当前位置:首页 » 服务存储 » 内存多通道技术和多模块存储器
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

内存多通道技术和多模块存储器

发布时间: 2022-07-19 20:37:59

1. intel内存双通道新技术

http://www.topinfo.com.cn/data/mail/epaper/0000020025/page14.htm先到这里来看看把

Intel弹性双通道内存技术的英文是Intel Flex Memory Technology,该技术使得内存的搭配更加灵活,它允许不同容量、不同规格甚至不成对的内存组成双通道,让系统配置和内存升级更具弹性。Intel 弹性双通道技术在915芯片组上就开始使用了,但直到945/955芯片组才成熟起来,并具有实用价值。而965、975芯片组又对它加以优化,具有更好 的性能表现。

一般的ATX主板上都会有分为两种不同颜色的4根内存插槽,相邻不同颜色的两根插槽组成一个内存通道。Intel弹性双通道技术拥有以下两种双通道内存工作模式:

1.对称双通道工作模式
对称双通道工作模式要求两个通道的内存容量相等,但是没有严格要求内存容量的绝对对称,可以A通道为512MB +512MB,B通道为一条1GB,只要A和B通道各自的总容量相等就可以了。该模式下可使用 2个、3个或 4个内存条获得双通道模式,如果使用的内存模块速度不同,内存通道速度取决于系统中安装的速度最慢的内存模块速度。具体情况如下:

(1)内存模组的绝对对称。这是最理想的对称双通道,即分别在相同颜色的插槽中插入相同容量的内存条,内存条数为2或4,该模式下所有的内存都工作在双通道模式下,性能最强。
(2)内存容量的对称。这种模式不要求两个通道中的内存条数量相等,可由3条内存组成双通道,两个通道的内存总容量相等就可以,所有内存也都工作在双通道模式下,性能略逊于模式(1)。

2.非对称双通道模式
在非对称双通道模式下,两个通道的内存容量可以不相等,而组成双通道的内存容量大小取决于容量较小的那个通道。例如A通道有512MB内存,B通道有 1GB内存,则A通道中的512MB和B通道中的512MB组成双通道,B通道剩下的512MB内存仍工作于单通道模式下。需要注意的是,两条内存必须插 在相同颜色的插槽中。

再加上点东东吧:

Intel® 865 Chipset Family
一、Intel 865/875芯片组介绍
为了彻底拉开与对手AMD的距离,2002年11月中旬,Intel决定将下一代的Pentium4处理器FSB频率跳过原计划的677MHz,直接从533MHz提升至800MHz,新Pentium4处理器由开发代号为Springdale和Canterwood的两款芯片组提供新平台。原有的845系列和850系列芯片组由于不支持800MHz的FSB而分别被865(Springdale)和875(Canterwood)系列代替。865系列分为865PE、865G、865GV和865P,875系列有875P,它们将支持800MHz的FSB频率、双通道DDR400内存、超线程技术、千兆以太网接口及Serial ATA等新标准。
865PE是865系列中的主流芯片组。从规格上看,865PE支持800MHz的FSB、支持超线程技术、支持双通道DDR400、支持AGP 8X、支持CSA结构,搭配ICH5/ICH5R南桥、支持SATA-150。865PE规格强悍,既能稳定地支持现有的高端硬件,又能兼容未来的设备。是865芯片组中面向中高端的产品,非常有竞争力,值得购买。
848P除了不支持双通道内存外,其它规格基本上与865PE相同。可以认为848P=865PE-1个内存通道。
865G是整合了图形核心的版本,除了在北桥芯片中内建了图形核心Intel® Extreme Graphics 2外,其它规格均与865PE相同。
865GV整合了865G的简化版本,在865G的基础上,去掉了AGP 8X接口。
865P是面向中低端市场的芯片组,在规格方面有所降低,与865PE相比,它只支持533MHz的FSB、支持双通道DDR333内存,主要是为533MHz FSB的处理器市场和不考虑升级的用户设计的。
875P芯片组是Intel在高端市场上的杀手锏,面向高端桌面市场和服务器市场发售。875P芯片组的基本规格与865PE相同,放弃了对400MHz FSB、赛扬及赛扬D处理器的支持,支持服务器专用的ECC内存,并在北桥芯片中打开了PAT,因此北桥封装也相对复杂(1005 FC-BGA)。这标志着875P在内存方面同时具备了稳定和速度,让Pentium4登上性能之颠。
二、芯片组对比表
1、Intel官方网站的对比表
Intel® 875P
Chipset
Intel® 865G
Chipset
Intel® 865PE
Chipset
Intel® 865P
Chipset
Intel® 865GV
Chipset

HOST
875P Chipset 865G Chipset 865PE Chipset 865P Chipset 865GV Chipset
Target Segment Mainstream PC Mainstream PC Mainstream PC Mainstream PC Mainstream PC
Processor Positioned Intel® Pentium® 4 processor Intel® Pentium® 4, Celeron®, or Celeron® D processor Intel® Pentium® 4, Celeron®, or Celeron® D processor Intel® Pentium® 4, Celeron®, or Celeron® D processor Intel® Pentium® 4, Celeron®, or Celeron® D processor
Hyper-Threading Technology1 Optimized for HT Technology Optimized for HT Technology Optimized for HT Technology Supports HT Technology Optimized for HT Technology
System Bus 800/533 MHz 800/533/400 MHz 800/533/400 MHz 533/400 MHz 800/533/400 MHz
System Bus bandwidth 6.4GB/Sec 6.4GB/Sec 6.4GB/Sec 4.2GB/Sec 6.4GB/Sec
Processor Package mPGA478 mPGA478 mPGA478 mPGA478 mPGA478
Number Processors 1 1 1 1 1
MEMORY CONTROLLER HUB 875P Chipset 865G Chipset 865PE Chipset 865P Chipset 865GV Chipset
Type 82875P MCH
82865G GMCH
82865PE MCH
82865P MCH
82865G GMCH

Package 1005 FC-BGA 932 FC-BGA 932 FC-BGA 932 FC-BGA 932 FC-BGA
MEMORY
875P Chipset 865G Chipset 865PE Chipset 865P Chipset 865GV Chipset
Memory Moles 2 DIMMs/2 channel 2 DIMMs/2 channel 2 DIMMs/2 channel 2 DIMMs/2 channel 2 DIMMs/2 channel
Memory Type Dual-Channel DDR 400/333/266
Dual-Channel DDR 400/333/266
Dual-Channel DDR 400/333/266
Dual-Channel DDR 333/266
Dual-Channel DDR 400/333/266

FSB/Memory Configurations 800/400
800/333
533/333
533/266 800/400
800/333
533/333
533/266
400/333
400/266 800/400
800/333
533/333
533/266
400/333
400/266 533/333
533/266
400/333
400/266 800/400
800/333
533/333
533/266
400/333
400/266
Max Memory 4 GB 4 GB 4 GB 4 GB 4 GB
Mbit Support 512/256/128 Mbit 512/256/128 Mbit 512/256/128 Mbit 512/256/128 Mbit 512/256/128 Mbit
Error Correction ECC/Non-ECC Non-ECC Non-ECC Non-ECC Non-ECC
EXTERNAL GRAPHICS 875P Chipset 865G Chipset 865PE Chipset 865P Chipset 865GV Chipset
Interface AGP8X
(1.5V) AGP8X
(1.5V) AGP8X
(1.5V) AGP8X
(1.5V) N/A
INTEGRATED GRAPHICS 875P Chipset 865G Chipset 865PE Chipset 865P Chipset 865GV Chipset
Type N/A Intel® Extreme Graphics 2
N/A N/A Intel® Extreme Graphics 2

Core Speed N/A 266 MHz N/A N/A 266 MHz
Max Dynamic Video Memory
N/A 96MB2 if >128MB RAM
32MB if <=128mb ram N/A N/A 96MB2 if >128MB RAM
32MB if <=128mb ram
Zone Rendering N/A Yes N/A N/A Yes
Video / Display N/A 350MHz DAC
2x12bit DVO3 N/A N/A 350MHz DAC
2x12bit DVO3
I/O CONTROLLER HUB 875P Chipset 865G Chipset 865PE Chipset 865P Chipset 865GV Chipset
Type Intel® ICH5 / ICH5R
ICH5 / ICH5R
ICH5 / ICH5R
ICH5 / ICH5R
ICH5 / ICH5R

