Ⅰ Efi是什么意思,怎么查看自己Efi版本
BIOS,几乎和PC有着同样的寿命,当年康柏第一台“克隆”PC诞生的时候,它为了简化启动的设置,引入了固化程序的概念,在启动时负责将PC初始化,然后再将控制权交给磁盘上的操作系统。而今天,“康柏”这个品牌已经消失,而BIOS却作为无心插柳柳成荫之作,延续至今。
BIOS在PC启动时,将PC初始化,然后控制权交给磁盘上的操作系统,在后面的阶段,用户的感觉是在通过操作系统直接和硬件对话,可实际上,操作系统想要与硬件进行沟通,仍然必须通过BIOS。
BIOS的全称是Basic Input/Output System,中文名是基本输入输出系统。BIOS即是操作系统和计算机硬件之间通讯的桥梁,更是充当翻译的角色,从DOS时代起,微软的操作系统一直都是建立在“中断”这个概念上的,程序的切换依靠中断,系统的开关依靠中断,甚至我们按下了机箱上“Reset”键强制重启电脑,也还是中断在后台的作用。为了延续整套的16位中断系统,无论是CPU开发还是软件升级,都得考虑中断模式。
在x86系列处理器进入32位时代后,由于兼容性的原因,新的处理器保留了16位的运行方式,此后多次处理器的升级换代都保留了这种运行方式。甚至在含64位扩展技术的至强系列处理器中,处理器加电启动时仍然会切换到16位的实模式下运行。BIOS程序以16位汇编代码、寄存器参数调用方式、静态链接以及1MB以下内存固定编址的形式存在了十几年,虽然各大BIOS厂商近年来努力得对其进行改进,加入了许多新元素到产品中,如ACPI、USB支持等,但BIOS的根本性质没有得到任何改变,16位的运行工作环境是其最为致命的缺点。
现有的BIOS不但在工作方式存在令人不满之处,在工作能力上,也令人颇有微词。BIOS发展到现在,用来存放BIOS程序的芯片最大不过2Mb,换成实际字节就是256KB,面对这个数值,即使你想为BIOS编写一些新的功能,BIOS芯片中也不会有足够的空间让你写入。这也是BIOS这十几年来一直停滞不前的原因之一。
所以BIOS经过了这些年的辉煌期,已经逐渐脱离了时代的发展,成为了PC功能和性能进一步提升的瓶颈,只有寻求BIOS的接任者。而BIOS,必将在璀璨光环的环绕中,落下帷幕,成为历史的记录。
EFI的英文全称是Extensible Firmware Interface,中文名是可扩展固件接口,早在2006年的上半年,Intel曾经在IDF上进行过EFI的演示。要使用EFI系统,必须主板和操作系统都支持EFI功能,目前支持EFI功能的操作系统有Mac OS X、Vista和Server 2003。
EFI在开机时的作用和BIOS一样,就是初始化PC,但在细节上却又不一样。BIOS对PC的初始化,只是按照一定的顺序对硬件通电,简单地检查硬件是否能工作,而EFI不但检查硬件的完好性,还会加载硬件在EFI中的驱动程序,不用操作系统负责驱动的加载工作。 EFI的最革命之处,是颠覆了BIOS的界面概念,让操作界面和Windows一样易于上手。在EFI的操作界面中,鼠标成为了替代键盘的输入工具,各功能调节的模块也做的和Windows程序一样,可以说,EFI就是一个小型化的Windows系统。
对于操作系统来说,如果主板使用的是BIOS,那么操作系统就必须面对所有的硬件,大到主板显卡,小到鼠标键盘,每次重装系统或者系统升级,都必须手动安装新的驱动,否则硬件很可能无法正常工作。而基于EFI的主板则方便很多,因为EFI架构使用的驱动基于EFI Byte Code。EFI Byte Code有些类似于Java的中间代码,并不由CPU直接执行操作,而是需要EFI层进行翻译。对于不同的操作系统来说,EFI将硬件层很好地保护了起来,所有操作系统看到的,都只是EFI留给EFI Byte Code的程序接口,而EFI Byte Code又直接和Windows的API联系,这就意味着无论操作系统是Windows还是Linux,只要有EFI Byte Code支持,只需要一份驱动程序就能吃遍所有操作系统平台。
更为神奇的是,EFI Byte Code驱动还能绕过操作系统,直接安装在EFI环境中,这样对硬件的控制就由EFI层负责,EFI向操作系统直接提供硬件操作的接口,不需要操作系统再调用驱动。这种方式的优点是不需要进入操作系统,只需要进入EFI界面,更新驱动程序就可以完成,而且不需要对每一个操作系统进行驱动升级,只要EFI界面中升级一次,所有上层的操作系统都可以直接调用新的EFI接口。
EFI在开机之始就能够驱动所有的硬件,网络当然也不会例外,所以在EFI的操作界面中,程序可以直接连接上互联网,向外界求助操作系统的维修信息或者在线升级驱动程序。
更方便的编程方式
