‘壹’ 存储性能和空间利用率哪个重要
最大限度地挖掘存储系统的性能潜力是用户永远的追求,但是,面对众多性能优化技术,我们还必须考虑到底是性能重要还是空间利用率重要。在当前经济形势低迷的大背景下,挖掘现有存储系统的性能潜力成为用户的必然选择,不过追求性能只是一个方面。我们看到的现象是大多数存储系统的空间利用率还不到50%,而且存储控制器的处理能力也只用到一小部分,这些都是让用户不可接受的事实。在数据中心应用领域,通过服务器整合以及虚拟化技术,物理服务器的资源已经被最大化的利用起来,与此相反的是,存储效率低下的问题却成为用户的痛点。若要实现服务器虚拟化的高效率,存储系统就必须跟得上,这是一个必要的前提,因此服务器虚拟化应用推动着存储技术向更高效的方向发展。在虚拟化环境中,当前端服务器数量不断增加,后端存储阵列的不足便暴露出来,尤其表现在缺乏细粒度的分配和调动空间资源的能力方面。因此,如果用户希望对数据中心进行高度整合,那么服务器虚拟化技术和高效的存储技术二者缺一不可。存储效率是一个综合性的指标,实现最佳的存储效率意味着要在有效存储空间以及可用处理资源两方面都有出色表现,通常也是各产品之间相互竞争的重点。StorageIO高级分析师Greg Schulz说,“为了达到应用所需的IOPS能力,有些存储系统被设计得很大,通过大量磁盘的并发来提升IOPS,可是空间利用率却非常低,反之,追求空间利用率的最大化往往需要借助存储精简技术,比如压缩和重复数据删除等等,但是这些功能会对系统性能带来负面的影响“。因此,达成高效的存储就需要在容量和性能之间寻找一个平衡点,根据应用需求的不同,对容量、处理能力、性能以及成本进行控制和优化。保证存储效率有哪些基本条件优化存储系统的性能,本质上就是要尽可能地提高存储处理资源的利用率,同时尽量消除系统的瓶颈或阻塞。随着处理资源利用率的增加,剩余的处理资源以及响应额外处理请求的能力相应的就会降低。而且如果缓冲区太小的话,那么系统达到性能上限(瓶颈)的可能性就非常大。举个例子来说,一个平均处理资源利用率在 50%的磁盘阵列不太可能触及性能上限(瓶颈),而对于一个利用率达到80%的系统来说,这个可能性就要大得多。高效存储技术及其对性能、容量和成本的影响由存储厂商或第三方公司提供的内嵌在存储系统内部或在外部附加的运行报告、监控以及存储分析功能是十分重要的,它们可以帮助用户更好的了解系统的运行情况,避免系统过度(过高)配置,并减少很多后期维护工作。尤其是当用户需要优化性能或者按需增加处理资源时,这些组件的作用就会体现的非常明显。对此,StorageIO高级分析师Greg Schulz评价道:“无论是性能问题还是容量问题,好好利用存储厂商或第三方公司提供的工具都是十分重要的。”这些工具不仅能够帮助用户定位性能的问题,更重要的方面在于它们可以帮助用户选择出最恰当的解决方案。衡量一套存储系统的性能并不能依赖某个单一指标,而要考虑多种组合因素,它们每一项都对应用程序访问数据的速度有所影响。其中,IOPS、吞吐带宽和访问延迟这三项指标是最关键的。 不过,指标数据究竟是好是坏还要考虑应用环境的差异,包括工作负载的类型(随机请求或者顺序请求)、数据块的大小、交易类型(读或是写),以及其他相关的能够影响性能的因素都依赖于应用程序本身的特点。比方说,如果是流媒体视频应用,那么大文件快速顺序读性能和大数据块是最重要的;而如果是虚拟化应用环境,那么随机读性能通常是最主要的考察指标。下面的部分,我们将纵览那些可以优化性能并且提高存储资源利用率的技术,这里没有独门秘籍,因为每一种方法都有其优点和缺点。通过堆砌磁盘数量来提高性能磁盘驱动器是一种机械装置,读写磁头通过在高速旋转盘片的内道和外道之间往复移动来寻找并读写数据。即使是转速最快的15000转磁盘,其磁头机械臂的重定位时间延迟都会有数毫秒之多,因此每个磁盘的IOPS值最多只有几百个,吞吐带宽则局限在100MB/秒以内。通过将数据分布在多个磁盘上,然后对多个磁盘同步进行读写访问是一种常见的扩展性能的方法。通过增加磁盘的个数,系统整体的IOPS和带宽值也会等比例提升。加之,有些存储厂商还提供short stroking这样的可以缩短磁头机械臂移动距离的技术。此类技术可以将数据集中放置在磁盘盘片的外道区域,结果是磁头移动的距离大大缩短,对数据访问的性能具有十分明显的提升作用。可是,当我们通过利用大量的磁盘并发以及short-stroking磁头短距离移动技术达成既定的性能目标之后,我们会发现其代价是非常高昂的,此外,由于仅仅使用了盘片的外道空间,所以存储的空间利用率会非常差。早在SSD固态盘技术出现之前,利用大量的磁盘并发以及 short-stroking磁头短距离移动技术来满足应用的性能要求是最普遍的办法,即使在今天,这种方案依然被大量使用,原因是SSD固态盘的成本太高,所以用户依然青睐磁盘而不是SSD。NatApp技术和战略总监Mike Riley就说:“对于顺序访问大数据块和大文件这样的应用,使用磁盘通常性价比更高。”RAID 及wide-striping技术对效率的影响很多用户容易忽视一点,即RAID和RAID级别其实都会对性能和容量产生影响。通过改变RAID级别来提升存储性能或者空间的利用率是一种很现实的选择。校验盘的数量、条带的大小、RAID组的尺寸以及RAID组内数据块大小都会影响性能和容量。RAID技术对性能和容量的影响我们都熟悉那些常见的RAID级别及其特点,但还有一些不常见的技术趋势值得我们关注,这些都与我们讨论的存储效率有关。首先,RAID组的尺寸会影响性能、可用性以及容量。通常,大的RAID组包含的磁盘数量更多,速度也更快,但是,当出现磁盘故障后,大RAID组也需要更多的时间用来重建。每隔几年,磁盘的容量都会翻一番,其结果是RAID重建的时间也相应变的更长,在数据重建期间出现其他磁盘故障的风险也变得更大。即使是带有双校验机制,允许两块磁盘同时出现故障的RAID 6也存在风险增加的问题,况且,RAID 6对性能的影响还比较大。有一个更好的办法是完全打破传统RAID组和私有校验盘的概念,比如,NetApp的Dynamic Disk Pools (DDP)技术,该技术将数据、校验信息以及闲置空间块分散放置在一个磁盘池中,池中所有的磁盘会并发处理RAID重建工作。另一个有代表性的产品是HP的 3PAR存储系统,3PAR采用了一种叫做wide striping的技术,将数据条块化之后散布在一大堆磁盘上,同时磁盘自身的裸容量又细分成若干小的存储块(chunklet)。3PAR的卷管理器将这些小的chunklet组织起来形成若干个micro-RAID(微型RAID组),每个微型RAID组都有自己的校验块。对于每一个单独的微型 RAID组来说,其成员块(chunklet)都分布在不同的磁盘上,而且chunklet的尺寸也很小,因此数据重建时对性能的冲击和风险都是最小的。固态存储毫无疑问,SSD固态存储的出现是一件划时代的“大事儿“,对于存储厂商来说,在优化性能和容量这两个方面,SSD技术都是一种全新的选择。