ICH Package 460 mBGA 460 mBGA 460 mBGA 460 mBGA 460 mBGA
PCI Support PCI 2.3 PCI 2.3 PCI 2.3 PCI 2.3 PCI 2.3
PCI Masters 6 6 6 6 6
Storage Interface/Ports SATA 150/2 SATA 150/2 SATA 150/2 SATA 150/2 SATA 150/2
Storage Technology RAID w/ICH5R RAID w/ICH5R RAID w/ICH5R RAID w/ICH5R RAID w/ICH5R
USB Ports/Controllers 8 ports, USB 2.0 8 ports, USB 2.0 8 ports, USB 2.0 8 ports, USB 2.0 8 ports, USB 2.0
LAN MAC Yes Yes Yes Yes Yes
GbE Dedicated Network Bus Yes Yes Yes Yes Yes
Audio AC’97/20-bit audio AC’97/20-bit audio AC’97/20-bit audio AC’97/20-bit audio AC’97/20-bit audio
I/O Management SMBus 2.0 / GPIO SMBus 2.0 / GPIO SMBus 2.0 / GPIO SMBus 2.0 / GPIO SMBus 2.0 / GPIO
2、倚天硬件评测室的对比表
主芯片 875P Chipset 865G Chipset 865PE Chipset 865P Chipset
应用领域 入门级工作站,
高性能计算机,
主流计算机 高性能计算机,
主流计算机 高性能计算机,
主流计算机 高性能计算机,
主流计算机
系统总线 800/533 MHz (data) 800/533/400 MHz (data) 800/533/400 MHz (data) 533/400 MHz (data)
支持处理器个数 1 1 1 1
内存 875P Chipset 865G Chipset 865PE Chipset 865P Chipset
支持内存模式 4 DIMMs 4 DIMMs 4 DIMMs 4 DIMMs
内存类型 Dual-Channel DDR
400/333 SDRAM Dual-Channel DDR
400/333/266 SDRAM Dual-Channel DDR
400/333/266 SDRAM Dual-Channel DDR
333/266 SDRAM
FSB/内存频率配置 800/400
800/333
533/333 800/400
800/333
533/333
533/266
400/333
400/266 800/400
800/333
533/333
533/266
400/333
400/266 533/333
533/266
400/333
400/266
最大支持内存 4 GB 4 GB 4 GB 4 GB
校验方式支持 ECC N/A N/A N/A
外接显卡 875P Chipset 865G Chipset 865PE Chipset 865P Chipset
接口方式 AGP8X
(1.5V) AGP8X
(1.5V) AGP8X
(1.5V) AGP8X
(1.5V)
集成显示核心 N/A Intel® Extreme Graphics 2 N/A N/A
显示核心速度 N/A 266 N/A N/A
输入/输出控制中心 875P Chipset 865G Chipset 865PE Chipset 865P Chipset
类型 ICH5 / ICH5R ICH5 / ICH5R ICH5 / ICH5R ICH5 / ICH5R
ICH 封装 460 MGBA 460 MGBA 460 MGBA 460 MGBA
PCI 规范支持 PCI 2.3 PCI 2.3 PCI 2.3 PCI 2.3
支持PCI最多数量 6 6 6 6
IDE支持 Ultra ATA/100 Ultra ATA/100 Ultra ATA/100 Ultra ATA/100
Serial ATA 2 ports, ATA 150 2 ports, ATA 150 2 ports, ATA 150 2 ports, ATA 150
USB 接口个数/控制器类型 8 ports, USB 2.0 8 ports, USB 2.0 8 ports, USB 2.0 8 ports, USB 2.0
Hyper-Threading Technology 支持 Yes Yes Yes Yes

三、865PE芯片组的系统框图

四、技术分析
1、800MHz FSB和超线程技术
2003年Intel把我们带到了800MHz前端总线(FSB 800)和超线程技术(HyperThreading)的时代,800MHz FSB是由Intel提出的前端总线标准,是将处理器外频提升至200MHz,由于Pentium4处理器采用4倍前端总线,所以Pentium4处理器前端总线高达800MHz,提供高达6.4Gb/S的处理器带宽。

而超线程技术(HyperThreading)是利用特殊硬件指令,把两个逻辑内核模拟成两个物理芯片,让单个处理器都使用线程级并行计算,从而兼容多线程操作系统和软件,提高处理器的处理性能。操作系统或者应用软件的多线程可以同时运行于一个HyperThreading处理器上,两个逻辑处理器共享一组处理器执行单元,并行完成数据操作。从而使系统运行的整体性能提高30%,这是因为在同一时间里,应用程序可以使用芯片的不同部分来进行数据处理。虽然单线程芯片每秒可以处理n+1条指令,但是在任一时刻只能够对一条指令进行操作。而HyperThreading技术可以使芯片同时进行多线程处理,使芯片性能得到明显的提升。
2、内存子系统——双通道DDR

到底双通道DDR内存是什么?简单来说,就是芯片组可以在两个不同的数据通道上分别寻址、读取数据,而两个通道是互相独立的,各自都可以同芯片组进行单独数据交换,也就是说我们只要在第二个通道加多一条内存在理论上就能够获得双倍的带宽。
双通道DDR内存带宽:
DDR266:2x 64 位总线位宽 * 133 MHz 工作频率 * 2 倍速/ 8 = 4256 MB/s
DDR333:2x 64 位总线位宽 * 166 MHz 工作频率 * 2 倍速/ 8 = 5332 MB/s
DDR400:2x 64 位总线位宽 * 200 MHz 工作频率 * 2 倍速/ 8 = 6400 MB/s
过去的一段时间里Intel一直都在努力让人们接受他们RDRAM内存,但是VIA的P4X266A的推出所引起的巨大轰动,令Intel也不得不暂时在个人电脑上放弃RDRAM的解决,同时推出他们的DDR内存解决方案。I845D芯片组,使得Intel抢回了主动权,逐步的推出了845E、845PE等等,DDR已经成为个人电脑的主流。但在当时,DDR的带宽远没有RDRAM大,且RDRAM支持双通道,即使DDR400的带宽也比之相形见拙。当然DDR并没有放弃发展的机会,不断地推出新的标准,双通道DDR,DDRII等等,而近期双通道DDR将进入个人电脑中,把个人电脑的内存性能提升到更高的境界。早在2002年春,Intel就已经正式发布了支持双通道DDR的E7500芯片组,然而其只限于服务器、工作站市场领域!但它吹响了双通道DDR的号角。
Springdale最大特征在于支持双通道DDR。首先是它的双通道DDR 内存控制设计。Springdale芯片组能够支持DDR266、DDR333和DDR400内存,且都可以使用双通道技术,最高带宽达到6.4GB/s。要想使用双通道DDR内存,用户需要成对安装DDR内存。
3、ECC & PAT
ECC全称是Error Checking and Correcting,意思是“错误检查和纠正”,是一种广泛应用于工作站、服务器等高端领域的内存技术。ECC和奇偶校验类似,但奇偶校验只能检测错误,ECC可以纠正绝大多数错误。ECC内存使用额外的一个bit存储一个用数据加密的代码,当代码不同时还要进行比较、选择和纠正,这样就会增加处理的开销,降低系统性能。所以ECC内存的模组传输位宽和芯片位宽都高于同等级的非ECC内存。Intel在875中加入了对ECC内存的支持。
PAT(或叫做Simpiy Turbo Mode)全称是Performance Acceleration Technology,意思是内存控制增强技术,整合在875的北桥芯片中,是Intel为875芯片组新开发的一项内存加速技术。PAT可以在内存与前端总线之间建立一个优化的路径,以减少内存到前端总线之间的潜伏期。该技术不对内存提出任何特殊要求,而且从Intel的资料上看,开启后约有整机性能有3%~5%的提升。PAT只有当系统工作在800MHz的FSB和双通道DDR400时才被打开。

访问内存时CPU指令的传送和DRAM颗粒与Bank选择定位方面各缩短了一个时钟周期,单次数据传输中节省了两个时钟周期,这就是沸沸扬扬的PAT技术。实际在内存子项目中有15%左右的性能提升。
按照Intel自己的话说,875P芯片组的生产是在品质优秀的865PE基础上打开PAT完成的,也就是说,865PE原本是支持PAT的,只是未被打开罢了。这就给了许多研发能力强的主板厂商做手脚的机会,首先是老大华硕,声称自家的P4P800主板也可以通过BIOS开启PAT。Intel极力制止后,华硕将这种技术改称为自主研发的最新“Hyper Path”技术,测试后的确可以提升主板的内存性能。昂达也在其旗舰865PROII主板上加入了“终极加速技术”,用户升级BIOS后就可以大幅度提高主板的内存性能。截止发稿前,已有许多厂商在865PE主板中加入了类似PAT的技术,使内存性能提升,接近甚至超过875P。这样一来,865PE拥有了875P的所有技术(除那个用不着的ECC),再加上其廉价的优势,对875P占据高端市场造成地冲击可想而知,我们完全可以说865PE+PAT=875P。这是Intel不愿看到的,而花865PE的钱,享受875P的性能,广大用户怎能不高兴。当然Intel也不是好惹的,Intel已经向系统制造商和i865PE主机板最终用户发出警告,在i865PE主机板上打开PAT功能,将最终失去Intel对芯片组的质保,同时Intel还勒令主版商停止生产带有PAT的865主板。但为了自己的利益,主板商们对此无动于衷。无奈之下,Intel开始生产不能打开PAT的芯片组。最后,这场关于865芯片组PAT的纷争以主板厂商的胜利告终。而处于对稳定性的考虑,像联想等一些大品牌机厂商,并没有在其应用的865PE主板上打开PAT。
4、Serial ATA & RAID

865/875芯片组搭配了新的南桥芯片——ICH5(编号FW82801EB)/ICH5-R(FW82801ER)。ICH5支持8个USB2.0接口,更重要的是增加了一对Serial ATA(串行ATA,是基于一种点对点的传输技术,可有效提升传输速率)接口。865/875芯片组目前支持Serial ATA1.0版,最大传输率可达到150MB/s。

RAID0即Data Stripping数据分条技术,整个逻辑盘的数据是被分条(stripped)分布在多个物理磁盘上,可以并行读/写,提供最快的速度,但没有冗余能力。要求至少两个磁盘,我们通过RAID 0可以获得更大的单个磁盘的容量,且通过对多个磁盘的同时读取获得更高的存取速度。RAID 0首先考虑的是磁盘的速度和容量,忽略了安全,只要其中一个磁盘住了问题,那么整个阵列的数据都会不保了。