有人会问:既然EFI功能那么强大,那它存放在什么地方?是存放在原来的BIOS芯片中吗?答案当然是No。BIOS芯片只有256KB,远远不够EFI使用。EFI是以小型磁盘分区的形式存放在硬盘上的。EFI的安装,必须在支持EFI功能的主板上,使用光驱引导系统,然后对磁盘进行EFI化的处理,这个处理的过程,主要就是划分EFI独用的磁盘空间。
EFI的存储空间大约为50MB到100MB,具体视驱动文件多少而定。在这部分空间中,包含以下几个部分:
1. Pre-EFI初始化模块
2. EFI驱动执行环境
3. EFI驱动程序
4. 兼容性支持模块(CSM)
5. EFI高层应用
6. GUID 磁盘分区
在实现中,EFI初始化模块和驱动执行环境通常被集成在一个只读存储器中。Pre-EFI初始化程序在系统开机的时候最先得到执行,它负责最初的CPU、北桥、南桥、内存和硬盘的初始化工作,紧接着载入EFI驱动。当EFI驱动程序被载入运行后,系统便具有控制所有硬件的能力。在EFI规范中,一种突破传统MBR磁盘分区结构限制的GUID磁盘分区系统(GPT)被引入,新结构中,磁盘的分区数不再受限制(在MBR结构下,只能存在4个主分区),并且分区类型将由GUID来表示。在众多的分区类型中,EFI系统分区可以被EFI系统存取,用于存放部分驱动和应用程序。CSM是在x86平台EFI系统中的一个特殊的模块,它将为不具备EFI引导能力的操作系统提供类似于传统BIOS的系统服务。
由于EFI驱动开发简单,所有的硬件厂商都可以参与,为自家的硬件定制最为合适的驱动。基于EFI的驱动模型可以使EFI系统接触到所有的硬件功能,不进入操作操作系统就浏览网站不再是天方夜谭,甚至实现起来也非常简单。这对基于传统BIOS的系统来说是件不可能的任务,在BIOS中添加几个简单的USB设备支持都曾使很多BIOS设计师痛苦万分,更何况除了添加对无数网络硬件的支持外,还得凭空构建一个16位模式下的TCP/IP协议。
Ⅱ EFI是什么
EFI是可扩展固件接口(Extensible Firmware Interface)的缩写,英特尔公司推出的一种在未来的类PC的电脑系统中替代BIOS的升级方案。
EFI的组成,一般认为EFI由以下几个部分组成,Pre-EFI初始化模块,EFI驱动执行环境,EFI驱动程序,兼容性支持模块(CSM),EFI高层应用,GUID 磁盘分区。
EFI初始化模块和驱动执行环境通常被集成在一个只读存储器中。Pre-EFI初始化程序在系统开机的时候最先得到执行,它负责最初的CPU,主桥及存储器的初始化工作,紧接着载入EFI驱动执行环境(DXE)。当DXE被载入运行时,系统便具有了枚举并加载其他EFI驱动的能力。
在基于PCI架构的系统中,各PCI桥及PCI适配器的EFI驱动会被相继加载及初始化;这时,系统进而枚举并加载各桥接器及适配器后面的各种总线及设备驱动程序;
周而复始,直到最后一个设备的驱动程序被成功加载。正因如此,EFI驱动程序可以放置于系统的任何位置,只要能保证它可以按顺序被正确枚举。
(2)EfI通信模块带存储吗扩展阅读
EFI system partition (ESP),EFI 系统分区通常指数据存储介质中的一个分区,通常用于硬盘或固态硬盘。它通常应用于 Unified Extensible Firmware Interface (UEFI)。
当电脑通电启动时,UEFI会读取ESP 用来安装操作系统和各种实用工具。ESP需要格式化成FAT文件系统并且挂载至UEFI指定的位置。
EFI 系统分区包含BOOT LOADER启动程序来安装操作系统。操作系统存储在其他分区或者其他存储介质中。
Ⅲ BIOS ,EFI什么关系他们并存吗EFI已经出来了吗,有那个有用
BIOS是英文"Basic Input Output System"的缩略语,直译过来后中文名称就是"基本输入输出系统"。它的全称应该是ROM-BIOS,意思是只读存储器基本输入输出系统。其实,它是一组固化到计算机内主板上一个ROM芯片上的程序,它保存着计算机最重要的基本输入输出的程序、系统设置信息、开机上电自检程序和系统启动自举程序。 其主要功能是为计算机提供最底层的、最直接的硬件设置和控制。BIOS设置程序是储存在BIOS芯片中的,只有在开机时才可以进行设置。CMOS主要用于存储BIOS设置程序所设置的参数与数据,而BIOS设置程序主要对技巧的基本输入输出系统进行管理和设置,使系统运行在最好状态下,使用BIOS设置程序还可以排除系统故障或者诊断系统问题。 有人认为既然BIOS是"程序",那它就应该是属于软件,感觉就像自己常用的Word或Excel。但也很多人不这么认为,因为它与一般的软件还是有一些区别,而且它与硬件的联系也是相当地紧密。形象地说,BIOS应该是连接软件程序与硬件设备的一座"桥梁",负责解决硬件的即时要求。主板上的BIOS芯片或许是主板上唯一贴有标签的芯片,一般它是一块32针的双列直插式的集成电路,上面印有"BIOS"字样。586以前的BIOS多为可重写EPROM芯片,上面的标签起着保护BIOS内容的作用(紫外线照射会使EPROM内容丢失),不能随便撕下。586以后的ROM BIOS多采用EEPROM(电可擦写只读ROM),通过跳线开关和系统配带的驱动程序盘,可以对EEPROM进行重写,方便地实现BIOS升级。 计算机用户在使用计算机的过程中,都会接触到BIOS,它在计算机系统中起着非常重要的作用。一块主板性能优越与否,很大程度上取决于主板上的BIOS管理功能是否先进。
