必须选择最少2个。
ASLT建议储存条件
冷冻食品 脱水食品 罐头食品
- 40°C 0°C 5°C - 15°C 23°C(室温)
23°C(室温) -10°C 30°C 30°C - 5°C
40°C 35°C 45°C 40°C

r. 使用坐标曲线,记录在测试温度下,产品的储存有多久。如果未知Q10值,则必须进行全面的ASLT测试。
s. 确定测试的次数
f2=f1 Q10�6�2/10
f1:在较高测试温度T1下的测试时间(天,周)
f2:在较低测试温度T2下的测试时间(天,周)
�6�2:T1与T2的温度差
因为如果一个产品在40°C测试一个月,则30°C,Q10=3,产品需最少测试
f2=1x3(10/10)=3个月。
如Q10未知,最好进行多次测试,最少需要有6个资料点来将误差最小化,否则得到的储存期可信度就会贬低。
u. 计算各个测试条件下,储存的样品的数量。
v. 开始ASLT,把得到的资料画在坐标图上,可根据需要增加或减少取样的次数。
w. 从各个测试储存条件,评估K值或储存期并适当建立储存期图形,据此估算出正常条件下的储存期。
C.实际应用例子
因为我公司的产品主要是脱水汤料,选择两个储存条件:30°C/75%相对湿度和37°C/75%相对湿度。
- 感官测试方法按照国际标准方法ISO3972。
- 恒温恒湿装置:可采用德国产的VC0057型恒温恒湿箱,调整到所需的温湿度;或将玻璃干燥皿内干燥剂取出,放入氯化钠饱和溶液,再将它放到温度分别为30°C和37°C和恒温培养箱内,也可得到所需的恒温恒湿装置。
�6�1 无色、无味的饮用水。
�6�1 电炉或煤气炉。
�6�1 要求测试者回答的问卷。
�6�1 独立、隔音的测试区域,白色荧光灯。
�6�1 标准样(汤料产品,调料产品….)
�6�1 盘子、玻璃杯、汤匙。
将样品放入恒温恒湿装置内,每隔1.5~3个月评价一次(时间间隔根据产品的种类和储存条件不同而定),并与标准样相比较。
评价结果按以下评分:
5,- 产品的所有特征与标准样完全一致
4,5 产品可以接受,但与标准样相比较则有轻微差别
4,- 产品可以接受,但与标准样相比较则有些差别
3,5 产品可以接受,但与标准样相比较则有明显差别
3,- 产品既不能接受,也不能说不能接受
2,5 产品稍微有点不能接受
2,- 产品有点不能接受
1,5 产品很明显地不能接受
1,- 产品完全不能接受
将得到的结果进行平均。
分数3是可以接受的临界点,如果达到了这个分数就说明产品已到了储存期限了。
作为一个通用的标准,如果脱水产品(汤料,调料)分别在保持37°C/75%相对湿度和30°C/75%相对湿度的条件下储存3和12个月,仍可得到不低于3的分数,则此产品可被认为是合格的。
根据原理,脱水汤料产品可以根据以下ASLT资料所组成的坐标图来估算出标准储存条件下的储存期:

温度T°C 储存期LogSL
T1 LogSL1
T2 LogSL2
T3 LogSL3

标准储存温度StdT(°C) 标准储存期Log(Std SL)
D. 稳定性测试
同样,还可以利用这个方法对产品进行稳定性测试,以确保产品的商业储存期,
所用方法和仪器与以上相同,只是画的坐标图不同而已。用鸡粉为例,作出详细的检验,评估,分析,结论是此产品的商业储存期设为24个月是可以保证的。