RAID 1,又称镜像方式,也就是数据的冗余。在整个镜像过程中,只有一半的磁盘容量是有效的(另一半磁盘容量用来存放同这一半完全一样的数据)。同RAID 0相比,RAID 1首先考虑的是安全性,容量减半、速度不变。为了达到既高速又安全,出现了RAID 10(或者叫RAID 0+1),可以把RAID 10简单地理解成由多个磁盘组成的RAID 0阵列再进行镜像。
ICH5-R是与ICH5同时发布的南桥芯片,规格基本与ICH5相同,并能让一对SATA接口实现对RAID 0模式磁盘阵列功能的支持。这是芯片组行业第一次将RAID功能整合在南桥芯片中,相对于以往独立的RAID芯片,ICH5-R拥有更好的性能和更低廉的价格(单颗ICH5-R仅比ICH5高出3美元,远低于单颗RAID芯片)。另外,SATA还支持诸如热插拨、无跳线、多硬盘连接等技术,也是新技术应用之一。
相对于其他总线的传输速率,硬盘已成为系统的瓶颈。Serial ATA+RAID 0是目前提高硬盘传输速率的最好途径,Intel在865/875中提供对这项技术的支持,也标志着Serial ATA+RAID 0开始普及。
5、显示子系统——AGP 8X
SiS的Xaber系列显卡、ATI的Radeon 9700显卡和NVIDIA的NV18/NV28系列显卡,都支持AGP 8X了,随之而来的是各大主板厂商的迎合,为什么各大巨头都支持AGP 8X那?AGP8X能给显卡带来多大的性能提升?
随着3D游戏的发展,3D特效和纹理原来越多,图形结构原来越复杂,目前的AGP显卡已经逐渐不能满足我们的需求,显卡也要发展,然而现在的AGP 4X已经限制了我们的发展,AGP 8X也就随之而来。
相对于AGP 2X是类似DDR的两倍频技术,AGP 4X是QDR(Quad Data Rate四倍频),AGP 8X则是一种ODR(Octal Data Rate八倍频传输)技术,其驱动讯号的电压将从AGP 4X的1.5V再降到0.8V,通过标准频率66MHz输入以及三条相位讯号线的控制,每一条数据讯号线可以用实际533MHz的频率传输一个位讯号;由于AGP总线目前为止仍然是32位宽度,因此AGP 8X的最大理论传输频宽,就是533MHz x 32bit=2,133GB/s=2.1GB/s,是AGP 4X(1.06GB/s)的两倍。除了频宽加倍之外,AGP 8X在规格上也有诸多提升之处,像是支持超大影像对映区(Large Aperture Size)、超大4MB分页寻址(4MB Paging)与虚拟寻址能力,可以控制到2的40次方=1TB(=1024GB),AGP 8x的影像内存容量上限,理论上是目前AGP 4X(仅2的32次方=4GB)的256倍容量;同时内存管理以及读写效率会最佳化。

由于目前正逢AGP 4X与AGP 8X的规格过渡期,以AGP 4X还是主流规格来看,支持AGP 8X规格的显卡,势必也要能兼容于AGP 4X,可以被插在只支持AGP 4X的主板,才能提高市场对其的接受度,但AGP 8X显卡插在AGP 4X主板时,材质传输速率会下降到AGP 4X的标准(1GB/s)。
6、Extreme Graphics 2
Extreme Graphics 2是Intel在865芯片组的北桥芯片中内建的新图形核心。从规格上看,它是原845G中Extreme Graphics的升级版,Intel声称其性能最多可达到845G的2倍,理论上相当于Geforce4 MX420的水平。Extreme Graphics 2的核心频率达到350MHz,而且共享的显存规格最高为双通道DDR400,显存带宽接近6.4GB/s,的确是一颗强劲的图形核心。而且Intel还为其加入了Stable Image Technology稳定图像技术。新推出的Extreme Graphics 2在显存的划分方面不同于以往的图形核心。它需要用户在BIOS中进行设置,从主存中划分一部分作为独立显存,不是以往的系统自动划分,这样更有利于显存的应用。
7、CSA接口
Intel在865/875芯片组增加了一个CSA(Communications Streaming Architecture)接口以提供对千兆以太网的支持。千兆以太网的带宽是1000Mbps/8=125MB/s,而Intel的Hub Link总线带宽是266MB/s,如果将千兆以太网接在南桥芯片上势必占用Hub Link总线大量的带宽,影响PCI、ATA等接口的速度。为了解决这个问题,Intel在北桥芯片中加入了CSA接口,它通过提供一条带宽为266MB/s的DNB(Dedicated Network Bus)总线,绕过PCI总线和Hub Link总线,直接与北桥芯片进行数据交换,巧妙的避开了低带宽的限制,又获得了更理想的网络传输性能。CSA还具有直接访问内存的技术,有效利用内存带宽,降低CPU占用率。

2. 内存的知识

内存在电脑中起着举足轻重的作用。内存一般采用半导体存储单元,包括随机存储器(RAM),只读存储器(ROM),以及高速缓存(CACHE)。只不过因为RAM是其中最重要的存储器。

通常所说的内存即指电脑系统中的RAM。RAM要求每时每刻都不断地供电,否则数据会丢失。

如果在关闭电源以后RAM中的数据也不丢失就好了,这样就可以在每一次开机时都保证电脑处于上一次关机的状态,而不必每次都重新启动电脑,重新打开应用程序了。但是RAM要求不断的电源供应,那有没有办法解决这个问题呢?随着技术的进步,人们想到了一个办法,即给RAM供应少量的电源保持RAM的数据不丢失,这就是电脑的休眠功能,特别在Win2000里这个功能得到了很好的应用,休眠时电源处于连接状态,但是耗费少量的电能。

按内存条的接口形式,常见内存条有两种:单列直插内存条(SIMM),和双列直插内存条(DIMM)。SIMM内存条分为30线,72线两种。DIMM内存条与SIMM内存条相比引脚增加到168线。DIMM可单条使用,不同容量可混合使用,SIMM必须成对使用。

按内存的工作方式,内存又有FPA EDO DRAM和SDRAM(同步动态RAM)等形式。

FPA(FAST PAGE MODE)RAM 快速页面模式随机存取存储器:这是较早的电脑系统普通使用的内存,它每个三个时钟脉冲周期传送一次数据。

EDO(EXTENDED DATA OUT)RAM 扩展数据输出随机存取存储器:EDO内存取消了主板与内存两个存储周期之间的时间间隔,他每个两个时钟脉冲周期输出一次数据,大大地缩短了存取时间,是存储速度提高30%。EDO一般是72脚,EDO内存已经被SDRAM所取代。

S(SYSNECRONOUS)DRAM 同步动态随机存取存储器:SDRAM为168脚,这是目前PENTIUM及以上机型使用的内存。SDRAM将CPU与RAM通过一个相同的时钟锁在一起,使CPU和RAM能够共享一个时钟周期,以相同的速度同步工作,每一个时钟脉冲的上升沿便开始传递数据,速度比EDO内存提高50%。

DDR(DOUBLE DATA RAGE)RAM :SDRAM的更新换代产品,他允许在时钟脉冲的上升沿和下降沿传输数据,这样不需要提高时钟的频率就能加倍提高SDRAM的速度。

RDRAM(RAMBUS DRAM) 存储器总线式动态随机存取存储器;RDRAM是RAMBUS公司开发的具有系统带宽,芯片到芯片接口设计的新型DRAM,他能在很高的频率范围内通过一个简单的总线传输数据。他同时使用低电压信号,在高速同步时钟脉冲的两边沿传输数据。INTEL将在其820芯片组产品中加入对RDRAM的支持。

内存的参数主要有两个:存储容量和存取时间。存储容量越大,电脑能记忆的信息越多。存取时间则以纳秒(NS)为单位来计算。一纳秒等于10^9秒。数字越小,表明内存的存取速度越快。