BIOS芯片是主板上一块长方型或正方型芯片,BIOS中主要存放:
自诊断程序:通过读取CMOS RAM中的内容识别硬件配置,并对其进行自检和初始化;
CMOS设置程序:引导过程中,用特殊热键启动,进行设置后,存入CMOS RAM中;
系统自举装载程序:在自检成功后将磁盘相对0道0扇区上的引导程序装入内存,让其运行以装入DOS系统;
主要I/O设备的驱动程序和中断服务; 由于BIOS直接和系统硬件资源打交道,因此总是针对某一类型的硬件系统,而各种硬件系统又各有不同,所以存在各种不同种类的BIOS,随着硬件技术的发展,同一种BIOS也先后出现了不同的版本,新版本的BIOS比起老版本来说,功能更强。
EFI的英文全称是Extensible Firmware Interface,中文名是可扩展固件接口,早在2006年的上半年,Intel曾经在IDF上进行过EFI的演示。要使用EFI系统,必须主板和操作系统都支持EFI功能,目前支持EFI功能的操作系统有Mac OS X、Vista和Server 2003。
EFI在开机时的作用和BIOS一样,就是初始化PC,但在细节上却又不一样。BIOS对PC的初始化,只是按照一定的顺序对硬件通电,简单地检查硬件是否能工作,而EFI不但检查硬件的完好性,还会加载硬件在EFI中的驱动程序,不用操作系统负责驱动的加载工作。 EFI的最革命之处,是颠覆了BIOS的界面概念,让操作界面和Windows一样易于上手。在EFI的操作界面中,鼠标成为了替代键盘的输入工具,各功能调节的模块也做的和Windows程序一样,可以说,EFI就是一个小型化的Windows系统。
对于操作系统来说,如果主板使用的是BIOS,那么操作系统就必须面对所有的硬件,大到主板显卡,小到鼠标键盘,每次重装系统或者系统升级,都必须手动安装新的驱动,否则硬件很可能无法正常工作。而基于EFI的主板则方便很多,因为EFI架构使用的驱动基于EFI Byte Code。EFI Byte Code有些类似于Java的中间代码,并不由CPU直接执行操作,而是需要EFI层进行翻译。对于不同的操作系统来说,EFI将硬件层很好地保护了起来,所有操作系统看到的,都只是EFI留给EFI Byte Code的程序接口,而EFI Byte Code又直接和Windows的API联系,这就意味着无论操作系统是Windows还是Linux,只要有EFI Byte Code支持,只需要一份驱动程序就能吃遍所有操作系统平台
Ⅳ 常见efi系统,存储位置在哪里硬盘还是独立onboard的一个芯片内,类似BIOS芯片
硬盘上,前面的GPT分区
Ⅳ UEFI和EFI实质区别
EFI,EFI,可扩展固件接口英文名Extensible Firmware Interface 的缩写,是英特尔,一个主导个人电脑技术研发的公司推出的一种在未来的类PC的电脑系统中替代BIOS的升级方案
注:EFI是以小型磁盘分区的形式存放在硬盘上的,并非在BIOS的FLASH里面,AMD 平台支持EFI的很少,只有高端旗舰产品才有例如A75
理论上MacOS可以装在带UEFI的电脑上,但Mac机用的是UEFI V1.X,普通PC的UEFI是V2.x,两者不兼容,而且MacOS需要苹果机的SMC部件,一般PC木有这东东
UEFI:
UEFI(统一可扩展固件接口)由 UEFI 论坛统一管理,UEFI 论坛是由芯片组供应商、硬件供应商、系统供应商、固件供应商和操作系统供应商联合组建的一个组织。该论坛负责维护可跨多种 UEFI PC 使用的规范、测试工具和参考实现。Microsoft 是该论坛的董事会成员,该论坛对所有个人和公司开放,加入该论坛无需支付任何费用。UEFI 为个人计算机定义了下一代固件接口。基本输入和输出系统 (BIOS) 固件最初采用汇编语言进行编程,并使用中断来执行输入/输出操作,在出现之初即确定了 PC 生态系统的基本框架。
探究的一般过程是从发现问题、提出问题开始的,发现问题后,根据自己已有的知识和生活经验对问题的答案作出假设.设计探究的方案,包括选择材料、设计方法步骤等.按照探究方案进行探究,得到结果,再分析所得的结果与假设是否相符,从而得出结论.并不是所有的问题都一次探究得到正确的结论.有时,由于探究的方法不够完善,也可能得出错误的结论.因此,在得出结论后,还需要对整个探究过程进行反思.探究实验的一般方法步骤:提出问题、做出假设、制定计划、实施计划、得出结论、表达和交流.
