当前位置:首页 » 服务存储 » 脑神经信息存储
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

脑神经信息存储

发布时间: 2022-07-17 18:13:08

Ⅰ 人脑是怎么存储记忆的,相当于电脑的多大内存的

根据此前的研究,有科学家认为人脑的存储容量大约为1TB,不过也有科学家认为应该有100TB。

人脑虽然不是自然界中最大的,但却是最发达的。在所有哺乳动物中,人脑占身体的比例最大。人脑虽然只占了身体重量的2%,却消耗着20%的能量。在人类的进化史中,人类的脑容量一直在增加,现在已经接近1500毫升了。

记忆是智力的基石,一个记忆力强的人,智力通常也比较强。可以肯定,人脑的记忆潜能很大,只要是智力正常的人,通过长期反复的学习,多学多用,一定能成为一个博学多识的人。

如果将一个图书馆中的内容都装进脑中,用处也不大,因为数据太多反而会拖累读取速度,我们需要的是在理解的基础上建立更有效的神经连接通路。

Ⅱ 人的大脑是怎样存储信息的

记忆到底是怎么储存的之今都是一个争议很到的问题.
经典理论认为,大脑象仓库一样储存记忆.记忆片段想货物一样储存在大脑里.这被称为"仓库模型".经典的记忆定义可以表达为:
Human memory is a system for storing and retrieving information, information that is , of course, acquried through our senses"(Baddeley,1997)
(译)人类的记忆是一个储存和获取有感官收集的信息的系统(巴德尼,1997)
根据这种理论,记忆有可能是被分成碎块,储存在神经原里(但不会是RNA).很多传统的AI技术就是基于这个理论,如各种状态搜索法.
但是现在很多现代的科学家提出,记忆的新理论.他们认为记忆是动态的,不是静态的储存在大脑里:
Memory is best viewed as a set of skills serving perception and action (MacLeod, 1997)
(译)记忆最好看成联系感知和行为之间的技能(麦克雷奥德,1997).
根据这种理论,记忆不是什么东西储存在神经原细胞体类,而是有神经原细胞触角的状态来表述的.当我们的感知(看到的,摸到的)变为电信号后,这些触角将信号分配到一级又一级知道最后到肌肉,触发行为.
现代理论认为记忆是这些动态变化的触角所代表的关系.这种关系把我们的行为和感官联系起来,我们才会"处境伤情",记忆也就由此而生.
触角的变化是和通过的触角直接相关的.如果一个触角长时间没有相关电信号触发,触角就会"萎缩",相关的记忆就会削弱.如果触角收到长时间刺激,或者一个很猛的突然刺激,触角就变的很强壮,记忆就很深刻.
触角功能的分配有很强的随即性,所以很难想象触角的状态可以深化到RNA中遗传下去.所以记忆遗传目前还很难的证明,除非我们证明人的大脑中在同一位置有同一个神经原的同一个触角记忆同一中信息.如果这样的话,记忆遗传(记忆保存到RNA中)就有可能了。

Ⅲ 人脑神经元存储多少信息

人脑神经元存储多少信息?

正如克莱德·托马斯(Clyde Thomas)引用诺伯特·韦纳(Norbert Weiner)(计算机网络学第147页)所说:“信息就是信息。不是能量,没有关系”。

丹·卢里(Dan Lurie)也说得很好:“本质上,问题在于我们将信息视为具有意义的信息,但是信息的存储方式可能没有客观的“意义”。

Ⅳ 大脑储存信息的原理

人类大约有几百亿个脑细胞,每个脑细胞大约有几百条脑神经,每条神经上大约有几百个突触,每个突触有几百到几千个蛋白质,一个脑细胞的作用大约相当于一台大型计算机,一个突触的作用大约相当于计算机的一块芯片。可以很简单地推算出来,人的大脑相当于上千亿块或上万亿块芯片。

而脑细胞、脑神经、突触、蛋白质以及组成蛋白质的氨基酸都有很多种,运动起来远比电路复杂得多了。所以人类搞清人脑功能的时间还要推后。

人的大脑是人体中最微妙的智能器官。它重约1.3千克,体积只有1.4立方米,大约由100多亿个神经细胞所组成。每个神经细胞的周围,有1000~10000个突触伸展出去,和相邻的神经细胞的突触相交联。这些突触像电路一样,都具有一个能通过或停止“电子流动”的“闸门”,因此,大脑能够储存10万亿位的信息量。

人脑的思维形式有两种:一种是形式化思维,是人脑演绎能力的表现,具有逻辑的循序的特点:一种是模糊性的思维,是人脑归纳能力的表现,可同时进行综合的整体的思考。尽管在人的一生中,每小时约有1000个神经细胞发生障碍,一年内有近900万个神经丧失功能,然而,即使如此,大脑仍能正常地工作,其主要原因,就是大脑有足够的“后备力量”。一些神经细胞发生故障,另一些“备用”的神经细胞马上顶替上来。