3. 内存双通道是什么意思

双通道内存技术
双通道内存技术其实是一种内存控制和管理技术,它依赖于芯片组的内存控制器发生作用,在理论上能够使两条同等规格内存所提供的带宽增长一倍。它并不是什么新技术,早就被应用于服务器和工作站系统中了,只是为了解决台式机日益窘迫的内存带宽瓶颈问题它才走到了台式机主板技术的前台。英特尔公司曾经推出了支持双通道内存传输技术的i820芯片组,它与RDRAM内存构成了一对黄金搭档,所发挥出来的卓绝性能使其一时成为市场的最大亮点,但生产成本过高的缺陷却造成了叫好不叫座的情况,最后被家用机市场所淘汰。由于英特尔已经放弃了对RDRAM的支持(也是家用机领域,在服务器领域,内存仍是以SD内存占主导地位),所以主流芯片组的双通道内存技术均是指双通道DDR内存技术,主流双通道内存平台英特尔方面是英特尔 865、875系列,而AMD方面则是NVIDIA Nforce2系列。
双通道体系
双通道体系包含了两个独立、具备互补性的智能内存控制器,两个内存控制器都能够并行运作。例如,当控制器B准备进行下一次存取内存的时候,控制器A就读/写主内存,反之亦然。两个内存控制器的这种互补的“天性”可以让有效等待时间缩减50%,因此双通道技术使内存的带宽翻了一翻。它的技术核心在于:芯片组(北桥)可以在两个不同的数据通道上分别寻址、读取数据,RAM可以达到128bit的带宽。
解决什么
双通道内存技术是解决CPU总线带宽与内存带宽的矛盾的低价、高性能的方案。CPU的FSB(前端总线频率)越来越高,英特尔 Pentium 4比AMD Athlon XP对内存带宽具有高得多的需求。英特尔 Pentium 4处理器与北桥芯片的数据传输采用QDR(Quad Data Rate,四次数据传输)技术,其FSB是外频的4倍。英特尔 Pentium 4的FSB分别是400、533、800MHz,总线带宽分别是3.2GB/sec,4.2GB/sec和6.4GB/sec,而DDR 266/DDR 333/DDR 400所能提供的内存带宽分别是2.1GB/sec,2.7GB/sec和3.2GB/sec。在单通道内存模式下,DDR内存无法提供CPU所需要的数据带宽从而成为系统的性能瓶颈。而在双通道内存模式下,双通道DDR 266、DDR 333、DDR 400所能提供的内存带宽分别是4.2GB/sec,5.4GB/sec和6.4GB/sec,在这里可以看到,双通道DDR 400内存刚好可以满足800MHz FSB Pentium 4处理器的带宽需求。而对AMD Athlon XP平台而言,其处理器与北桥芯片的数据传输技术采用DDR(Double Data Rate,双倍数据传输)技术,FSB是外频的2倍,其对内存带宽的需求远远低于英特尔 Pentium 4平台,其FSB分别为266、333、400MHz,总线带宽分别是2.1GB/sec,2.7GB/sec和3.2GB/sec,使用单通道的DDR 266、DDR 333、DDR 400就能满足其带宽需求,所以在AMD K7平台上使用双通道DDR内存技术,可说是收效不多,性能提高并不如英特尔平台那样明显,对性能影响最明显的还是采用集成显示芯片的整合型主板。
技术进展
NVIDIA推出的nForce芯片组是第一个把DDR内存接口扩展为128-bit的芯片组,随后英特尔在它的E7500服务器主板芯片组上也使用了这种双通道DDR内存技术,SiS和VIA也纷纷响应,积极研发这项可使DDR内存带宽成倍增长的技术。但是,由于种种原因,要实现这种双通道DDR(128 bit的并行内存接口)传输对于众多芯片组厂商来说绝非易事。DDR SDRAM内存和RDRAM内存完全不同,后者有着高延时的特性并且为串行传输方式,这些特性决定了设计一款支持双通道RDRAM内存芯片组的难度和成本都不算太高。但DDR SDRAM内存却有着自身局限性,它本身是低延时特性的,采用的是并行传输模式,还有最重要的一点:当DDR SDRAM工作频率高于400MHz时,其信号波形往往会出现失真问题,这些都为设计一款支持双通道DDR内存系统的芯片组带来不小的难度,芯片组的制造成本也会相应地提高,这些因素都制约着这项内存控制技术的发展。
普通的单通道
普通的单通道内存系统具有一个64位的内存控制器,而双通道内存系统则有2个64位的内存控制器,在双通道模式下具有128bit的内存位宽,从而在理论上把内存带宽提高一倍。虽然双64位内存体系所提供的带宽等同于一个128位内存体系所提供的带宽,但是二者所达到效果却是不同的。双通道体系包含了两个独立的、具备互补性的智能内存控制器,理论上来说,两个内存控制器都能够在彼此间零延迟的情况下同时运作。比如说两个内存控制器,一个为A、另一个为B。当控制器B准备进行下一次存取内存的时候,控制器A就在读/写主内存,反之亦然。两个内存控制器的这种互补“天性”可以让等待时间缩减50%。双通道DDR的两个内存控制器在功能上是完全一样的,并且两个控制器的时序参数都是可以单独编程设定的。这样的灵活性可以让用户使用二条不同构造、容量、速度的DIMM内存条,此时双通道DDR简单地调整到最低的内存标准来实现128bit带宽,允许不同密度/等待时间特性的DIMM内存条可以可靠地共同运作。
双通道
支持双通道DDR内存技术的台式机芯片组,英特尔平台方面有英特尔的865P、865G、865GV、865PE、875P以及之后的915、925系列;VIA的PT880,ATI的Radeon 9100 IGP系列,SIS的SIIS 655,SIS 655FX和SIS 655TX;AMD平台方面则有VIA的KT880,NVIDIA的nForce2 Ultra 400,nForce2 IGP,nForce2 SPP及其以后的芯片。在双通道流行的今天,MCP73居然不支持。当然,考虑到设计Intel平台芯片组时必须加入内存控制器,再加上MCP73是单芯片设计,能够做到如此高的集成度实属不易,毕竟是针对低端整合市场的芯片组产品,也无须对MCP73Series不支持双通道这一点过分苛求。而且当前单通道DDR2800所提供的带宽也已经可以满足处理器的需要。MCP73最多支持2组DIMM,最高可支持8GB系统内存,不过有别于Intel芯片组设计,MCP73内存控制器并不会和FSB速度同步,因此使用任何速度的FSB处理器,均能支持DDR2-800频率,这在一定程度上弥补了不支持双通道DDR2的不足。
AMD的64位cpu,由于集成了内存控制器,因此是否支持内存双通道看CPU就可以。AMD的台式机CPU,只有939接口的才支持内存双通道,754接口的不支持内存双通道。除了AMD的64位CPU,其他计算机是否可以支持内存双通道主要取决于主板芯片组,支持双通道的芯片组上边有描述,也可以查看主板芯片组资料。此外有些芯片组在理论上支持不同容量的内存条实现双通道,不过实际还是建议尽量使用参数一致的两条内存条。
内存双通道一般要求按主板上内存插槽的颜色成对使用,此外有些主板还要在BIOS做一下设置,一般主板说明书会有说明。当系统已经实现双通道后,有些主板在开机自检时会有提示,可以仔细看看。由于自检速度比较快,所以可能看不到。因此可以用一些软件查看,很多软件都可以检查,比如cpu-z,比较小巧。在“memory”这一项中有“channels”项目,如果这里显示“Dual”这样的字,就表示已经实现了双通道。两条256M的内存构成双通道效果会比一条512M的内存效果好,因为一条内存无法构成双通道。
发展历史
在DDR RAM发展中期,记忆体带宽开始出现樽颈现象。原因是FSB带宽比记忆体带宽大得多,而处理器处理完的资料不能即时存入记忆体,造成处理器效能不能完全发挥。有见及此,芯片组厂商引入双通道内存技术。单条DDR记忆体是64位元带宽,而两条则是双倍-128位元。注:若芯片组只支援单通道内存,就算插入两条DDR记忆体也都是单通道内存,不会变成双通道内存。
在AMD平台,引入双通道内存技术的第一家芯片组厂商是nVidia。但当时AMD处理器的FSB带宽不是很大,双通道内存的效能提升作用轻微。其后Intel将DDR双通道内存技术引入,配合Xeon处理器,芯片组名为E7205。它支援DDR266双通道内存,用DDR的价钱得到RDRam的效能。而主板厂将之支援Pentium 4。毕竟是服务器平台产品,价格比较贵。而SiS的SiS 655出现,使DDR双通道成了平民化的技术;由于支援DDR333双通道内存,效能比E7205更高,价钱更低。而最经典的应该是i865PE了,支援DDR400双通道内存,800MHz FSB的Pentium 4。而i915P亦新增支援DDR-II 533双通道内存,P965支援DDR-II 1066双通道内存,最新的X48更支援DDR3-1600双通道内存。AMD平台方面,NVIDIA凭nForce 2 Ultra 400支援DDR400双通道内存,成为当时AMD平台效能最佳芯片组,更击败VIA的皇者地位。随后AMD的Athlon 64系列处理器亦内建了DDR400双通道内存控制器。Socket 940 - 支援DDR400 EEC双通道内存 Socket 939 - 支援DDR400 non-EEC双通道内存,内存效能较高 SiS和VIA亦在Intel和AMD平台推出过双通道内存芯片组。[1-2]
编辑本段技术介绍概述
随着高端处理器的推出,处理器对内存系统的带宽要求越来越高,内存带宽成为系统越来越大的瓶颈。内存厂商只要提高内存的运行频率,就可以增加带宽,但是由于受到晶体管本身的特性和制造技术的制约,内存频率不可能无限制地提升,所以在全新的内存研发出来之前,双通道内存技术就成了一种可以有效地提高内存带宽的技术。它最大的优势在于只要更改内存的控制方式,就可以在现有内存的基础上带来内存带宽的提升。从理论指标来看,双通道内存技术具有相当的优势。双通道DDR400的理论带宽为6.4GB/s,和英特尔的前端总线为800MHz的P4处理器及i865、i875芯片组完全匹配。前端总线为800MHz的P4平台选用双通道DDR400,与双通道的内存控制和管理机制及高带宽有很大关系。
技术原理
双通道内存技术其实就是双通道内存控制技术,它能有效地提高内存总带宽,从而适应新的微处理器的数据传输、处理的需要。双通道DDR有两个64bit内存控制器,双64bit内存体系所提供的带宽等同于一个128bit内存体系所提供的带宽。
双通道体系包含了两个独立的、具备互补性的智能内存控制器,两个内存控制器都能够并行运作。例如,当控制器B准备进行下一次存取内存的时候,控制器A就在读/写主内存,反之亦然。两个内存控制器的这种互补“天性”可以让有效等待时间缩减50%,因此双通道技术使内存的带宽翻了一翻。它的技术核心在于:芯片组(北桥)可以在两个不同的数据通道上分别寻址、读取数据,RAM可以达到128bit的带宽。
编辑本段弹性双通道技术介绍一、什么是弹性双通道
Intel弹性双通道内存技术的英文是Intel Flex Memory Technology,该技术使得内存的搭配更加灵活,它允许不同容量、不同规格甚至不成对的内存组成双通道,让系统配置和内存升级更具弹性。
Intel弹性双通道技术在915芯片组上就开始使用了,但直到945/955芯片组才成熟起来,并具有实用价值。而965、975芯片组又对它加以优化,具有更好的性能表现。
二、如何组建弹性双通道
一般的ATX主板上都会有分为两种不同颜色的4根内存插槽,相邻不同颜色的两根插槽组成一个内存通道。Intel弹性双通道技术拥有以下两种双通道内存工作模式:
1.对称双通道工作模式