科学探究常用的方法有观察法、实验法、调查法和资料分析法等.
观察是科学探究的一种基本方法.科学观察可以直接用肉眼,也可以借助放大镜、显微镜等仪器,或利用照相机、录像机、摄像机等工具,有时还需要测量.科学的观察要有明确的目的;观察时要全面、细致、实事求是,并及时记录下来;要有计划、要耐心;要积极思考,及时记录;要交流看法、进行讨论.实验方案的设计要紧紧围绕提出的问题和假设来进行.在研究一种条件对研究对象的影响时,所进行的除了这种条件不同外,其它条件都相同的实验,叫做对照实验.一般步骤:发现并提出问题;收集与问题相关的信息;作出假设;设计实验方案;实施实验并记录;分析实验现象;得出结论.调查是科学探究的常用方法之一.调查时首先要明确调查目的和调查对象,制订合理的调查方案.调查过程中有时因为调查的范围很大,就要选取一部分调查对象作为样本.调查过程中要如实记录.对调查的结果要进行整理和分析,有时要用数学方法进行统计.收集和分析资料也是科学探究的常用方法之一.收集资料的途径有多种.去图书管查阅书刊报纸,拜访有关人士,上网收索.其中资料的形式包括文字、图片、数据以及音像资料等.对获得的资料要进行整理和分析,从中寻找答案。
Ⅵ efi是什么意思
EFI
B 为本词条添加义项名
?
可扩展固件接口(英文名Extensible Firmware Interface 或EFI)是由英特尔,一个主导个人电脑技术研发的公司推出的一种在未来的类PC的电脑系统中替代BIOS的升级方案。
基本信息
外文名称
EFI
英文名称
Extensible Firmware Interface
类别
一种在未来的类PC的电脑系统中替代BIOS的升级方案
组成
Pre-EFI初始化模块、EFI驱动执行环境、EFI驱动程序、GUID 磁盘分区等
目录
1 产生介绍
2 相关信息
1 产生介绍
2 相关信息
1 产生介绍编辑本段
众所周知,英特尔在近二十年来引领以x86系列处理器为基础的PC技术潮流,她的产品如CPU,EFI芯片组等在PC生产线中占据绝对领导的位置。因此,不少人认为这一举动显示了英特尔公司欲染指固件产品市场的野心。事实上,EFI技术源于英特尔安腾处理器(Itanium)平台的推出。安腾处理器是英特尔瞄准服务器高端市场投入近十年研发力量设计产生的与x86系列完全不同的64位新架构。在x86系列处理器进入32位的时代,由于兼容性的原因,新的处理器(i80386)保留了16位的运行方式(实模式),此后多次处理器的升级换代都保留了这种运行方式。甚至在含64位扩展技术的至强系列处理器中,处理器加电启动时仍然会切换到16位的实模式下运行。英特尔将这种情况归咎于BIOS技术的发展缓慢。自从PC兼容机厂商通过净室的方式复制出第一套BIOS源程序,BIOS就以16位汇编代码,寄存器参数调用方式,静态链接,以及1MB以下内存固定编址的形式存在了十几年。虽然由于各大BIOS厂商近年来的努力,有许多新元素添加到产品中,如PnP BIOS,ACPI,传统USB设备支持等等,但BIOS的根本性质没有得到任何改变。这迫使英特尔在开发更新的处理器时,都必须考虑加进使效能大大降低的兼容模式。有人曾打了一个比喻:这就像保时捷新一代的全自动档跑车被人生套上去一个蹩脚的挂档器。
然而,安腾处理器并没有这样的顾虑,它是一个新生的处理器架构,系统固件和操作系统之间的接口都可以完全重新定义。并且这一次,英特尔将其定义为一个可扩展的,标准化的固件接口规范,不同于传统BIOS的固定的,缺乏文档的,完全基于经验和晦涩约定的一个事实标准。基于EFI的第一套系统产品的出现至今已经有五年的时间,如今,英特尔试图将成功运用在高端服务器上的技术推广到市场占有率更有优势的PC产品线中,并承诺在2006年间会投入全力的技术支持。
2 相关信息编辑本段