与传统的磁盘技术相比,SSD固态盘在延迟指标方面有数量级上的优势(微秒 对 毫秒),而在IOPS性能上,SSD的优势甚至达到了多个数量级(10000以上 对 数百)。Flash技术(更多的时候是磁盘与flash的结合)为存储管理员提供了一种更具性价比的解决方案,我们不必像过去那样,为了满足应用对性能的高要求而不得不部署大批量的磁盘,然后再将数据分散在磁盘上并发处理。SSD固态盘最佳的适用场景是大量数据的随机读操作,比如虚拟化 hypervisor,但如果是大数据块和大文件的连续访问请求,SSD的优势就没有那么明显了。EMC统一存储部门负责产品管理与市场的高级副总裁Eric Herzog说:“Flash的价格仍然10倍于最高端的磁盘,因此,用户只能酌情使用,而且要用在刀刃上。”目前,固态存储有三种不同的使用方式:第一种方式,用SSD固态盘完全代替机械磁盘。用SSD替换传统的磁盘是最简单的提升存储系统性能的方法。如果选择这个方案,关键的一点是用户要协同存储厂商来验证SSD固态盘的效果,并且遵循厂商提供的建议。如果存储系统自身的处理能力无法承载固态存储的高性能,那么SSD有可能会将整个系统拖垮。因为,如果SSD的速度超出了存储控制器的承受范围,那么很容易出现性能(I/O阻塞)问题,而且会越来越糟。另一个问题涉及到数据移动的机制,即我们的数据在什么时候、以何种方式迁移到固态存储上,或从固态存储上移走。最简单但也最不可取的方法是人工指定,比如我们通过手动设定将数据库的日志文件固定存放在SSD固态存储空间,对于比较老的存储系统来说,这也许是唯一的方式。在这里我们推荐用户使用那些自动化的数据分层移动技术,比如EMC的 FAST(Fully Automated Storage Tiering)。第二种方式,用Flash(固态存储芯片)作为存储系统的缓存。传统意义上的DRAM 高速缓存容量太小,因此我们可以用Flash作为DRAM的外围扩展,而这种利用Flash的方式较之第一种可能更容易实现一些。Flash缓存本身是系统架构的一个组成部分,即使容量再大,也是由存储控制器直接管理。而用Flash作缓存的设计也很容易解决数据分层的难题,根据一般的定义,最活跃的数据会一直放置在高速缓存里,而过期的数据则驻留在机械磁盘上。与第一种方式比较,存储系统里所有的数据都有可能借助Flash高速缓存来提升访问性能,而第一种方式下,只有存放在SSD固态盘中的数据才能获得高性能。初看起来,用Flash做高速缓存的方案几乎没有缺陷,可问题是只有新型的存储系统才支持这种特性,而且是选件,因此这种模式的发展受到一定的制约。与此相反,我们看到用Flash做大容量磁盘的高速缓存(而不是系统的高速缓存)反而成为更普遍的存储架构设计选择,因为它可以将高容量和高性能更好的融合。IBM存储软件业务经理Ron Riffe说:“在一套磁盘阵列中,只需要增加2-3%的固态存储空间,几乎就可以让吞吐带宽提高一倍。”在服务器中使用Flash存储卡。数据的位置离CPU和内存越近,存储性能也就越好。在服务器中插入PCIe Flash存储卡,比如Fusion-IO,就可以获得最佳的存储性能。不太有利的一面是,内置的Flash存储卡无法在多台服务器之间共享,只有单台服务器上的应用程序才能享受这一好处,而且价格非常昂贵。尽管如此,仍然有两个厂商对此比较热衷,他们都希望将自己的存储系统功能向服务器内部扩展。一个是 NetApp,正在使其核心软件Data Ontap能够在虚拟机hypervisor上运行;另一个是EMC,推出的功能叫做VFCache(原名叫Project Lightning)。显而易见,这两家公司的目标是通过提供服务器端的Flash存储分级获得高性能,而这种方式又能让用户的服务器与他们提供的外部存储系统无缝集成。存储加速装置存储加速装置一般部署在服务器和存储系统之间,既可以提高存储访问性能,又可以提供附加的存储功能服务,比如存储虚拟化等等。多数情况下,存储加速装置后端连接的都是用户已有的异构存储系统,包括各种各样的型号和品牌。异构环境的问题是当面临存储效率低下或者性能不佳的困扰时,分析与评估的过程就比较复杂。然而,存储加速装置能够帮助已有磁盘阵列改善性能,并将各种异构的存储系统纳入一个统一的存储池,这不但可以提升整个存储环境的整体性能、降低存储成本,而且还可以延长已有存储的服役时间。最近由IBM发布的 SmartCloud Virtual Storage Center是此类产品的代表,它将IBM的存储虚拟化软件SVC(SAN Volume Controller)以及存储分析和管理工具集成在一个单独的产品中。SmartCloud Virtual Storage Center可以将各种异构的物理存储阵列纳入到一个虚拟存储池中,在这个池之上创建的卷还支持自动精简配置。该装置不但可以管理连接在其后的存储阵列中的Flash固态存储空间,而且SmartCloud Virtual Storage Center自身内部也可以安装Flash固态存储组件。通过实时存储分析功能,SmartCloud Virtual Storage Center能够识别出I/O访问频繁的数据以及热点区域,并能够自动地将数据从磁盘迁移到Flash固态存储上,反向亦然。用户可以借助 SmartCloud Virtual Storage Center的这些功能大幅度的提高现有的异构混合存储系统环境的性能和空间利用率。与IBM SmartCloud Virtual Storage Center类似的产品还有Alacritech和Avere,它们都是基于块或基于文件的存储加速设备。日益增加的存储空间利用率利用存储精简技术,我们可以最大化的利用起可用的磁盘空间,存储精简技术包括自动精简配置、瘦克隆、压缩以及重复数据删除等等。这些技术都有一个共同的目标,即最大程度的引用已经存在的数据块,消除或避免存储重复的数据。然而存储精简技术对系统的性能稍有影响,所以对于用户来说,只有在明确了性能影响程度并且能够接受这种影响的前提下,才应该启动重复数据删除或数据压缩的功能。性能和容量:密不可分存储系统的性能和空间利用率是紧密相关的一对参数,提升或改进其中的一个,往往会给另一个带来负面的影响。因此,只有好好的利用存储分析和报表工具,我们才能了解存储的真实性能表现,进而发现系统瓶颈并采取适当的补救措施,这是必要的前提。总之,提高存储效率的工作其实就是在性能需求和存储成本之间不断的寻找平衡。
‘贰’ 磁盘的利用率是多少
RAID 1的数据安全性在所有的RAID级别上来说是最好的。但是其磁盘的利用率却只有50%, 是所有RAID上磁盘利用率最低的一个级别。
RAID,为Rendant Arrays of Independent Disks的简称,中文为廉价冗余磁盘阵列。 磁盘阵列其实也分为软阵列 (Software Raid)和硬阵列 (Hardware Raid) 两种. 软阵列即通过软件程序并由计算机的 CPU提供运行能力所成. 由于软件程式不是一个完整系统故只能提供最基本的 RAID容错功能. 其他如热备用硬盘的设置, 远程管理等功能均一一欠奉. 硬阵列是由独立操作的硬件提供整个磁盘阵列的控制和计算功能. 不依靠系统的CPU资源.