对称双通道工作模式要求两个通道的内存容量相等,但是没有严格要求内存容量的绝对对称,可以A通道为512MB +512MB,B通道为一条1GB,只要A和B通道各自的总容量相等就可以了。该模式下可使用 2个、3个或 4个内存条获得双通道模式,如果使用的内存模块速度不同,内存通道速度取决于系统中安装的速度最慢的内存模块速度。具体情况如下:
(1)内存模组的绝对对称。这是最理想的对称双通道,即分别在相同颜色的插槽中插入相同容量的内存条,内存条数为2或4,该模式下所有的内存都工作在双通道模式下,性能最强。
(2)内存容量的对称。这种模式不要求两个通道中的内存条数量相等,可由3条内存组成双通道,两个通道的内存总容量相等就可以,所有内存也都工作在双通道模式下)性能略逊于模式(1)。
2.非对称双通道模式
在非对称双通道模式下,两个通道的内存容量可以不相等,而组成双通道的内存容量大小取决于容量较小的那个通道。例如A通道有512MB内存,B通道有1GB内存,则A通道中的512MB和B通道中的512MB组成双通道,B通道剩下的512MB内存仍工作于单通道模式下。需要注意的是,两条内存必须插在相同颜色的插槽中。
小提示:
主板芯片组会自动检测内存模组,如果发现两条容量相同的内存分别安装在不同颜色的插槽中,会自动工作在单通道模式下。因此应该首选把相同容量的内存条插在相同颜色的插槽中,可以获得相对更好的性能,如果按照所示安装内存条,只能工作在单通道模式下[3]。
技术发展
双通道内存技术推出的最初目的也就是为了解决CPU总线带宽和内存带宽不匹配之间的矛盾,随着前端总线FSB越来越高,内存的带宽显然就成了一个瓶颈了,在这样的情况下,集成两个内存控制器,每个内存控制器控制一个通道,让两条内存独立寻址,这样内存的运行效率就可以实现翻倍的效果,让数据等待的时间缩短到50%,这一技术的应用,对于整个PC系统还是有重要意义的,尽管不能做到在所有应用都有明显的效果,但是在大多数应用都可以实现比较不错的效果,而且随着硬件技术的发展,双通道内存技术的效果也开始凸显。
三通道内存技术,实际上可以看作是双通道内存技术的后续技术发展。Core i7处理器的3通道内存技术,最高可以支持DDR3-1600内存,可以提供高达38.4GB/s的高带宽,和目前主流双通道内存20GB/s的带宽相比,性能提升几乎可以达到翻倍的效果。
技术应用
双通道内存主要是依靠主板北桥的控制技术,与内存本身无关。支持双通道内存技术的主板有Intel的i865和i875系列,SIS的SIS655、658系列,nVIDIAD的nFORCE2系列等。Intel最先推出的支持双通道内存技术的芯片组为E7205和E7500系列。
双通道内存的安装有一定的要求。主板的内存插槽的颜色和布局一般都有区分。如果是Intel的i865和i875系列,主板一般有4个DIMM插槽,每两根一组,每组颜色一般不一样,每一个组代表一个内存通道,只有当两组通道上都同时安装了内存条时,才能使内存工作在双通道模式下。另外要注意对称安装,即第一个通道第1个插槽搭配第二个通道第1个插槽,依此类推。用户只要按不同的颜色搭配,对号入座地安装即可。如果在相同颜色的插槽上安装内存条,则只能工作在单通道模式。而nFORCE2系列主板同样有两个64bit的内存控制器,其中A控制器只支持一根内存插槽,B通道则支持两根。A、B插槽之间有一段距离,以方便用户识别。A通道的内存插槽在颜色上也可能与B通道两个内存插槽不同,用户只要将一根内存插入独立的内存插槽而将另外一根插到另外两个彼此靠近的内存插槽就能组建成双通道模式。此外,如果全部插满内存,也能建立双通道模式,而且nForce2主板在组建双通道模式时对内存容量乃至型号都没有严格的要求,使用方便。
如果安装方法正确,在主板开机自检时,屏幕显示内存的工作模式(如DDR333 Dual Channel
Mode Enabled、激活双通道模式等),则内存已经工作在双通道模式。
编辑本段使用与安装
以前的主板上也有3到4个内存插槽(DIMM),根据厂家的规定将它们命名为DIMM1、2、3或4(主板上也有同样的文字用来标明内存插槽的编号),但北桥芯片内只有1个64位的内存控制器,此时插入多根内存后内存总线的位宽还是64位,工作频率也不会改变,但内存的总容量却成倍增加了。这种主板上内存插槽紧密的排列在一起,彼此之间的距离也完全相同 。
单通道主板上多个内存插槽的排列方式
最新的支持双通道内存的主板主要有Intel的865/875和nVIDIA的nForce2芯片组(850/850E、E7205和SiS655/655FX本文不作讨论),865/875的北桥芯片(或称为MCH/GMCH,GMCH内置了显示功能)内有A、B两个64位的内存控制器,每个控制器又可以支持两根内存插槽,所以主板上同样有4根内存插槽,编号同样延续了DIMM1、2、3、4的标注方式,不过这4根插槽并非紧密的靠在一起,而是分为A、B两组,当A1与B1或A2与B2两根内存插槽上同时插入两根容量与结构相同的内存条时,才能实现双通道内存工作模式,此外,当四根内存插槽都插入相同的内存时也能进入双通道状态,其他情况下两组内存控制器都会自动转换为一组64位的控制器,这样与传统内存的工作模式就没有区别了。
865/875主板上内存插槽分为两组
为了兼顾用户安装的方便,一般主板厂家会在865/875主板上使用相同颜色的内存插槽来表示A1与B1的位置,而A2与B2内存插槽则采用另外一种颜色,用户只要将两根内存插入颜色相同的两个内存插槽上就可以实现双通道了。不过凡事总有例外的时候,比如有的厂家习惯用一种颜色的插槽来表示A通道而B通道用另外一种颜色,此时就要打开说明书确认一下,总的原则仍然是“隔行插入”的方式,如果按照主板上内存插槽的编号来看,DIMM1+DIMM3、DIMM2+DIMM4或DIMM1+2+3+4的插入方式才能建立双通道模式(内存也要完全相同)。nForce2的北桥芯片(或称为IGP/SPP,IGP内置了显示功能)内同样有两个64位的内存控制器,其中A控制器只支持一根内存插槽,B通道则支持两根,A、B插槽之间有一段距离以方便用户识别,A通道的内存插槽在颜色上也可能与B通道两个内存插槽不同,用户只要将一根内存插入独立的内存插槽而另外一根插到另外两个彼此靠近的内存插槽就能组建成双通道模式,此外,如果全部插满内存,也能建立双通道模式,而且nForce2主板组建双通道模式时对内存容量乃至型号都没有严格的要求,使用方便。
nForce2主板上的内存插槽,其中独立的插槽是建立双通道的关键此外还有一种情况是早期主板上具有两种内存插槽,分别支持SDRAM和DDR SDRAM,这种主板上两种内存插槽的颜色往往也不相同,但两种内存不能同时工作,而且其工作模式也为单通道。(建议该段使用警告的形式标注,不与正文排版形式雷同)
存在问题
双通道内存控制技术的出现对使用P4的用户性能有了一定的提升,也是未来发展的趋势。组装双通道内存系统时要注意内存条的搭配,Intel的要求比其他主板要高,最好使用相同品牌、相同型号的内存条,以确保稳定性。
任何一项技术都有其优点也有其缺点,双通道DDR内存技术也不例外。首先,双通道内存都需要成对地使用,这样就大大降低了内存配置的灵活性。更重要的一点是在采购内存的时候至少要选择2×64MB、2×128MB……,这会使用户在内存方面的预算成倍地增加。其次,双通道内存技术的理论值虽然非常诱人,但是由于各种因素,其实际应用的性能并不能比单通道DDR内存高1倍,当然也无法比PC133 SDRAM高出4倍,因为毕竟在现有的系统条件下,系统性能瓶颈不仅仅是内存。从一些测试结果可以看到,采用128bit内存通道的系统性能比采用64bit内存通道的系统性能高出3%~5%,最高的可以获得15%~18%的性能提升。
技术总结
双通道内存技术并非DDR内存所独有,RDRAM也应用了这种技术,像英特尔的i850E芯片组就支持双通道PC1066 RDRAM。因此确切地说,双通道内存技术是双通道内存控制技术,是在当前内存技术的基础上开发的一种内存管理和控制技术。它的重点在于对内存的控制而不是内存本身,整合在芯片组北桥中的内存控制器承担了这个功能,因此说它是芯片组技术似乎更合适。
解决计算机内存带宽瓶颈问题并非只有一条出路,但由于种种情况,双通道内存技术似乎是最好的解决方案,而且还将持续一段时间。从内存技术的发展过程可见,无论什么技术,只有性能出色、价格便宜、便于使用才会有光明的前景,这对于计算机其他技术也不例外。
双通道并非代表系统运行速度就会提高100%
实际上512MB*2与单条1G性能差距仅为10%
编辑本段双通道打开程序一、实现双通道的前提
比较常见的双通道平台有Intel 865/875及nForce2系列主板,首先需要了解双通道实现的前提。比如购买了支持双通道的I865PE主板,同时也搭配了800MHz前端总线P4处理器,那么,就一定要购买双通道DDR400的内存。但是,如果只想搭配533 MHz前端总线P4处理器,只需要用双通道DDR333内存就够了。并且购买相同容量和规格的成对内存(比如2条或4条)。此外,最好搭配AGP8X显示使用,因为AGP 8x显卡传输频宽为2.1GB/s(AGP 4x只有1.06GB/s,这样更能有效地发挥双通道在数据传送和处理速度的能力。
二、如何打开双通道模式?
如果要正确使用双通道内存技术,在内存安装方面是很讲究的,支持双通道内存的主板,一般都具有3条或4条以上内存插槽,下面笔者来简单说说双通道内存的正确插法。
对于865/875主板来说,一般会提供了4个DIMM(能提供2组双通道模式),每两个DIMM为一个组,每一个组代表一个内存通道,只有在两组通道上同时安装相同容量大小和规格的内存时,才能使内存工作在双通道模式下。因此,安装内存时就必须对称的插内存,比如,A通道第1个插槽搭配B通道第1个插槽,或A通道第2个插槽搭配B通道第2个插槽(图1),当然,同时插4条内存也可以实现双通道。
编辑本段注意事项1、
双通道内存频率的大小和类型没有必然联系,只和主板有联系,要看主板是否支持双通道技术
2、
双通道的内存容量不需要一致,但频率和颗粒品牌要尽可能保持一致.
内存频率是指内存的工作频率,例如DDR266的工作频率即为266MHz,根据内存带宽的算法:带宽=总线宽度×一个时钟周期内交换的数据包个数×总线频率,DDR266的带宽=133×2×8=2128,它的传输带宽为2.1G/s,因此DDR266又俗称为PC2100。同理,DDR333的工作频率为333MHz,传输带宽为2.7G/s,俗称PC2700;DDR400的工作频率为400MHz,传输带宽为3.2G/s,俗称PC3200。
打个比方两张条子的频率不一样,一个是PC2700,一个是PC3200,那么它们放在你现在的主板的工作频率就是333mhz或者更低,但是并不影响你电脑的稳定性, 最多只达到频率低的那根条子的频率。
3、
内存双通道一般要求按主板上内存插槽的颜色成对使用,此外有些主板还要在BIOS做一下设置,一般主板说明书会有说明。当系统已经实现双通道后,有些主板在开机自检时会有提示,可以仔细看看。由于自检速度比较快,所以可能看不到。因此可以用一些软件查看,很多软件都可以检查,比如cpu-z,比较小巧。在“memory”这一项中有“channels”项目,如果这里显示“Dual”这样的字,就表示已经实现了双通道。两条256M的内存构成双通道效果会比一条512M的内存效果好,因为一条内存无法构成双通道。
4、
AMD的台式机CPU,只有939接口以后的CPU才支持内存双通道,754接口的不支持内存双通道。除了AMD的64位CPU,其他计算机是否可以支持内存双通道主要取决于主板芯片组,支持双通道的芯片组上边有描述,也可以查看主板芯片组资料。此外有些芯片组在理论上支持不同容量的内存条实现双通道,不过实际还是建议尽量使用参数一致的两条内存条。[