一个显着的区别就是EFI是用模块化,C语言风格的参数堆栈传递方式,动态链接的形式构建的系统,较BIOS而言更易于实现,容错和纠错特性更强,缩短了系统研发的时间。它运行于32位或64位模式,乃至未来增强的处理器模式下,突破传统16位代码的寻址能力,达到处理器的最大寻址。它利用加载EFI驱动的形式,识别及操作硬件,不同于BIOS利用挂载实模式中断的方式增加硬件功能。后者必须将一段类似于驱动的16位代码,放置在固定的0x000C0000至0x000DFFFF之间存储区中,运行这段代码的初始化部分,它将挂载实模式下约定的中断向量向其他程序提供服务。例如,VGA图形及文本输出中断(INT 10h),磁盘存取中断服务(INT 13h)等等。由于这段存储空间有限(128KB),BIOS对于所需放置的驱动代码大小超过空间大小的情况无能为力。另外,BIOS的硬件服务程序都已16位代码的形式存在,这就给运行于增强模式的操作系统访问其服务造成了困难。因此BIOS提供的服务在现实中只能提供给操作系统引导程序或MS-DOS类操作系统使用。而EFI系统下的驱动并不是由可以直接运行在CPU上的代码组成的,而是用EFI Byte Code编写而成的。这是一组专用于EFI驱动的虚拟机器指令,必须在EFI驱动运行环境(Driver Execution Environment,或DXE)下被解释运行。这就保证了充分的向下兼容性,打个比方说,一个带有EFI驱动的扩展设备,既可以将其安装在安腾处理器的系统中,也可以安装于支持EFI的新PC系统中,而它的EFI驱动不需要重新编写。这样就无需对系统升级带来的兼容性因素作任何考虑。另外,由于EFI驱动开发简单,所有的PC部件提供商都可以参与,情形非常类似于现代操作系统的开发模式,这个开发模式曾使Windows在短短的两三年时间内成为功能强大,性能优越的操作系统。基于EFI的驱动模型可以使EFI系统接触到所有的硬件功能,在操作操作系统运行以前浏览万维网站不再是天方夜谭,甚至实现起来也非常简单。这对基于传统BIOS的系统来说是件不可能的任务,在BIOS中添加几个简单的USB设备支持都曾使很多BIOS设计师痛苦万分,更何况除了添加对无数网络硬件的支持外,还得凭空构建一个16位模式下的TCP/IP协议栈。
一些人认为BIOS只不过是由于兼容性问题遗留下来的无足轻重的部分,不值得为它花费太大的升级努力。而反对者认为,当BIOS的出现制约了PC技术的发展时,必须有人对它作必要的改变。
EFI和操作系统
EFI在概念上非常类似于一个低阶的操作系统,并且具有操控所有硬件资源的能力。不少人感觉它的不断发展将有可能代替现代的操作系统。事实上,EFI的缔造者们在第一版规范出台时就将EFI的能力限制于不足以威胁操作系统的统治地位。首先,它只是硬件和预启动软件间的接口规范;其次,EFI环境下不提供中断的访问机制,也就是说每个EFI驱动程序必须用轮询的方式来检查硬件状态,并且需要以解释的方式运行,较操作系统下的驱动效率更低;再则,EFI系统不提供复杂的存储器保护功能,它只具备简单的存储器管理机制,具体来说就是指运行在x86处理器的段保护模式下,以最大寻址能力为限把存储器分为一个平坦的段,所有的程序都有权限存取任何一段位置,并不提供真实的保护服务。当EFI所有组件加载完毕时,系统可以开启一个类似于操作系统Shell的命令解释环境,在这里,用户可以调入执行任何EFI应用程序,这些程序可以是硬件检测及除错软件,引导管理,设置软件,操作系统引导软件等等。理论上来说,对于EFI应用程序的功能并没有任何限制,任何人都可以编写这类软件,并且效果较以前MS-DOS下的软件更华丽,功能更强大。一旦引导软件将控制权交给操作系统,所有用于引导的服务代码将全部停止工作,部分运行时代服务程序还可以继续工作,以便于操作系统一时无法找到特定设备的驱动程序时,该设备还可以继续被使用。
EFI的组成
一般认为,EFI由以下几个部分组成:
1. Pre-EFI初始化模块
2. EFI驱动执行环境
3. EFI驱动程序
4. 兼容性支持模块(CSM)
5. EFI高层应用
6. GUID 磁盘分区
在实现中,EFI初始化模块和驱动执行环境通常被集成在一个只读存储器中。Pre-EFI初始化程序在系统开机的时候最先得到执行,它负责最初的CPU,主桥及存储器的初始化工作,紧接着载入EFI驱动执行环境(DXE)。当DXE被载入运行时,系统便具有了枚举并加载其他EFI驱动的能力。在基于PCI架构的系统中,各PCI桥及PCI适配器的EFI驱动会被相继加载及初始化;这时,系统进而枚举并加载各桥接器及适配器后面的各种总线及设备驱动程序,周而复始,直到最后一个设备的驱动程序被成功加载。正因如此,EFI驱动程序可以放置于系统的任何位置,只要能保证它可以按顺序被正确枚举。