由于硬阵列是一个完整的系统, 所有需要的功能均可以做进去. 所以硬阵列所提供的功能和性能均比软阵列好. 而且, 如果你想把系统也做到磁盘阵列中, 硬阵列是唯一的选择. 故我们可以看市场上 RAID 5 级的磁盘阵列均为硬阵列. 软 阵列只适用于 Raid 0 和 Raid 1. 对于我们做镜像用的镜像塔, 肯定不会用 Raid 0或 Raid 1。作为高性能的存储系统,巳经得到了越来越广泛的应用。RAID的级别从RAID概念的提出到现在,巳经发展了六个级别, 其级别分别是0、1、2、3、4、5等。但是最常用的是0、1、3、5四个级别。下面就介绍这四个级别。
RAID 0:将多个较小的磁盘合并成一个大的磁盘,不具有冗余,并行I/O,速度最快。RAID 0亦称为带区集。它是将多个 磁盘并列起来,成为一个大硬盘。在存放数据时,其将数据按磁盘的个数来进行分段,然后同时将这些数据写进这些盘中。 所以,在所有的级别中,RAID 0的速度是最快的。但是RAID 0没有冗余功能的,如果一个磁盘(物理)损坏,则所有的数 据都无法使用。
RAID 1:两组相同的磁盘系统互作镜像,速度没有提高,但是允许单个磁盘错,可靠性最。RAID 1就是镜像。其原理为 在主硬盘上存放数据的同时也在镜像硬盘上写一样的数据。当主硬盘(物理)损坏时,镜像硬盘则代替主硬盘的工作。因 为有镜像硬盘做数据备份,所以RAID 1的数据安全性在所有的RAID级别上来说是最好的。但是其磁盘的利用率却只有50%, 是所有RAID上磁盘利用率最低的一个级别。
RAID Level 3 RAID 3存放数据的原理和RAID0、RAID1不同。RAID 3是以一个硬盘来存放数据的奇偶校验位,数据则分段存储于其余硬盘 中。它象RAID 0一样以并行的方式来存放数,但速度没有RAID 0快。如果数据盘(物理)损坏,只要将坏硬盘换掉,RAID
控制系统则会根据校验盘的数据校验位在新盘中重建坏盘上的数据。不过,如果校验盘(物理)损坏的话,则全部数据都 无法使用。利用单独的校验盘来保护数据虽然没有镜像的安全性高,但是硬盘利用率得到了很大的提高,为n-1。
RAID 5:向阵列中的磁盘写数据,奇偶校验数据存放在阵列中的各个盘上,允许单个磁盘出错。RAID 5也是以数据的校验 位来保证数据的安全,但它不是以单独硬盘来存放数据的校验位,而是将数据段的校验位交互存放于各个硬盘上。这样, 任何一个硬盘损坏,都可以根据其它硬盘上的校验位来重建损坏的数据。硬盘的利用率为n-1。
RAID 0-1:同时具有RAID 0和RAID 1的优点。
冗余:采用多个设备同时工作,当其中一个设备失效时,其它设备能够接替失效设备继续工作的体系。在PC服务器上,通 常在磁盘子系统、电源子系统采用冗余技术
‘叁’ 随机存储器一般利用率多少
内存在电脑中起着举足轻重的作用。内存一般采用半导体存储单元,包括随机存储器(RAM),只读存储器(ROM),以及高速缓存(CACHE)。只不过因为RAM是其中最重要的存储器。 通常所说的内存即指电脑系统中的RAM。RAM要求每时每刻都不断地供电,否则数据会丢失。 如果在关闭电源以后RAM中的数据也不丢失就好了,这样就可以在每一次开机时都保证电脑处于上一次关机的状态,而不必每次都重新启动电脑,重新打开应用程序了。但是RAM要求不断的电源供应,那有没有办法解决这个问题呢?随着技术的进步,人们想到了一个办法,即给RAM供应少量的电源保持RAM的数据不丢失,这就是电脑的休眠功能,特别在Win2000里这个功能得到了很好的应用,休眠时电源处于连接状态,但是耗费少量的电能。 按内存条的接口形式,常见内存条有两种:单列直插内存条(SIMM),和双列直插内存条(DIMM)。SIMM内存条分为30线,72线两种。DIMM内存条与SIMM内存条相比引脚增加到168线。DIMM可单条使用,不同容量可混合使用,SIMM必须成对使用。 按内存的工作方式,内存又有FPA EDO DRAM和SDRAM(同步动态RAM)等形式。 FPA(FAST PAGE MODE)RAM 快速页面模式随机存取存储器:这是较早的电脑系统普通使用的内存,它每个三个时钟脉冲周期传送一次数据。 EDO(EXTENDED DATA OUT)RAM 扩展数据输出随机存取存储器:EDO内存取消了主板与内存两个存储周期之间的时间间隔,他每个两个时钟脉冲周期输出一次数据,大大地缩短了存取时间,是存储速度提高30%。EDO一般是72脚,EDO内存已经被SDRAM所取代。 S(SYSNECRONOUS)DRAM 同步动态随机存取存储器:SDRAM为168脚,这是目前PENTIUM及以上机型使用的内存。SDRAM将CPU与RAM通过一个相同的时钟锁在一起,使CPU和RAM能够共享一个时钟周期,以相同的速度同步工作,每一个时钟脉冲的上升沿便开始传递数据,速度比EDO内存提高50%。 DDR(DOUBLE DATA RAGE)RAM :SDRAM的更新换代产品,他允许在时钟脉冲的上升沿和下降沿传输数据,这样不需要提高时钟的频率就能加倍提高SDRAM的速度。 RDRAM(RAMBUS DRAM) 存储器总线式动态随机存取存储器;RDRAM是RAMBUS公司开发的具有系统带宽,芯片到芯片接口设计的新型DRAM,他能在很高的频率范围内通过一个简单的总线传输数据。他同时使用低电压信号,在高速同步时钟脉冲的两边沿传输数据。INTEL将在其820芯片组产品中加入对RDRAM的支持。 内存的参数主要有两个:存储容量和存取时间。存储容量越大,电脑能记忆的信息越多。存取时间则以纳秒(NS)为单位来计算。一纳秒等于10^9秒。数字越小,表明内存的存取速度越快。 硬盘与内存的区别是很大的,这里只谈最主要的三点:一、内存是计算机的工作场所,硬盘用来存放暂时不用的信息。二、内存是半导体材料制作,硬盘是磁性材料制作。三、内存中的信息会随掉电而丢失,硬盘中的信息可以长久保存。 内存与硬盘的联系也非常密切:这里只提一点:硬盘上的信息永远是暂时不用的,要用吗?请装入内存!CPU与硬盘不发生直接的数据交换,CPU只是通过控制信号指挥硬盘工作,硬盘上的信息只有在装入内存后才能被处理。参考资料: 内存就是存储程序以及数据的地方,比如当我们在使用WPS处理文稿时,当你在键盘上敲入字符时,它就被存入内存中,当你选择存盘时,内存中的数据才会被存入硬(磁)盘。在进一步理解它之前,还应认识一下它的物理概念。 ●只读存储器(ROM) ROM表示只读存储器(Read Only Memory),在制造ROM的时候,信息(数据或程序)就被存入并永久保存。这些信息只能读出,一般不能写入,即使机器掉电,这些数据也不会丢失。ROM一般用于存放计算机的基本程序和数据,如BIOS ROM。其物理外形一般是双列直插式(DIP)的集成块。 ●随机存储器(RAM) 随机存储器(Random Access Memory)表示既可以从中读取数据,也可以写入数据。当机器电源关闭时,存于其中的数据就会丢失。我们通常购买或升级的内存条就是用作电脑的内存,内存条(SIMM)就是将RA
‘肆’ 仓库中的仓储货架如何布局才能达到最大利用率
库房货架的布局方式可分为以下几种形式:
(1)、单间库房货架。在走道的一面或者两面布置房间,沿房间的周边设置服务设施。这些房间以自然采光为主,辅以人工照明。这种库房货架优点是:室内环境安静、干扰小,同室人员易于建立较为密切的人际关系。缺点是:空间不够开阔,仓储人员与相关工作单元之间联系不是很直接。单间库房货架适用于需要有小间仓储功能的机构,或规模不大的单位,或企业的仓储用房。根据使用需要,若机构规模较大,也可以把若干小单间库房货架相组合,构成仓储区域。