4. 内存的双通道,和三通道是什么意思

不是速度翻倍
是带宽翻倍
可以理解为双车道和3车道,但是好多人都误认为3车道比双车道快,但是其实只有在双车道达到饱和后才能体现出3车道比双车道快。
所以在现在的民用台机里面,这个东西性能提升很微弱

5. 多模块交叉存储器是如何加速CPU和存储器之间的有效传输的

CPU同时访问多个模块,由存储器控制部件控制它们分时使用数据总线进行信息传递。对每一个存储模块来说,从CPU给出访存命令直到读出信息仍然使用了一个存取周期时间,而对CPU来说,它可以在一个存取周期内连续访问多个模块。各模块的读写过程将重叠进行,所以多模块交叉存储器是一种并行存储器结构。

6. 请高手详解内存双通道和建磁盘阵列

主板_双通道内存技术

双通道内存技术其实是一种内存控制和管理技术,它依赖于芯片组的内存控制器发生作用,在理论上能够使两条同等规格内存所提供的带宽增长一倍。它并不是什么新技术,早就被应用于服务器和工作站系统中了,只是为了解决台式机日益窘迫的内存带宽瓶颈问题它才走到了台式机主板技术的前台。在几年前,英特尔公司曾经推出了支持双通道内存传输技术的i820芯片组,它与RDRAM内存构成了一对黄金搭档,所发挥出来的卓绝性能使其一时成为市场的最大亮点,但生产成本过高的缺陷却造成了叫好不叫座的情况,最后被市场所淘汰。由于英特尔已经放弃了对RDRAM的支持,所以目前主流芯片组的双通道内存技术均是指双通道DDR内存技术,主流双通道内存平台英特尔方面是英特尔 865、875系列,而AMD方面则是NVIDIA Nforce2系列。

双通道内存技术是解决CPU总线带宽与内存带宽的矛盾的低价、高性能的方案。现在CPU的FSB(前端总线频率)越来越高,英特尔 Pentium 4比AMD Athlon XP对内存带宽具有高得多的需求。英特尔 Pentium 4处理器与北桥芯片的数据传输采用QDR(Quad Data Rate,四次数据传输)技术,其FSB是外频的4倍。英特尔 Pentium 4的FSB分别是400、533、800MHz,总线带宽分别是3.2GB/sec,4.2GB/sec和6.4GB/sec,而DDR 266/DDR 333/DDR 400所能提供的内存带宽分别是2.1GB/sec,2.7GB/sec和3.2GB/sec。在单通道内存模式下,DDR内存无法提供CPU所需要的数据带宽从而成为系统的性能瓶颈。而在双通道内存模式下,双通道DDR 266、DDR 333、DDR 400所能提供的内存带宽分别是4.2GB/sec,5.4GB/sec和6.4GB/sec,在这里可以看到,双通道DDR 400内存刚好可以满足800MHz FSB Pentium 4处理器的带宽需求。而对AMD Athlon XP平台而言,其处理器与北桥芯片的数据传输技术采用DDR(Double Data Rate,双倍数据传输)技术,FSB是外频的2倍,其对内存带宽的需求远远低于英特尔 Pentium 4平台,其FSB分别为266、333、400MHz,总线带宽分别是2.1GB/sec,2.7GB/sec和3.2GB/sec,使用单通道的DDR 266、DDR 333、DDR 400就能满足其带宽需求,所以在AMD K7平台上使用双通道DDR内存技术,可说是收效不多,性能提高并不如英特尔平台那样明显,对性能影响最明显的还是采用集成显示芯片的整合型主板。

NVIDIA推出的nForce芯片组是第一个把DDR内存接口扩展为128-bit的芯片组,随后英特尔在它的E7500服务器主板芯片组上也使用了这种双通道DDR内存技术,SiS和VIA也纷纷响应,积极研发这项可使DDR内存带宽成倍增长的技术。但是,由于种种原因,要实现这种双通道DDR(128 bit的并行内存接口)传输对于众多芯片组厂商来说绝非易事。DDR SDRAM内存和RDRAM内存完全不同,后者有着高延时的特性并且为串行传输方式,这些特性决定了设计一款支持双通道RDRAM内存芯片组的难度和成本都不算太高。但DDR SDRAM内存却有着自身局限性,它本身是低延时特性的,采用的是并行传输模式,还有最重要的一点:当DDR SDRAM工作频率高于400MHz时,其信号波形往往会出现失真问题,这些都为设计一款支持双通道DDR内存系统的芯片组带来不小的难度,芯片组的制造成本也会相应地提高,这些因素都制约着这项内存控制技术的发展。

普通的单通道内存系统具有一个64位的内存控制器,而双通道内存系统则有2个64位的内存控制器,在双通道模式下具有128bit的内存位宽,从而在理论上把内存带宽提高一倍。虽然双64位内存体系所提供的带宽等同于一个128位内存体系所提供的带宽,但是二者所达到效果却是不同的。双通道体系包含了两个独立的、具备互补性的智能内存控制器,理论上来说,两个内存控制器都能够在彼此间零延迟的情况下同时运作。比如说两个内存控制器,一个为A、另一个为B。当控制器B准备进行下一次存取内存的时候,控制器A就在读/写主内存,反之亦然。两个内存控制器的这种互补“天性”可以让等待时间缩减50%。双通道DDR的两个内存控制器在功能上是完全一样的,并且两个控制器的时序参数都是可以单独编程设定的。这样的灵活性可以让用户使用二条不同构造、容量、速度的DIMM内存条,此时双通道DDR简单地调整到最低的内存标准来实现128bit带宽,允许不同密度/等待时间特性的DIMM内存条可以可靠地共同运作。

支持双通道DDR内存技术的台式机芯片组,英特尔平台方面有英特尔的865P、865G、865GV、865PE、875P以及之后的915、925系列;VIA的PT880,ATI的Radeon 9100 IGP系列,SIS的SIIS 655,SIS 655FX和SIS 655TX;AMD平台方面则有VIA的KT880,NVIDIA的nForce2 Ultra 400,nForce2 IGP,nForce2 SPP及其以后的芯片。

AMD的64位CPU,由于集成了内存控制器,因此是否支持内存双通道看CPU就可以。目前AMD的台式机CPU,只有939接口的才支持内存双通道,754接口的不支持内存双通道。除了AMD的64位CPU,其他计算机是否可以支持内存双通道主要取决于主板芯片组,支持双通道的芯片组上边有描述,也可以查看。此外有些芯片组在理论上支持不同容量的内存条实现双通道,不过实际还是建议尽量使用参数一致的两条内存条。

内存双通道一般要求按主板上内存插槽的颜色成对使用,此外有些主板还要在BIOS做一下设置,一般主板说明书会有说明。当系统已经实现双通道后,有些主板在开机自检时会有提示,可以仔细看看。由于自检速度比较快,所以可能看不到。因此可以用一些软件查看,很多软件都可以检查,比如cpu-z,比较小巧。在“memory”这一项中有“channels”项目,如果这里显示“Dual”这样的字,就表示已经实现了双通道。两条256M的内存构成双通道效果会比一条512M的内存效果好,因为一条内存无法构成双通道。
磁盘阵列技术

磁盘阵列(DiscArray)是由许多台磁盘机或光盘机按一定的规则,如分条(Striping)、分块(Declustering)、交叉存取(Interleaving)等组成一个快速,超大容量的外存储器子系统。它在阵列控制器的控制和管理下,实现快速,并行或交叉存取,并有较强的容错能力。从用户观点看,磁盘阵列虽然是由几个、几十个甚至上百个盘组成,但仍可认为是一个单一磁盘,其容量可以高达几百~上千千兆字节,因此这一技术广泛为多媒体系统所欢迎。