例如一个具PCI总线接口的ATAPI大容量存储适配器,其EFI驱动程序一般会放置在这个设备的符合PCI规范的扩展只读存储器(PCI Expansion ROM)中,当PCI总线驱动被加载完毕,并开始枚举其子设备时,这个存储适配器旋即被正确识别并加载它的驱动程序。部分EFI驱动程序还可以放置在某个磁盘的EFI专用分区中,只要这些驱动不是用于加载这个磁盘的驱动的必要部件。在EFI规范中,一种突破传统MBR磁盘分区结构限制的GUID磁盘分区系统(GPT)被引入,新结构中,磁盘的分区数不再受限制(在MBR结构下,只能存在4个主分区),并且分区类型将由GUID来表示。在众多的分区类型中,EFI系统分区可以被EFI系统存取,用于存放部分驱动和应用程序。很多人担心这将会导致新的安全性因素,因为EFI系统比传统的BIOS更易于受到计算机病毒的攻击,当一部分EFI驱动程序被破坏时,系统有可能面临无法引导的情况。实际上,系统引导所依赖的EFI驱动部分通常都不会存放在EFI的GUID分区中,即使分区中的驱动程序遭到破坏,也可以用简单的方法得到恢复,这与操作系统下的驱动程序的存储习惯是一致的。CSM是在x86平台EFI系统中的一个特殊的模块,它将为不具备EFI引导能力的操作系统提供类似于传统BIOS的系统服务。
EFI的发展
英特尔无疑是推广EFI的积极因素,近年来由于业界对其认识的不断深入,更多的厂商正投入这方面的研究。包括英特尔,AMD在内的一些PC生产厂家联合成立了联合可扩展固件接口论坛,它将在近期推出第一版规范。这个组织将接手规划EFI发展的重任,并将英特尔的EFI框架解释为这个规范的一个具体实现。另外,各大BIOS提供商如Phoenix, AMI等,原先被认为是EFI发展的阻碍力量,现在也不断的推出各自的解决方案。分析人士指出,这是由于BIOS厂商在EFI架构中重新找到了诸如Pre-EFI启动环境之类的市场位置,然而,随着EFI在PC系统上的成功运用,以及英特尔新一代芯片组的推出,这一部分市场份额将会不出意料的在英特尔的掌控之中。
词条标签: 技术 通信技术
Ⅶ 磁盘EFI分区是怎么创建的EFI是引导启动项吗它只存在于GPT的磁盘中吗那MBR格式的就不能有
1、EFI 分区只存在于 GPT 磁盘中。MBR 磁盘上不存在EFI 分区。
2、在 GPT 磁盘上,操作系统的引导分区确实是EFI 分区。
3、EFI 分区是在 GPT 磁盘上安装64位操作系统时自动创建的。
4、GPT 与 MBR 是磁盘的两种模式,XP不能识别 GPT 磁盘,因此以前不太为人所知。 GPT 磁盘支持大于 2.1T 的容量,且主分区可以超过4个。
5、GPT 磁盘只能在支持 UEFI BIOS 的主板上安装64位操作系统。但若不安装操作系统,仅做数据盘使用,则对主板没有特殊要求。
(7)EfI通信模块带存储吗扩展阅读
EFI初始化模块和驱动执行环境通常被集成在一个只读存储器中。Pre-EFI初始化程序在系统开机的时候最先得到执行,它负责最初的CPU,主桥及存储器的初始化工作,紧接着载入EFI驱动执行环境(DXE)。
当DXE被载入运行时,系统便具有了枚举并加载其他EFI驱动的能力。在基于PCI架构的系统中,各PCI桥及PCI适配器的EFI驱动会被相继加载及初始化;
这时,系统进而枚举并加载各桥接器及适配器后面的各种总线及设备驱动程序,周而复始,直到最后一个设备的驱动程序被成功加载。
Ⅷ 什么是EFI系统
可扩展固件接口(英文名Extensible Firmware Interface 或EFI)是由英特尔,一个主导个人电脑技术研发的公司推出的一种在未来的类PC的电脑系统中替代BIOS的升级方案。BIOS技术的兴起源于IBM PC/AT机器的流行以及第一台由康柏公司研制生产的“克隆”PC。在PC启动的过程中,BIOS担负着初始化硬件,检测硬件功能,以及引导操作系统的责任,在早期,BIOS还提供一套运行时的服务程序给操作系统及应用程序使用。BIOS程序存放于一个掉电后内容不会丢失的只读存储器中,系统加电时处理器的第一条指令的地址会被定位到BIOS的存储器中,便于使初始化程序得到执行。
EFI的产生