(2)、成组式库房货架。适用于容纳20人以下工作人员的中等库房货架。除服务用房为公共使用之外,成组式库房货架具有相对独立的仓储功能。通常库房货架内部空间分隔为接待会客室、仓储(包括高级管理人员的仓储)等空间,根据功能需要和建筑设施的可能性,亦可设置会议室、盟洗室等。由于成组式库房货架既充分利用了大楼的各项公共服务设施,又具有相对独立、分隔开的仓储功能,因此,成组式库房货架是企业、单位出租仓储用房的上佳选择,近年来兴建高层出租楼的内部空间设计与布局,有很大比例都采用成组式仓储形式。
(3)、开放式布局。这是一种布置大进深空间的方法,也称大空间库房货架或开敞式库房货架。
开放式布局有利于仓储人员、仓储组团之间的联系,提高了仓储设施、设备的利用率,减少了公共交通面积和结构面积,从而提高了仓储建筑的使用积率。但是大空间库房货架需处理好空调的隔声、吸声,对仓储设备、隔断等设施设备进行优化设计,以克服开放式布局容易出现的室内嘈杂、混乱、相互干扰较大的缺点。
‘伍’ 如何实现货架在仓库中的最大利用率
普通的标准货架是无法最大利用的,要最大利用率,那就要用自动化立体库。
首先,立体库是根据库房的体积来计算货架的大小和能划分成多少个货位,能充分利用每一点的库房容积,不会浪费。以我们海格力斯刚验收的一个阿联酋的迪拜航空港的自动化立体库做例子吧,以前客户是用的我们的标准中型货架(层载200公斤,大概2002年的老客户了),因为他库房高达4米多,而标准货架2米的高度,造成很大的空间浪费。我们技术员每年国外客户回访的时候去他们库房检查,看到高高的库房就用的2米的标准货架认为很是浪费。就建议换成立体库。客户开始是犹豫的,毕竟现在这批标准货架虽然用了十一年,但是质量很好,除了两组人为损坏(一个黑人叉车司机用叉车玩漂移撞坏了两组)其他都还很好,而且立体库投入确实是标准货架的数倍,主要是怕换的时候影响正常工作(的确,这点钱对于迪拜人民来说还真不是事儿)。经过我们工程师计算,如果换立体库后,货位能增加两倍半,这样客户原来因为库房不足计划新建一座一样的库房就可以省下来了。最后,换成立体库,而且是自动化立体库后,客户的库房从3500货位增加到10800货位,几乎是增加了三倍(这还是客户把库房一部分空间占用做喂办公和宿舍了)。
其次,如果只是立体库,出入库还都是人力或者叉车来做,其实使用率还是提高不大的,只不过利用了以前标准货架上面的一些空间。而如果换成自动化立体库,出入库都用穿梭车等自动化设备来完成,那就可以最大限度的利用库房了。因为人工用叉车出入库,每一排货架之间要留很大过道来方便叉车行走转弯和安全操作,库房最大面积其实是给叉车准备的。而用自动化立体库后,所用存储都用穿梭车来完成,整个存储区域就是一个完全封闭的存储区,全部都是货架,是纯货位组成的。还是据我们前面那个例子吧,阿联酋客户的那个库房用的就是自动化立体库,因为我们方案里写的是用海格里斯自己知识产权全,有国内数项专利的中国产穿梭车,这方变客户是有点犹豫的,毕竟中国货在国外的印象就是便宜,简单,质量还算不错。但是,这高科技的东西,外国人就不敢用了。客户曾经坚决要用意大利的穿梭车,不过为了公平,也是因为我们合作这么多年,也还算有点认可,聘请了几位德国专家,公开招标评选,最后我们的穿梭车在性价比方面还是得分最高的,尤其是客户要求的大吨位举升力方面(客户有一些零件个头不大但是有两吨多的重量),我们当时全球最强的3吨举升能力是唯一能举升起来并正常工作的(这个3吨举升技术也是我们的专利技术,本月还有国外厂商过来洽谈专利授权问题)。立体库建成后,客户除了货位增加了近三倍外,因为采取了自动化,以前的库房管理人员减少了三分之二,这对于阿联酋这种人力资源成本很高的地方来说是节约了很大一笔费用。而出入库时间比以前也减少了一倍多,也方便了很多。
最后。虽然自动化立体库要比使用普通标准货架成本高六七倍甚至更高(穿梭车一台就十几万,便宜的举升能力低的也八九万),但是确实利用率高很多,基本上可以全部利用。而且效率要提高很多,节约大量的库管人员和库管的劳动力(穿梭车是遥控器来控制,高级的可以编程实现自动存储)。
‘陆’ C盘磁盘空间占用率为多少时,才是电脑运行最快,最顺畅的呢..
占用多少都快不起来,硬盘老化了速度就慢,可以用HD TUNE 测试。比如这样.
或者是把硬盘换成固态硬盘,速度比机械硬盘快10倍。
对比传统硬盘编辑
固态硬盘的接口规范和定义、功能及使用方法上与普通硬盘几近相同,外形和尺寸也基本与普通的 2.5英寸硬盘一致。
固态硬盘具有传统机械硬盘不具备的快速读写、质量轻、能耗低以及体积小等特点,同时其劣势也较为明显。尽管IDC认为SSD已经进入存储市场的主流行列,但其价格仍较为昂贵,容量较低,一旦硬件损坏,数据较难恢复等;并且亦有人认为固态硬盘的耐用性(寿命)相对较短。
影响固态硬盘性能的几个因素主要是:主控芯片、NAND闪存介质和固件。在上述条件相同的情况下,采用何种接口也可能会影响SSD的性能。
主流的接口是SATA(包括3Gb/s和6Gb/s两种)接口,亦有PCIe 3.0接口的SSD问世。
由于SSD与普通磁盘的设计及数据读写原理的不同,使得其内部的构造亦有很大的不同。一般而言,固态硬盘(SSD)的构造较为简单,并且也可拆开;所以我们通常看到的有关SSD性能评测的文章之中大多附有SSD的内部拆卸图。
而反观普通的机械磁盘,其数据读写是靠盘片的高速旋转所产生的气流来托起磁头,使得磁头无限接近盘片,而又不接触,并由步进电机来推动磁头进行换道数据读取。所以其内部构造相对较为复杂,也较为精密,一般情况下不允许拆卸。一旦人为拆卸,极有可能造成损害,磁盘无法正常工作。这也是为何在对磁盘进行评测时,我们基本看不到关于磁盘拆卸图的原因。[5]
优点编辑
读写速度快:采用闪存作为存储介质,读取速度相对机械硬盘更快。固态硬盘不用磁头,寻道时间几乎为0。持续写入的速度非常惊人,固态硬盘厂商大多会宣称自家的固态硬盘持续读写速度超过了500MB/s!固态硬盘的快绝不仅仅体现在持续读写上,随机读写速度快才是固态硬盘的终极奥义,这最直接体现在绝大部分的日常操作中。与之相关的还有极低的存取时间,最常见的7200转机械硬盘的寻道时间一般为12-14毫秒,而固态硬盘可以轻易达到0.1毫秒甚至更低。[6]
防震抗摔性:传统硬盘都是磁盘型的,数据储存在磁盘扇区里。而固态硬盘是使用闪存颗粒(即mp3、U盘等存储介质)制作而成,所以SSD固态硬盘内部不存在任何机械部件,这样即使在高速移动甚至伴随翻转倾斜的情况下也不会影响到正常使用,而且在发生碰撞和震荡时能够将数据丢失的可能性降到最小。相较传统硬盘,固态硬盘占有绝对优势。[6]
低功耗:固态硬盘的功耗上要低于传统硬盘。
无噪音:固态硬盘没有机械马达和风扇,工作时噪音值为0分贝。基于闪存的固态硬盘在工作状态下能耗和发热量较低(但高端或大容量产品能耗会较高)。内部不存在任何机械活动部件,不会发生机械故障,也不怕碰撞、冲击、振动。由于固态硬盘采用无机械部件的闪存芯片,所以具有了发热量小、散热快等特点。[6]
工作温度范围大:典型的硬盘驱动器只能在5到55摄氏度范围内工作。而大多数固态硬盘可在-10~70摄氏度工作。固态硬盘比同容量机械硬盘体积小、重量轻。固态硬盘的接口规范和定义、功能及使用方法上与普通硬盘的相同,在产品外形和尺寸上也与普通硬盘一致。其芯片的工作温度范围很宽(-40~85摄氏度)。
轻便:固态硬盘在重量方面更轻,与常规1.8英寸硬盘相比,重量轻20-30克。
缺点编辑
容量:固态硬盘最大容量仅为4TB,由闪迪(SanDisk)发布的Optimus MAX(擎天柱)[7]
SATA固态硬盘,SSD固态硬盘