盘阵列的全称是:
RendanArrayofInexpensiveDisk,简称RAID技术。它是1988年由美国加州大学Berkeley分校的DavidPatterson教授等人提出来的磁盘冗余技术。从那时起,磁盘阵列技术发展得很快,并逐步走向成熟。现在已基本得到公认的有下面八种系列。
1.RAID0(0级盘阵列)
RAID0又称数据分块,即把数据分布在多个盘上,没有容错措施。其容量和数据传输率是单机容量的N倍,N为构成盘阵列的磁盘机的总数,I/O传输速率高,但平均无故障时间MTTF(MeanTimeToFailure)只有单台磁盘机的N分之一,因此零级盘阵列的可靠性最差。
2.RAID1(1级盘阵列)
RAID1又称镜像(Mirror)盘,采用镜像容错来提高可靠性。即每一个工作盘都有一个镜像盘,每次写数据时必须同时写入镜像盘,读数据时只从工作盘读出。一旦工作盘发生故障立即转入镜像盘,从镜像盘中读出数据,然后由系统再恢复工作盘正确数据。因此这种方式数据可以重构,但工作盘和镜像盘必须保持一一对应关系。这种盘阵列可靠性很高,但其有效容量减小到总容量一半以下。因此RAID1常用于对出错率要求极严的应用场合,如财政、金融等领域。
3.RAID2(2级盘阵列)
RAID2又称位交叉,它采用汉明码作盘错检验,无需在每个扇区之后进行CRC(CyclicReDundancycheck)检验。汉明码是一种(n,k)线性分组码,n为码字的长度,k为数据的位数,r为用于检验的位数,故有:n=2r-1r=n-k
因此按位交叉存取最有利于作汉明码检验。这种盘适于大数据的读写。但冗余信息开销还是太大,阻止了这类盘的广泛应用。
4.RAID3(3级盘阵列)
RAID3为单盘容错并行传输阵列盘。它的特点是将检验盘减小为一个(RAID2校验盘为多个,DAID1检验盘为1比1),数据以位或字节的方式存于各盘(分散记录在组内相同扇区号的各个磁盘机上)。它的优点是整个阵列的带宽可以充分利用,使批量数据传输时间减小;其缺点是每次读写要牵动整个组,每次只能完成一次I/O。
5.RAID4(4级盘阵列)
RAID4是一种可独立地对组内各盘进行读写的阵列。其校验盘也只有一个。
RAID4和RAID3的区别是:RAID3是按位或按字节交叉存取,而RAID4是按块(扇区)存取,可以单独地对某个盘进行操作,它无需象RAID3那样,那怕每一次小I/O操作也要涉及全组,只需涉及组中两台磁盘机(一台数据盘,一台检验盘)即可。从而提高了小量数据的I/O速率。
6.RAID5(5级盘阵列)
RAID5是一种旋转奇偶校验独立存取的阵列。它和RAID1、2、3、4各盘阵列的不同点,是它没有固定的校验盘,而是按某种规则把其冗余的奇偶校验信息均匀地分布在阵列所属的所有磁盘上。于是在同一台磁盘机上既有数据信息也有校验信息。这一改变解决了争用校验盘的问题,因此DAID5内允许在同一组内并发进行多个写操作。所以RAID5即适于大数据量的操作,也适于各种事务处理。它是一种快速,大容量和容错分布合理的磁盘阵列。
7.RAID6(6级盘阵列)
RAID6是一种双维奇偶校验独立存取的磁盘阵列。它的冗余的检、纠错信息均匀分布在所有磁盘上,而数据仍以大小可变的块以交叉方式存于各盘。这类盘阵列可容许双盘出错。
8.RAID7(7级盘阵列)
RAID7是在RAID6的基础上,采用了cache技术,它使得传输率和响应速度都有较大的提高。Cache是一种高速缓冲存储器,即数据在写入磁盘阵列以前,先写入cache中。一般采用cache分块大小和磁盘阵列中数据分块大小相同,即一块cache分块对应一块磁盘分块。在写入时将数据分别写入两个独立的cache,这样即使其中有一个cache出故障,数据也不会丢失。写操作将直接在cache级响应,然后再转到磁盘阵列。数据从cache写到磁盘阵列时,同一磁道的数据将在一次操作中完成,避免了不少块数据多次写的问题,提高了速度。在读出时,主机也是直接从cache中读出,而不是从阵列盘上读取,减少与磁盘读操作次数,这样比较充分地利用了磁盘带宽。
这样cache和磁盘阵列技术的结合,弥补了磁盘阵列的不足(如分块写请求响应差等缺陷),从而使整个系统以高效、快速、大容量、高可靠以及灵活、方便的存储系统提供给用户,从而满足了当前的技术发展的需要,尤其是多媒体系统的需要。
解析磁盘阵列的关键技术
存储技术在计算机技术中受到广泛关注,服务器存储技术更是业界关心的热点。一谈到服务器存储技术,人们几乎立刻与SCSI(Small Computer Systems Interface)技术联系在一起。尽管廉价的IDE硬盘在性能、容量等关键技术指标上已经大大地提高,可以满足甚至超过原有的服务器存储设备的需求。但由于Internet的普及与高速发展,网络服务器的规模也变得越来越大。同时,Internet不仅对网络服务器本身,也对服务器存储技术提出了苛刻要求。无止境的市场需求促使服务器存储技术飞速发展。而磁盘阵列是服务器存储技术中比较成熟的一种,也是在市场上比较多见的大容量外设之一。
在高端,传统的存储模式无论在规模上,还是安全上,或是性能上,都无法满足特殊应用日益膨胀的存储需求。诸如存储局域网(SAN)等新的技术或应用方案不断涌现,新的存储体系结构和解决方案层出不穷,服务器存储技术由直接连接存储(DAS)向存储网络技术(NAS)方面扩展。在中低端,随着硬件技术的不断发展,在强大市场需求的推动下,本地化的、基于直接连接的磁盘阵列存储技术,在速度、性能、存储能力等方面不断地迈上新台阶。并且,为了满足用户对存储数据的安全、存取速度和超大的存储容量的需求,磁盘阵列存储技术也从讲求技术创新、重视系统优化,以技术方案为主导的技术推动期逐渐进入了强调工业标准、着眼市场规模,以成熟产品为主导的产品普及期。
回顾磁盘阵列的发展历程,一直和SCSI技术的发展紧密关联,一些厂商推出的专有技术,如IBM的SSA(Serial Storage Architecture)技术等,由于兼容性和升级能力不尽如人意,在市场上的影响都远不及SCSI技术广泛。由于SCSI技术兼容性好,市场需求旺盛,使得SCSI技术发展很快。从最原始5MB/s传输速度的SCSI-1,一直发展到现在LVD接口的160MB/s传输速度的Ultra 160 SCSI,320MB/s传输速度的Ultra 320 SCSI接口也将在2001年出现(见表1)。从当前市场看,Ultra 3 SCSI技术和RAID(Rendant Array of Inexpensive Disks)技术还应是磁盘阵列存储的主流技术。
SCSI技术
SCSI本身是为小型机(区别于微机而言)定制的存储接口,SCSI协议的Version 1 版本也仅规定了5MB/s传输速度的SCSI-1的总线类型、接口定义、电缆规格等技术标准。随着技术的发展,SCSI协议的Version 2版本作了较大修订,遵循SCSI-2协议的16位数据带宽,高主频的SCSI存储设备陆续出现并成为市场的主流产品,也使得SCSI技术牢牢地占据了服务器的存储市场。SCSI-3协议则增加了能满足特殊设备协议所需要的命令集,使得SCSI协议既适应传统的并行传输设备,又能适应最新出现的一些串行设备的通讯需要,如光纤通道协议(FCP)、串行存储协议(SSP)、串行总线协议等。渐渐地,“小型机”的概念开始弱化,“高性能计算机”和“服务器”的概念在人们的心目中得到强化,SCSI一度成为用户从硬件上来区分“服务器”和PC机的一种标准。
通常情况下,用户对SCSI总线的关心放在硬件上,不同的SCSI的工作模式意味着有不同的最大传输速度。如40MB/s的Ultra SCSI、160MB/s的Ultra 3 SCSI等等。但最大传输速度并不代表设备正常工作时所能达到的平均访问速度,也不意味着不同SCSI工作模式之间的访问速度存在着必然的“倍数”关系。SCSI控制器的实际访问速度与SCSI硬盘型号、技术参数,以及传输电缆长度、抗干扰能力等因素关系密切。提高SCSI总线效率必须关注SCSI设备端的配置和传输线缆的规范和质量。可以看出,Ultra 3模式下获得的实际访问速度还不到Ultra Wide模式下实际访问速度的2倍。
一般说来,选用高速的SCSI硬盘、适当增加SCSI通道上连接硬盘数、优化应用对磁盘数据的访问方式等,可以大幅度提高SCSI总线的实际传输速度。尤其需要说明的是,在同样条件下,不同的磁盘访问方式下获得的SCSI总线实际传输速度可以相差几十倍,对应用的优化是获得高速存储访问时必须关注的重点,而这却常常被一些用户所忽视。按4KB数据块随机访问6块SCSI硬盘时,SCSI总线的实际访问速度为2.74MB/s,SCSI总线的工作效率仅为总线带宽的1.7%;在完全不变的条件下,按256KB的数据块对硬盘进行顺序读写,SCSI总线的实际访问速度为141.2MB/s,SCSI总线的工作效率高达总线带宽的88%。
随着传输速度的提高,信号传输过程中的信号衰减和干扰问题显得越来越突出,终结器在一定程度上可以起到降低信号波反射,改善信号质量的作用。同时,LVD(Low-Voltage Differential)技术的应用也越来越多。LVD工作模式是和SE(Single-Ended)模式相对应的,它可以很好地抵抗传输干扰,延长信号的传输距离。同时,Ultra 2 SCSI和Ultra 3 SCSI模式也通过采用专用的双绞型SCSI电缆来提高信号传输的质量。
在磁盘阵列的概念中,大容量硬盘并不是指单个硬盘容量大,而是指将单个硬盘通过RAID技术,按RAID 级别组合成更大容量的硬盘。所以在磁盘阵列技术中,RAID技术是比较关键的,同时,根据所选用的RAID级别的不同,得到的“大硬盘”的功能也有不同。
RAID是一项非常成熟的技术,但由于其价格比较昂贵,配置也不方便,缺少相对专业的技术人员,所以应用并不十分普及。据统计,全世界75%的服务器系统目前没有配置RAID。由于服务器存储需求对数据安全性、扩展性等方面的要求越来越高,RAID市场的开发潜力巨大。RAID技术是一种工业标准,各厂商对RAID级别的定义也不尽相同。目前对RAID级别的定义可以获得业界广泛认同的只有4种,RAID 0、RAID 1、RAID 0+1和RAID 5。
RAID 0是无数据冗余的存储空间条带化,具有低成本、极高读写性能、高存储空间利用率的RAID级别,适用于Video / Audio信号存储、临时文件的转储等对速度要求极其严格的特殊应用。但由于没有数据冗余,其安全性大大降低,构成阵列的任何一块硬盘损坏都将带来数据灾难性的损失。所以,在RAID 0中配置4块以上的硬盘,对于一般应用来说是不明智的。
RAID 1是两块硬盘数据完全镜像,安全性好,技术简单,管理方便,读写性能均好。但其无法扩展(单块硬盘容量),数据空间浪费大,严格意义上说,不应称之为“阵列”。
RAID 0+1综合了RAID 0和RAID 1的特点,独立磁盘配置成RAID 0,两套完整的RAID 0互相镜像。它的读写性能出色,安全性高,但构建阵列的成本投入大,数据空间利用率低,不能称之为经济高效的方案。
RAID 5是目前应用最广泛的RAID技术。各块独立硬盘进行条带化分割,相同的条带区进行奇偶校验(异或运算),校验数据平均分布在每块硬盘上。以n块硬盘构建的RAID 5阵列可以有n-1块硬盘的容量,存储空间利用率非常高(见图6)。任何一块硬盘上数据丢失,均可以通过校验数据推算出来。它和RAID 3最大的区别在于校验数据是否平均分布到各块硬盘上。RAID 5具有数据安全、读写速度快,空间利用率高等优点,应用非常广泛,但不足之处是1块硬盘出现故障以后,整个系统的性能大大降低。
对于RAID 1、RAID 0+1、RAID 5阵列,配合热插拔(也称热可替换)技术,可以实现数据的在线恢复,即当RAID阵列中的任何一块硬盘损坏时,不需要用户关机或停止应用服务,就可以更换故障硬盘,修复系统,恢复数据,对实现HA(High Availability)高可用系统具有重要意义。
各厂商还在不断推出各种RAID级别和标准。例如更高安全性的,从RAID控制器开始镜像的RAID;更快读写速度的,为构成RAID的每块硬盘配置CPU和Cache的RAID等等,但都不普及。用IDE硬盘构建RAID的技术是新出现的一个技术方向,对市场影响也较大,其突出优点就是构建RAID阵列非常廉价。目前IDE RAID可以支持RAID 0、RAID 1和RAID 0+1三个级别,最多支持4块IDE硬盘。由于受IDE设备扩展性的限制,同时,也由于IDE设备也缺乏热可替换的技术支持的原因,IDE RAID的应用还不多。
总之,发展是永恒的主题,在服务器存储技术领域也不例外。一方面,一些巨头厂商尝试推出新的概念或标准,来领导服务器及存储技术的发展方向,较有代表性的如Intel力推的IA-64架构及存储概念;另一方面,致力于存储的专业厂商以现有技术和工业标准为基础,推动SCSI、RAID、Fibre Channel等基于现有存储技术和方案快速更新和发展。在市场经济条件下,检验技术发展的唯一标准是市场的认同。市场呼唤好的技术,而新的技术必须起到推动市场向前发展作用时才能被广泛接受和承认。随着高性能计算机市场的发展,高性能比、高可靠性、高安全性的存储新技术也会不断涌现。
现在市场上的磁盘阵列产品有很多,用户在选择磁盘阵列产品的过程中,也要根据自己的需求来进行选择,现在列举几个磁盘阵列产品,同时也为需要磁盘阵列产品的用户提供一些选择。表2列出了几种磁盘阵列的主要技术指标。
--------------------------------------------------------------------------------
小知识:磁盘阵列的可靠性和可用性
可靠性,指的是硬盘在给定条件下发生故障的概率。可用性,指的是硬盘在某种用途中可能用的时间。磁盘阵列可以改善硬盘系统的可靠性。从表3中可以看到RAID硬盘子系统与单个硬盘子系统的可靠性比较。
此外,在系统的可用性方面,单一硬盘系统的可用性比没有数据冗余的磁盘阵列要好,而冗余磁盘阵列的可用性比单个硬盘要好得多。这是因为冗余磁盘阵列允许单个硬盘出错,而继续正常工作;一个硬盘故障后的系统恢复时间也大大缩短(与从磁带恢复数据相比);冗余磁盘阵列发生故障时,硬盘上的数据是故障当时的数据,替换后的硬盘也将包含故障时的数据。但是,要得到完全的容错性能,计算机硬盘子系统的其它部件也必须有冗余。