众所周知,英特尔在近二十年来引领以x86系列处理器为基础的PC技术潮流,她的产品如CPU,芯片组等在PC生产线中占据绝对领导的位置。因此,不少人认为这一举动显示了英特尔公司欲染指固件产品市场的野心。事实上,EFI技术源于英特尔安腾处理器(Itanium)平台的推出。安腾处理器是英特尔瞄准服务器高端市场投入近十年研发力量设计产生的与x86系列完全不同的64位新架构。在x86系列处理器进入32位的时代,由于兼容性的原因,新的处理器(i80386)保留了16位的运行方式(实模式),此后多次处理器的升级换代都保留了这种运行方式。甚至在含64位扩展技术的至强系列处理器中,处理器加电启动时仍然会切换到16位的实模式下运行。英特尔将这种情况归咎于BIOS技术的发展缓慢。自从PC兼容机厂商通过净室的方式复制出第一套BIOS源程序,BIOS就以16位汇编代码,寄存器参数调用方式,静态链接,以及1MB以下内存固定编址的形式存在了十几年。虽然由于各大BIOS厂商近年来的努力,有许多新元素添加到产品中,如PnP BIOS,ACPI,传统USB设备支持等等,但BIOS的根本性质没有得到任何改变。这迫使英特尔在开发更新的处理器时,都必须考虑加进使效能大大降低的兼容模式。有人曾打了一个比喻:这就像保时捷新一代的全自动档跑车被人生套上去一个蹩脚的挂档器。
然而,安腾处理器并没有这样的顾虑,它是一个新生的处理器架构,系统固件和操作系统之间的接口都可以完全重新定义。并且这一次,英特尔将其定义为一个可扩展的,标准化的固件接口规范,不同于传统BIOS的固定的,缺乏文档的,完全基于经验和晦涩约定的一个事实标准。基于EFI的第一套系统产品的出现至今已经有五年的时间,如今,英特尔试图将成功运用在高端服务器上的技术推广到市场占有率更有优势的PC产品线中,并承诺在2006年间会投入全力的技术支持。
比较EFI和BIOS
一个显着的区别就是EFI是用模块化,C语言风格的参数堆栈传递方式,动态链接的形式构建的系统,较BIOS而言更易于实现,容错和纠错特性更强,缩短了系统研发的时间。它运行于32位或64位模式,乃至未来增强的处理器模式下,突破传统16位代码的寻址能力,达到处理器的最大寻址。它利用加载EFI驱动的形式,识别及操作硬件,不同于BIOS利用挂载实模式中断的方式增加硬件功能。后者必须将一段类似于驱动的16位代码,放置在固定的0x000C0000至0x000DFFFF之间存储区中,运行这段代码的初始化部分,它将挂载实模式下约定的中断向量向其他程序提供服务。例如,VGA图形及文本输出中断(INT 10h),磁盘存取中断服务(INT 13h)等等。由于这段存储空间有限(128KB),BIOS对于所需放置的驱动代码大小超过空间大小的情况无能为力。另外,BIOS的硬件服务程序都已16位代码的形式存在,这就给运行于增强模式的操作系统访问其服务造成了困难。因此BIOS提供的服务在现实中只能提供给操作系统引导程序或MS-DOS类操作系统使用。而EFI系统下的驱动并不是由可以直接运行在CPU上的代码组成的,而是用EFI Byte Code编写而成的。这是一组专用于EFI驱动的虚拟机器指令,必须在EFI驱动运行环境(Driver Execution Environment,或DXE)下被解释运行。这就保证了充分的向下兼容性,打个比方说,一个带有EFI驱动的扩展设备,既可以将其安装在安腾处理器的系统中,也可以安装于支持EFI的新PC系统中,而它的EFI驱动不需要重新编写。这样就无需对系统升级带来的兼容性因素作任何考虑。另外,由于EFI驱动开发简单,所有的PC部件提供商都可以参与,情形非常类似于现代操作系统的开发模式,这个开发模式曾使Windows在短短的两三年时间内成为功能强大,性能优越的操作系统。基于EFI的驱动模型可以使EFI系统接触到所有的硬件功能,在操作操作系统运行以前浏览万维网站不再是天方夜谭,甚至实现起来也非常简单。这对基于传统BIOS的系统来说是件不可能的任务,在BIOS中添加几个简单的USB设备支持都曾使很多BIOS设计师痛苦万分,更何况除了添加对无数网络硬件的支持外,还得凭空构建一个16位模式下的TCP/IP协议栈。
一些人认为BIOS只不过是由于兼容性问题遗留下来的无足轻重的部分,不值得为它花费太大的升级努力。而反对者认为,当BIOS的出现制约了PC技术的发展时,必须有人对它作必要的改变。
EFI和操作系统