寿命限制:固态硬盘闪存具有擦写次数限制的问题,这也是许多人诟病其寿命短的所在。闪存完全擦写一次叫做1次P/E,因此闪存的寿命就以P/E作单位。34nm的闪存芯片寿命约是5000次P/E,而25nm的寿命约是3000次P/E。随着SSD固件算法的提升,新款SSD都能提供更少的不必要写入量。一款120G的固态硬盘,要写入120G的文件才算做一次P/E。普通用户正常使用,即使每天写入50G,平均2天完成一次P/E,3000个P/E能用20年,到那时候,固态硬盘早就被替换成更先进的设备了(在实际使用中,用户更多的操作是随机写,而不是连续写,所以在使用寿命内,出现坏道的机率会更高)。另外,虽然固态硬盘的每个扇区可以重复擦写100000次(SLC),但某些应用,如操作系统的LOG记录等,可能会对某一扇区进行多次反复读写,而这种情况下,固态硬盘的实际寿命还未经考验。不过通过均衡算法对存储单元的管理,其预期寿命会延长。SLC有10万次的写入寿命,成本较低的MLC,写入寿命仅有1万次,而廉价的TLC闪存则更是只有可怜的500-1000次。
售价高:市场上的128GB 固态硬盘产品的价格大约在在550元人民币左右,而256GB的产品价格大约在950元人民币(2014年价格)左右。计算下来,每GB价格在4.2元人民币(2014年价格)左右,依然比传统机械硬盘每 GB 0.3元人民币(2014年价格)的价格高出了十几倍。市场上128GBMLC(多层单元)固态硬盘,一般价格为550元(2014年)左右,部分较型号甚至达到750元左右。而这个价钱足够买一个容量3TB的传统硬盘了。128GB SLC(单层单元)固态硬盘价格则高达2000元以上。[1]
‘柒’ 我的电脑内存使用率很低10%左右,而物理内存使用率高达50%以上。哪些可以禁止高手详细解答,管用加分。
inXP的启动会有许多影响速度的功能,尽管ms说已经作最优化处理过,但对我们来说还是有许多可定制之处。我一般是这样来做的。
1、修改注册表的run键,取消那几个不常用的东西,比如Windows Messenger 。启用注册表管理器:开始→运行→Regedit→找到“HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run\MSMSGS” /BACKGROUND 这个键值,右键→删除,世界清静多了,顺便把那几个什么cfmon的都干掉吧。
2、修改注册表来减少预读取,减少进度条等待时间,效果是进度条跑一圈就进入登录画面了,开始→运行→regedit启动注册表编辑器,找HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management\PrefetchParameters, 有一个键EnablePrefetcher把它的数值改为“1”就可以了。另外不常更换硬件的朋友可以在系统属性中把总线设备上面的设备类型设置为none(无)。
3、关闭系统属性中的特效,这可是简单有效的提速良方。点击开始→控制面板→系统→高级→性能→设置→在视觉效果中,设置为调整为最佳性能→确定即可。这样桌面就会和win2000很相似的,我还是挺喜欢XP的蓝色窗口,所以在“在窗口和按钮上使用视觉样式”打上勾,这样既能看到漂亮的蓝色界面,又可以加快速度。
4、我用Windows commadner+Winrar来管理文件,Win XP的ZIP支持对我而言连鸡肋也不如,因为不管我需不需要,开机系统就打开个zip支持,本来就闲少的系统资源又少了一分,点击开始→运行,敲入:“regsvr32 /u zipfldr.dll”双引号中间的,然后回车确认即可,成功的标志是出现个提示窗口,内容大致为:zipfldr.dll中的Dll UnrgisterServer成功。
5、快速浏览局域网络的共享
通常情况下,Windows XP在连接其它计算机时,会全面检查对方机子上所有预定的任务,这个检查会让你等上30秒钟或更多时间。去掉的方法是开始→运行→Regedit→在注册表中找到HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\Current Version\Explorer\RemoteComputer\NameSpace。在此键值下,会有个键,把它删掉后,重新启动计算机,Windows XP就不再检查预定任务了,hoho~~~ ,速度明显提高啦!
6、关掉调试器Dr. Watson
我好像从win95年代开始一次也没用过这东西,可以这样取消:打开册表,找到HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AeDebug子键分支,双击在它下面的Auto键值名称,将其“数值数据”改为0,最后按F5刷新使设置生效,这样就取消它的运行了。沿用这个思路,我们可以把所有具备调试功能的选项取消,比如蓝屏时出现的memory.dmp,在“我的电脑→属性→高级→设置→写入调试信息→选择无”等等。
c.加速XP的开关机 ***
缩短等待时间
打开注册表编辑器,找到 HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control,
将 WaitToKillServiceTimeout 设为∶1000或更小。 ( 原设置值∶20000 )
d.
找到 HKEY_CURRENT_USER\Control Panel\Desktop 键,将右边窗口的 WaitToKillAppTimeout 改为 1000,
( 原设置值∶20000 )即关闭程序时仅等待1秒。将 HungAppTimeout 值改为∶200( 原设置值∶5000 ),
表示程序出错时等待0.5秒。
e.
让系统自动关闭停止回送的程序。打开注册表 HKEY_CURRENT_USER\Control Panel\Desktop 键,
将 AutoEndTasks 值设为 1。 ( 原设置值∶0 )
6》让你的硬盘更快,让系统更快更稳定
一、合理使用硬盘
何为合理使用硬盘呢?首先我们要了解硬盘盘片的物理结构。分区并格式化后的硬盘却是以扇区为基本单位的,一个分区是由若干个扇区构成的。那什么是扇区呢?我们都知道磁盘在工作时是转动的,它所存储的信息是按一系列同心圆记录在其表面上的,每一个同心圆称为一个磁道,在图1我们可以看到磁道和扇区的分布情况(当然,这只是个示意图而已,实物要比图中密得多!),很多朋友认为那个红色的“大块头”是一个扇区,但正确的认识应该是黄色的那小块为一个扇区。一个扇区的大小为512字节,一个整圆环为一个磁道,一个磁道上有若干个扇区,所以我们不难看出,越*外的磁道上的单个扇区其体积越大,换句话就是其密度越小,由于硬盘是机械传动,所以磁头对其的寻找、读、写速度也就越快,分区的分布也是从外圈向内圈的,所以C盘相对于D盘等要*外,这就是为什么我们感觉C盘比D、E等分区要快的原因。
明白了上面的知识,我们就能合理使用硬盘了!以一块容量为60GB的新硬盘为例进行说明:把C盘分为3至5GB(视操作系统而定),把D盘调成1GB,把E盘设为10GB,省下的就看着设吧(可对半分为F和G盘)——对系统速度没有什么影响。
分好区后如何使用是最为关键的:
1、把操作系统装在C盘上并把MwIE、Foxmail、ICQ、QQ、FlashGet、超级兔子、播放器软件以及一些看图软件等常用小型软件也安装在C盘上。如果您使用诸如Office之类的微软大型软件的话,也要将其安装到C盘上。当然,由于我们并不会用到其中的全部功能,所以要定制安装那些有用的部分以节省C盘空间!然后把虚拟内存设置到D盘上(只是暂时的^_^)后再使用系统自带的磁盘碎片整理程序把C盘整理一下。
2、使用“微晓注册表优化大师”之类的系统修改软件把“我的文档”、“上网缓冲”、“上网历史”、“收藏夹”等经常要进行写、删操作的文件夹设置到D盘上来尽量避免其它分区产生磁盘碎片而降低硬盘性能!