7. 简述SRAM,DRAM型存储器的工作原理

个人电脑的主要结构:
显示器
主机板
CPU
(微处理器)
主要储存器
(记忆体)
扩充卡
电源供应器
光盘机
次要储存器
(硬盘)
键盘
鼠标
尽管计算机技术自20世纪40年代第一台电子通用计算机诞生以来以来有了令人目眩的飞速发展,但是今天计算机仍然基本上采用的是存储程序结构,即冯·诺伊曼结构。这个结构实现了实用化的通用计算机。
存储程序结构间将一台计算机描述成四个主要部分:算术逻辑单元(ALU),控制电路,存储器,以及输入输出设备(I/O)。这些部件通过一组一组的排线连接(特别地,当一组线被用于多种不同意图的数据传输时又被称为总线),并且由一个时钟来驱动(当然某些其他事件也可能驱动控制电路)。
概念上讲,一部计算机的存储器可以被视为一组“细胞”单元。每一个“细胞”都有一个编号,称为地址;又都可以存储一个较小的定长信息。这个信息既可以是指令(告诉计算机去做什么),也可以是数据(指令的处理对象)。原则上,每一个“细胞”都是可以存储二者之任一的。
算术逻辑单元(ALU)可以被称作计算机的大脑。它可以做两类运算:第一类是算术运算,比如对两个数字进行加减法。算术运算部件的功能在ALU中是十分有限的,事实上,一些ALU根本不支持电路级的乘法和除法运算(由是使用者只能通过编程进行乘除法运算)。第二类是比较运算,即给定两个数,ALU对其进行比较以确定哪个更大一些。
输入输出系统是计算机从外部世界接收信息和向外部世界反馈运算结果的手段。对于一台标准的个人电脑,输入设备主要有键盘和鼠标,输出设备则是显示器,打印机以及其他许多后文将要讨论的可连接到计算机上的I/O设备。
控制系统将以上计算机各部分联系起来。它的功能是从存储器和输入输出设备中读取指令和数据,对指令进行解码,并向ALU交付符合指令要求的正确输入,告知ALU对这些数据做那些运算并将结果数据返回到何处。控制系统中一个重要组件就是一个用来保持跟踪当前指令所在地址的计数器。通常这个计数器随着指令的执行而累加,但有时如果指令指示进行跳转则不依此规则。
20世纪80年代以来ALU和控制单元(二者合成中央处理器,CPU)逐渐被整合到一块集成电路上,称作微处理器。这类计算机的工作模式十分直观:在一个时钟周期内,计算机先从存储器中获取指令和数据,然后执行指令,存储数据,再获取下一条指令。这个过程被反复执行,直至得到一个终止指令。
由控制器解释,运算器执行的指令集是一个精心定义的数目十分有限的简单指令集合。一般可以分为四类:1)、数据移动(如:将一个数值从存储单元A拷贝到存储单元B)2)、数逻运算(如:计算存储单元A与存储单元B之和,结果返回存储单元C)3)、条件验证(如:如果存储单元A内数值为100,则下一条指令地址为存储单元F)4)、指令序列改易(如:下一条指令地址为存储单元F)
指令如同数据一样在计算机内部是以二进制来表示的。比如说,10110000就是一条Intel
x86系列微处理器的拷贝指令代码。某一个计算机所支持的指令集就是该计算机的机器语言。因此,使用流行的机器语言将会使既成软件在一台新计算机上运行得更加容易。所以对于那些机型商业化软件开发的人来说,它们通常只会关注一种或几种不同的机器语言。
更加强大的小型计算机,大型计算机和服务器可能会与上述计算机有所不同。它们通常将任务分担给不同的CPU来执行。今天,微处理器和多核个人电脑也在朝这个方向发展。
超级计算机通常有着与基本的存储程序计算机显着区别的体系结构。它们通常由者数以千计的CPU,不过这些设计似乎只对特定任务有用。在各种计算机中,还有一些微控制器采用令程序和数据分离的哈佛架构(Harvard
architecture)。

8. 双端口存储器和多模块交叉存储器属于( )存储器结构。前者采用( )技术,后者采用( )技术。

双端口存储器和多模块交叉存储器属于并行存储器
前者采用空间并行技术,后者采用时间并行技术。

9. 内存双通道是什么意思

双通道,就是在北桥(又称之为MCH)芯片级里设计两个内存控制器,这两个内存控制器可相互独立工作,每个控制器控制一个内存通道。在这两个内存通CPU可分别寻址、读取数据,从而使内存的带宽增加一倍,数据存取速度也相应增加一倍(理论上)。目前流行的双通道内存构架是由两个64bit DDR内存控制器构筑而成的,其带宽可达128bit。因为双通道体系的两个内存控制器是独立的、具备互补性的智能内存控制器,因此二者能实现彼此间零等待时间,同时运作。两个内存控制器的这种互补“天性”可让有效等待时间缩减50%,从而使内存的带宽翻倍。