EFI在概念上非常类似于一个低阶的操作系统,并且具有操控所有硬件资源的能力。不少人感觉它的不断发展将有可能代替现代的操作系统。事实上,EFI的缔造者们在第一版规范出台时就将EFI的能力限制于不足以威胁操作系统的统治地位。首先,它只是硬件和预启动软件间的接口规范;其次,EFI环境下不提供中断的访问机制,也就是说每个EFI驱动程序必须用轮询的方式来检查硬件状态,并且需要以解释的方式运行,较操作系统下的驱动效率更低;再则,EFI系统不提供复杂的存储器保护功能,它只具备简单的存储器管理机制,具体来说就是指运行在x86处理器的段保护模式下,以最大寻址能力为限把存储器分为一个平坦的段,所有的程序都有权限存取任何一段位置,并不提供真实的保护服务。当EFI所有组件加载完毕时,系统可以开启一个类似于操作系统Shell的命令解释环境,在这里,用户可以调入执行任何EFI应用程序,这些程序可以是硬件检测及除错软件,引导管理,设置软件,操作系统引导软件等等。理论上来说,对于EFI应用程序的功能并没有任何限制,任何人都可以编写这类软件,并且效果较以前MS-DOS下的软件更华丽,功能更强大。一旦引导软件将控制权交给操作系统,所有用于引导的服务代码将全部停止工作,部分运行时代服务程序还可以继续工作,以便于操作系统一时无法找到特定设备的驱动程序时,该设备还可以继续被使用。
EFI的组成
一般认为,EFI由以下几个部分组成:
1. Pre-EFI初始化模块
2. EFI驱动执行环境
3. EFI驱动程序
4. 兼容性支持模块(CSM)
5. EFI高层应用
6. GUID 磁盘分区
在实现中,EFI初始化模块和驱动执行环境通常被集成在一个只读存储器中。Pre-EFI初始化程序在系统开机的时候最先得到执行,它负责最初的CPU,主桥及存储器的初始化工作,紧接着载入EFI驱动执行环境(DXE)。当DXE被载入运行时,系统便具有了枚举并加载其他EFI驱动的能力。在基于PCI架构的系统中,各PCI桥及PCI适配器的EFI驱动会被相继加载及初始化;这时,系统进而枚举并加载各桥接器及适配器后面的各种总线及设备驱动程序,周而复始,直到最后一个设备的驱动程序被成功加载。正因如此,EFI驱动程序可以放置于系统的任何位置,只要能保证它可以按顺序被正确枚举。例如一个具PCI总线接口的ATAPI大容量存储适配器,其EFI驱动程序一般会放置在这个设备的符合PCI规范的扩展只读存储器(PCI Expansion ROM)中,当PCI总线驱动被加载完毕,并开始枚举其子设备时,这个存储适配器旋即被正确识别并加载它的驱动程序。部分EFI驱动程序还可以放置在某个磁盘的EFI专用分区中,只要这些驱动不是用于加载这个磁盘的驱动的必要部件。在EFI规范中,一种突破传统MBR磁盘分区结构限制的GUID磁盘分区系统(GPT)被引入,新结构中,磁盘的分区数不再受限制(在MBR结构下,只能存在4个主分区),并且分区类型将由GUID来表示。在众多的分区类型中,EFI系统分区可以被EFI系统存取,用于存放部分驱动和应用程序。很多人担心这将会导致新的安全性因素,因为EFI系统比传统的BIOS更易于受到计算机病毒的攻击,当一部分EFI驱动程序被破坏时,系统有可能面临无法引导的情况。实际上,系统引导所依赖的EFI驱动部分通常都不会存放在EFI的GUID分区中,即使分区中的驱动程序遭到破坏,也可以用简单的方法得到恢复,这与操作系统下的驱动程序的存储习惯是一致的。CSM是在x86平台EFI系统中的一个特殊的模块,它将为不具备EFI引导能力的操作系统提供类似于传统BIOS的系统服务。
EFI的发展
英特尔无疑是推广EFI的积极因素,近年来由于业界对其认识的不断深入,更多的厂商正投入这方面的研究。包括英特尔,AMD在内的一些PC生产厂家联合成立了联合可扩展固件接口论坛,它将在近期推出第一版规范。这个组织将接手规划EFI发展的重任,并将英特尔的EFI框架解释为这个规范的一个具体实现。另外,各大BIOS提供商如Phoenix, AMI等,原先被认为是EFI发展的阻碍力量,现在也不断的推出各自的解决方案。分析人士指出,这是由于BIOS厂商在EFI架构中重新找到了诸如Pre-EFI启动环境之类的市场位置,然而,随着EFI在PC系统上的成功运用,以及英特尔新一代芯片组的推出,这一部分市场份额将会不出意料的在英特尔的掌控之中。