3、把各种应用软件安装到E盘,至于游戏可装在F盘,G盘用来存放影音文件。
4、对C盘再进行一次碎片整理,然后进行完下面的第二大步后再把虚拟内存设置到C盘上!
二、虚拟内存的设置
将虚拟内存设置成固定值已经是个普遍“真理”了,而且这样做是十分正确的,但绝大多数人都是将其设置到C盘以外的非系统所在分区上,而且其值多为物理内存的2~3倍。多数人都认为这个值越大系统的性能越好、运行速度越快!但事实并非如此,因为系统比较依赖于虚拟内存——如果虚拟内存较大,系统会在物理内存还有很多空闲空间时就开始使用虚拟内存了,那些已经用不到的东东却还滞留在物理内存中,这就必然导致内存性能的下降!
于是笔者从32MB内存开始试起至512MB内存为止,发现上面的说到的事实是非常正确的,虚拟内存应设置为物理内存0至1.5倍(0倍是多少啊?就是禁用!^_^)为好,而且物理内存越大这个倍数就应越小而不是越大。当物理内存等于或大于512MB时,绝大多数PC就可以禁用虚拟内存不用了,这时内存性能是最高的!^_^
至于您的虚拟内存具体要设置成多大,您就要自己试一试了,因为这和常驻内存软件的多少和大小以及您平时运行的软件是有直接关系的,所以笔者无法给出建议值。您可先将其设为物理内存等同后,再运行几个大型软件,如果没有异常情况出现的话,您就再将其设置成物理内存的一半后再运行那几个大型软件,如果出现了异常,您就要适当加大虚拟内存的值了!以此类推,当您找到最佳值后只要把这个值设置到C盘上就OK了!:)
注:如果您使用的是Windows ME及以下的操作系统的话,可下载“MagnaRAM 97”来优化物理内存和虚拟内存,这样的效果更好!另外,笔者建议您不要再使用那些所谓的优化和整理内存的软件了!
三、合理摆放“快捷方式”
绝大多数情况下,我们运行软件都是通常该软件的“快捷方式”来做到的,硬盘越来越大,安装的软件也越来越多,有很多朋友喜欢把快捷方式都放到桌面上,这样不但使您眼花缭乱,而且系统性能也会下降,而且会造成系统资源占用过大而使系统变得不稳定,所以我们最好把桌面上的快捷方式控制在10个左右,其它的快捷方式可全放到开始菜单和快捷启动栏中,而且把所有软件的“卸载”快捷方式删除以提高系统性能。另外,尽量不要存在重复的快捷方式。
四、慎用“安全类”软件
这里所说的安全类软件就是指实时性的防毒软件和防火墙。该类软件对系统资源和CPU资源的占用是非常大的(有的高达30%以上),如果您不经常上杂七杂八网站的话,这类软件完全没有必要使用!这比对CPU进行超频可实际、方便得多了!:)
五、减少不必要的随机启动程序
这是一个老生常谈的问题,但很多朋友并不知道什么程序是可以禁止的,什么是不能禁止的,所以很多人并没有进行这一步的工作。有了优化大师这一工作就简单得多了,在图2界面的“开机速度优化”中优化大师会提示您什么可以禁止,什么不能禁止!
这样做的好处除了能加快启动速度外,还能提高系统在运行中的稳定性!
六、合理设置“图标缓存”
通常系统默认的图标缓存都是比较大的,这明显有浪费的感觉,所以我们要将其值做适当的调整,我们可用“Windows优化大师”查看一下当前系统已经使用了多少图标缓存,然后我们将其值设为实际大小的2倍左右即可。注:部分电脑可能无法使用优化大师进行修改,这时您可使用“超级兔子魔法设置”进行修改!
另外,桌面背景也不要弄得太复杂(建议设为“无”),有的朋友还做成了动画桌面,这种做法没有任何现实意义,除了会给系统带来不稳定因素外,没有任何好的作用——毕竟我们只有很少时间是面对桌面的!^_^
七、合理设置“磁盘缓存”
系统默认值通常都非常保守,所以我们要进行一定的修改,我们也可在“Windows优化大师”中对其进行修改,只是我们要手工进行数字的输入,磁盘缓存最小值可设为2048(KB),最大值设为物理内存的25%,缓冲区读写单元为512。
注:这一做法会对多媒体软件的稳定运行带来很大的好处,尤其是最小值的设置不要太低!
八、尽量精简右键菜单
很多程序在安装后都会在右键菜单中留下身影,其中有很多都是我们用不到的,但其却给我们的系统带来了负担。为此,我们可在“超级兔子魔法设置”等软件中对右键菜单进行精简,通常只保留常用的就行了!另外,您最好是将无用项删除而不是只单纯去掉其前面的小勾!
这样做可有效减少因“新建”菜单而引起的失去响应的现象出现!
九、合适的显示器刷新率和分辨率
有些朋友总是抱怨自己的显卡太差劲,有的显卡的确是差劲了些,但很多情况下都是因为显示器刷新率设置得过高所致的“假象”。通常15、17英寸的彩显将刷新率设置成75Hz以上就行了(如果带宽足够当然也可以更高),没有必要强行上得太高。分辨率也是同一个道理,通常设成800×600或1024×768就行了,只要够用就好,完全没有必要玩什么“终极”和“骨灰”。
这样做比对显卡进行超频带来的提速效果要大多了!
结语
总而言之,当您使用了本文的方法后,您就会发现系统比以前快多了!而且也稳定多了!^_^除了本文的内容外,在进行了一定的优化后再把系统弄得简单点也没有什么坏处。华而不实没用的!请君尝试之,便知余言不谬也
‘捌’ 内存使用率
xp 64位系统才理论支持4G,我现在用vista 32位,3G内存,开迅雷、瑞星、360后用掉1G,要是你装了很多后台程序的话会很吃内存,建议去下个优化大师或360安全卫士,看看后台都有哪些程序耗内存,不需要的就把它禁掉。还有建议把系统换成vista,我用上vista后就不想再用xp了,一是画面美,二是有些东西比xp更直观,用起来方便,三是玩游戏有xp没有的DX10(网上盛传xp也有DX10,纯属瞎说,装上了也和原来的DX9没啥区别),玩游戏画面绚丽,那叫一个美啊。以上纯属个人观点,采纳与否还请三思。
看到你的截图后我的补充:先问你一个问题,你的虚拟内存是多大?
你的截图上(xp系统)的“提交更改”上 斜杠 后边显示的是“物理内存+虚拟内存”的总和,斜杠前面的就是总和使用掉的内存量(也是两个加起来的数值),并不是你物理内存的使用情况。如果想要查看物理内存使用情况,你截图上有个“性能”,打开它就可以看到了。
于是,关于前面你提到4G内存玩GTA4不够用问题作出以下回答,一是你的内存(物理内存)根本就没有4G;二是你的显卡不够用,这游戏挺吃显卡的;三是你的win7系统有些不需要的功能没关,导致内存占用太多(但是win7占用内存比vista要少,我没升级到3G前,用2G+HD3850,也能跑GTA4,因为太吃显卡只用了中等画质,1280*1024分辨率,不卡)
‘玖’ 存储性能和空间利用率哪个重要
最大限度地挖掘存储系统的性能潜力是用户永远的追求,但是,面对众多性能优化技术,还必须考虑到底是性能重要还是空间利用率重要。
在当前经济形势低迷的大背景下,挖掘现有存储系统的性能潜力成为用户的必然选择,不过追求性能只是一个方面。
看到的现象是大多数存储系统的空间利用率还不到50%,而且存储控制器的处理能力也只用到一小部分,这些都是让用户不可接受的事实。
在数据中心应用领域,通过服务器整合以及虚拟化技术,物理服务器的资源已经被最大化的利用起来,与此相反的是,存储效率低下的问题却成为用户的痛点。
若要实现服务器虚拟化的高效率,存储系统就必须跟得上,这是一个必要的前提,因此服务器虚拟化应用推动着存储技术向更高效的方向发展。
在虚拟化环境中,当前端服务器数量不断增加,后端存储阵列的不足便暴露出来,尤其表现在缺乏细粒度的分配和调动空间资源的能力方面。
因此,如果用户希望对数据中心进行高度整合,那么服务器虚拟化技术和高效的存储技术二者缺一不可。
存储效率是一个综合性的指标,实现最佳的存储效率意味着要在有效存储空间以及可用处理资源两方面都有出色表现,通常也是各产品之间相互竞争的重点。
StorageIO高级分析师GregSchulz说,“为了达到应用所需的IOPS能力,有些存储系统被设计得很大,通过大量磁盘的并发来提升IOPS,可是空间利用率却非常低,反之,追求空间利用率的最大化往往需要借助存储精简技术,比如压缩和重复数据删除等等,但是这些功能会对系统性能带来负面的影响“。
因此,达成高效的存储就需要在容量和性能之间寻找一个平衡点,根据应用需求的不同,对容量、处理能力、性能以及成本进行控制和优化。
保证存储效率有哪些基本条件优化存储系统的性能,本质上就是要尽可能地提高存储处理资源的利用率,同时尽量消除系统的瓶颈或阻塞。
随着处理资源利用率的增加,剩余的处理资源以及响应额外处理请求的能力相应的就会降低。
而且如果缓冲区太小,那么系统达到性能上限(瓶颈)的可能性就非常大。
举个例子来说,一个平均处理资源利用率在50%的磁盘阵列不太可能触及性能上限(瓶颈),而对于一个利用率达到80%的系统来说,这个可能性就要大得多。
高效存储技术及其对性能、容量和成本的影响由存储厂商或第三方公司提供的内嵌在存储系统内部或在外部附加的运行报告、监控以及存储分析功能是十分重要的,它们可以帮助用户更好的了解系统的运行情况,避免系统过度(过高)配置,并减少很多后期维护工作。
尤其是当用户需要优化性能或者按需增加处理资源时,这些组件的作用就会体现的非常明显。
对此,StorageIO高级分析师GregSchulz评价道:“无论是性能问题还是容量问题,好好利用存储厂商或第三方公司提供的工具都是十分重要的。
”这些工具不仅能够帮助用户定位性能的问题,更重要的方面在于它们可以帮助用户选择出最恰当的解决方案。
衡量一套存储系统的性能并不能依赖某个单一指标,而要考虑多种组合因素,它们每一项都对应用程序访问数据的速度有所影响。
其中,IOPS、吞吐带宽和访问延迟这三项指标是最关键的。
不过,指标数据究竟是好是坏还要考虑应用环境的差异,包括工作负载的类型(随机请求或者顺序请求)、数据块的大小、交易类型(读或是写),以及其他相关的能够影响性能的因素都依赖于应用程序本身的特点。
比方说,如果是流媒体视频应用,那么大文件快速顺序读性能和大数据块是最重要的;
而如果是虚拟化应用环境,那么随机读性能通常是最主要的考察指标。
下面的部分,将纵览那些可以优化性能并且提高存储资源利用率的技术,这里没有独门秘籍,因为每一种方法都有其优点和缺点。
通过堆砌磁盘数量来提高性能磁盘驱动器是一种机械装置,读写磁头通过在高速旋转盘片的内道和外道之间往复移动来寻找并读写数据。
即使是转速最快的15000转磁盘,其磁头机械臂的重定位时间延迟都会有数毫秒之多,因此每个磁盘的IOPS值最多只有几百个,吞吐带宽则局限在100MB/秒以内。
通过将数据分布在多个磁盘上,然后对多个磁盘同步进行读写访问是一种常见的扩展性能的方法。
通过增加磁盘的个数,系统整体的IOPS和带宽值也会等比例提升。
加之,有些存储厂商还提供shortstr好ing这样的可以缩短磁头机械臂移动距离的技术。
此类技术可以将数据集中放置在磁盘盘片的外道区域,结果是磁头移动的距离大大缩短,对数据访问的性能具有十分明显的提升作用。
可是,当通过利用大量的磁盘并发以及short-str好ing磁头短距离移动技术达成既定的性能目标之后,会发现其代价是非常高昂的,此外,由于仅仅使用了盘片的外道空间,所以存储的空间利用率会非常差。
早在SSD固态盘技术出现之前,利用大量的磁盘并发以及short-str好ing磁头短距离移动技术来满足应用的性能要求是最普遍的办法,即使在今天,这种方案依然被大量使用,原因是SSD固态盘的成本太高,所以用户依然青睐磁盘而不是SSD。
NatApp技术和战略总监MikeRiley就说:“对于顺序访问大数据块和大文件这样的应用,使用磁盘通常性价比更高。
”RAID及wide-striping技术对效率的影响很多用户容易忽视一点,即RAID和RAID级别其实都会对性能和容量产生影响。
通过改变RAID级别来提升存储性能或者空间的利用率是一种很现实的选择。
校验盘的数量、条带的大小、RAID组的尺寸以及RAID组内数据块大小都会影响性能和容量。
RAID技术对性能和容量的影响都熟悉那些常见的RAID级别及其特点,但还有一些不常见的技术趋势值得关注,这些都与讨论的存储效率有关。
首先,RAID组的尺寸会影响性能、可用性以及容量。
通常,大的RAID组包含的磁盘数量更多,速度也更快,但是,当出现磁盘故障后,大RAID组也需要更多的时间用来重建。
每隔几年,磁盘的容量都会翻一番,其结果是RAID重建的时间也相应变的更长,在数据重建期间出现其他磁盘故障的风险也变得更大。
即使是带有双校验机制,允许两块磁盘同时出现故障的RAID6也存在风险增加的问题,况且,RAID6对性能的影响还比较大。
有一个更好的办法是完全打破传统RAID组和私有校验盘的概念,比如,NetApp的DynamicDiskPools(DDP)技术,该技术将数据、校验信息以及闲置空间块分散放置在一个磁盘池中,池中所有的磁盘会并发处理RAID重建工作。
另一个有代表性的产品是HP的3PAR存储系统,3PAR采用了一种叫做widestriping的技术,将数据条块化之后散布在一大堆磁盘上,同时磁盘自身的裸容量又细分成若干小的存储块(chunklet)。
3PAR的卷管理器将这些小的chunklet组织起来形成若干个micro-RAID(微型RAID组),每个微型RAID组都有自己的校验块。
对于每一个单独的微型RAID组来说,其成员块(chunklet)都分布在不同的磁盘上,而且chunklet的尺寸也很小,因此数据重建时对性能的冲击和风险都是最小的。
固态存储毫无疑问,SSD固态存储的出现是一件划时代的“大事儿“,对于存储厂商来说,在优化性能和容量这两个方面,SSD技术都是一种全新的选择。
与传统的磁盘技术相比,SSD固态盘在延迟指标方面有数量级上的优势(微秒对毫秒),而在IOPS性能上,SSD的优势甚至达到了多个数量级(10000以上对数百)。
Flash技术(更多的时候是磁盘与flash的结合)为存储管理员提供了一种更具性价比的解决方案,不必像过去那样,为了满足应用对性能的高要求而不得不部署大批量的磁盘,然后再将数据分散在磁盘上并发处理。
SSD固态盘最佳的适用场景是大量数据的随机读操作,比如虚拟化hypervisor,但如果是大数据块和大文件的连续访问请求,SSD的优势就没有那么明显了。
EMC统一存储部门负责产品管理与市场的高级副总裁EricHerzog说:“Flash的价格仍然10倍于最高端的磁盘,因此,用户只能酌情使用,而且要用在刀刃上。
”目前,固态存储有三种不同的使用方式:第一种方式,用SSD固态盘完全代替机械磁盘。
用SSD替换传统的磁盘是最简单的提升存储系统性能的方法。
如果选择这个方案,关键的一点是用户要协同存储厂商来验证SSD固态盘的效果,并且遵循厂商提供的建议。
如果存储系统自身的处理能力无法承载固态存储的高性能,那么SSD有可能会将整个系统拖垮。
因为,如果SSD的速度超出了存储控制器的承受范围,那么很容易出现性能(I/O阻塞)问题,而且会越来越糟。
另一个问题涉及到数据移动的机制,即的数据在什么时候、以何种方式迁移到固态存储上,或从固态存储上移走。
最简单但也最不可取的方法是人工指定,比如通过手动设定将数据库的日志文件固定存放在SSD固态存储空间,对于比较老的存储系统来说,这也许是唯一的方式。
在这里推荐用户使用那些自动化的数据分层移动技术,比如EMC的FAST(FullyAutomatedStorageTiering)。
第二种方式,用Flash(固态存储芯片)作为存储系统的缓存。
传统意义上的DRAM高速缓存容量太小,因此可以用Flash作为DRAM的外围扩展,而这种利用Flash的方式较之第一种可能更容易实现一些。
Flash缓存本身是系统架构的一个组成部分,即使容量再大,也是由存储控制器直接管理。
而用Flash作缓存的设计也很容易解决数据分层的难题,根据一般的定义,最活跃的数据会一直放置在高速缓存里,而过期的数据则驻留在机械磁盘上。
与第一种方式比较,存储系统里所有的数据都有可能借助Flash高速缓存来提升访问性能,而第一种方式下,只有存放在SSD固态盘中的数据才能获得高性能。
初看起来,用Flash做高速缓存的方案几乎没有缺陷,可问题是只有新型的存储系统才支持这种特性,而且是选件,因此这种模式的发展受到一定的制约。
与此相反,看到用Flash做大容量磁盘的高速缓存(而不是系统的高速缓存)反而成为更普遍的存储架构设计选择,因为它可以将高容量和高性能更好的融合。
IBM存储软件业务经理RonRiffe说:“在一套磁盘阵列中,只需要增加2-3%的固态存储空间,几乎就可以让吞吐带宽提高一倍。
”在服务器中使用Flash存储卡。
数据的位置离CPU和内存越近,存储性能也就越好。
在服务器中插入PCIeFlash存储卡,比如Fusion-IO,就可以获得最佳的存储性能。
不太有利的一面是,内置的Flash存储卡无法在多台服务器之间共享,只有单台服务器上的应用程序才能享受这一好处,而且价格非常昂贵。
尽管如此,仍然有两个厂商对此比较热衷,都希望将自己的存储系统功能向服务器内部扩展。
一个是NetApp,正在使其核心软件DataOntap能够在虚拟机hypervisor上运行;
另一个是EMC,推出的功能叫做VFCache(原名叫ProjectLightning)。
显而易见,这两家公司的目标是通过提供服务器端的Flash存储分级获得高性能,而这种方式又能让用户的服务器与提供的外部存储系统无缝集成。
存储加速装置存储加速装置一般部署在服务器和存储系统之间,既可以提高存储访问性能,又可以提供附加的存储功能服务,比如存储虚拟化等等。
多数情况下,存储加速装置后端连接的都是用户已有的异构存储系统,包括各种各样的型号和品牌。
异构环境的问题是当面临存储效率低下或者性能不佳的困扰时,分析与评估的过程就比较复杂。
然而,存储加速装置能够帮助已有磁盘阵列改善性能,并将各种异构的存储系统纳入一个统一的存储池,这不但可以提升整个存储环境的整体性能、降低存储成本,而且还可以延长已有存储的服役时间。
最近由IBM发布的是此类产品的代表,它将IBM的存储虚拟化软件SVC(SANVolumeController)以及存储分析和管理工具集成在一个单独的产品中。
可以将各种异构的物理存储阵列纳入到一个虚拟存储池中,在这个池之上创建的卷还支持自动精简配置。
该装置不但可以管理连接在其后的存储阵列中的Flash固态存储空间,而且自身内部也可以安装Flash固态存储组件。
通过实时存储分析功能,能够识别出I/O访问频繁的数据以及热点区域,并能够自动地将数据从磁盘迁移到Flash固态存储上,反向亦然。
用户可以借助的这些功能大幅度的提高现有的异构混合存储系统环境的性能和空间利用率。
与IBM类似的产品还有Alacritech和Avere,它们都是基于块或基于文件的存储加速设备。
日益增加的存储空间利用率利用存储精简技术,可以最大化的利用起可用的磁盘空间,存储精简技术包括自动精简配置、瘦克隆、压缩以及重复数据删除等等。
这些技术都有一个共同的目标,即最大程度的引用已经存在的数据块,消除或避免存储重复的数据。
然而存储精简技术对系统的性能稍有影响,所以对于用户来说,只有在明确了性能影响程度并且能够接受这种影响的前提下,才应该启动重复数据删除或数据压缩的功能。
性能和容量:密不可分存储系统的性能和空间利用率是紧密相关的一对参数,提升或改进其中的一个,往往会给另一个带来负面的影响。
因此,只有好好的利用存储分析和报表工具,才能了解存储的真实性能表现,进而发现系统瓶颈并采取适当的补救措施,这是必要的前提。
总之,提高存储效率的工作其实就是在性能需求和存储成本之间不断的寻找平衡。
‘拾’ 仓库利用率多少为好
仓库面积利用率是仓库可利用面积与仓库建筑总面积的比率,仓库容量利用率是库存商品实际数量或容积与仓库应存放数量或容积的比率。
在实际操作中,这两项指标均存在一定的前提。例如,针对特定的库存商品,两项指标可以进行比较并用以考量;但针对不同的库存商品,由于不同商品的存储保管要求(如堆高限制、品种品项的多少)并不相同,指标间的可比性则较低。因此,在讨论仓库面积利用率、仓库容量利用率两项指标时,一般只针对特定客户、特定商品进行比较和考量。
下面就两种类型客户,在不过多强调存货管理其他细节要求的情况下(如“五距”要求),针对平库以及五层货架仓库两种形式,来比较仓库面积利用率和仓库容量利用率的异同。
1
针对不同商品的存储属性,平库的仓库面积利用率指标变动较大;而仓库容量利用率中的分母“仓库应存放数量或容积”也是变动的,在一定的存储管理操作经验的基础上,“仓库应存放数量或容积”可以给出针对某种客户商品的额定数量,然后按实际情况核算仓库容量利用率;
货架式仓库建造完毕后,固有托盘货位一般不会变动,因此,仓库的存储容量一般不会因商品属性不同而变动,其仓库资源利用的指标一般不会变动(不考虑商品周转特性对库位利用的影响);
强调货架式仓库资源利用率比平库的资源利用率有提高,应是针对特定商品才能给出的,而针对某些特殊存储要求(如品种单一、批次数量大),仓库资源利用率会有下降的情况;
在选择用何种仓库类型来处理特定商品时,应充分考虑商品存储管理的要求,选择合适的、具有针对性的仓库形式,以及科学合理的存储设备,达到资源利用最大化目标,并降低投资风险。