Ⅳ 人脑中的信息存储在哪

人脑的神经生物学结构亦称脑实体结构,它是指由成百亿神经元组成的具有复杂连接通路与回路的庞大的神经网络。与生物的其它组织器官一样,脑的神经网络首先是生物进化中遗传、变异和自然选择的产物。在物种进化中被创造出来的这种实体结构,被编码在人的DNA序列中。作为遗传基因载体的DNA双螺旋,既能通过不断的自我复制把编码脑结构的信息传递给后代,又有在个体发育中通过转录RNA和转译蛋白质的方式把脑的神经网络结构在每一代个体中再现出来。因此,对每一个有认识能力的具体人来说,脑的神经生物学结构首先是由遗传因素决定的先于自身经验的结构。

人脑又是一个可塑性很强的神经器官。外界和内部环境中的各种作用或刺激能从个体发育和机能建构两个水平上影响它的结构与功能的组织形式。

环境因素引起人脑的机能建构过程主要是信息结构的构筑和与之相关的机能结构的形成过程。机能建构作用能把编码在基因中的本能信息和同化于主体中的外来信息紧紧地嵌合在人脑的实体结构之中,逐渐形成不同于实体结构的脑机能结构。

神经心理学的兴起使脑机能结构的研究成为一门日趋独立的新兴学科。在这一领域中,前苏联着名学者鲁利亚做出了意义深远的贡献。他澄清了“机能”“定位”等对脑机能结构研究有重要意义的基本概念;创立了神经心理学的临床测验法;尤其是划分出了人脑基本的机能结构系统。他认为,人脑有三个基本的机能联合区,它们是:(1)保证调节紧张度或觉醒状态的联合区;(2)接受、加工和保存来自外部世界信息的联合区;(3)制定程序、调节和控制心理活动的联合区。每个机能联合区又能进一步分成具有不同生理与心理功能的一级皮质区(或投射区)、二级皮质区(或投射-联络区)和三级皮质区(或重叠区)〔④〕。鲁利亚的精辟见解和对脑机能结构所作的这些划分,对现代心理学、认知科学的研究具有颇为重要的价值。然而,从脑科学今天的发展水平看,我认为他的研究仍有若干不足之处。其中最突出的,就是没有把信息存储系统(即记忆系统)作为一个独立的机能结构系统提出来,仅把它说成是具有保存来自外部世界信息的第二机能联合区的独有功能。

心理学的实验事实和大量的日常经验早已示明,人脑不仅能保存来自外部世界的信息,还能保存人的活动技能,人体验过的情绪、情感以及思维中使用的操作规则、方法策略等等。脑科学的新近研究也指出,人脑中三个基本机能联合区所在的那些脑组织结构都是记忆信息存储的场所,并不只限于第二机能联合区的脑组织。与记忆信息的存入和取出有关的脑组织结构,主要是位于大脑皮层前额叶以及颞叶内下侧的海马和杏仁核等

人脑中的信息存储系统也是一个最基本的机能结构系统(或机能联合区)。这个机能联合区与鲁利亚的前三个联合区有着并列且相互依存的功能。从脑的神经生物学结构看,信息存储系统的脑组织除前额区、海马、杏仁核等可做明显区分外,其余部分则和上述三个机能联合区的脑组织重叠在一起,因而难于单独区分。

综上所述,人脑的机能结构不仅是发育过程中基因表达的产物,更是以摄取外界信息为前提的脑机能建构的结果。因而它是既包含先天因素又包含习得因素,既包括脑“硬件”又包括脑“软件”的复杂统一体。人的认知结构、心理结构这类似乎看不见、摸不着的东西,就是嵌合在人脑的机能结构之中,并通过它转变成了切实可见的存在物的

从脑的神经生物学结构看,信息存储系统的脑组织除前额区、海马、杏仁核等可做明显区分外,其余部分则和上述三个机能联合区的脑组织重叠在一起,因而难于单独区分。

从脑的神经生物学结构看,信息存储系统的脑组织除前额区、海马、杏仁核等可做明显区分外,其余部分则和上述三个机能联合区的脑组织重叠在一起,因而难于单独区分。

Ⅵ 人的大脑是以什么形式储存信息的

人类大约有几百亿个脑细胞,每个脑细胞大约有几百条脑神经,每条神经上大约有几百个突触,每个突触有几百到几千个蛋白质,一个脑细胞的作用大约相当于一台大型计算机,一个突触的作用大约相当于计算机的一块芯片。可以很简单地推算出来,人的大脑相当于上千亿块或上万亿块芯片。

人类目前最大型的并行计算机,美国的白色战略加速计算机(White ASCI)也不过8000块芯片,和人类的大脑比,相差大约一亿倍,也就是差8到9个数量级。

计算机的运算能力一般用一秒钟能做多少次加法运算来统计,目前最快的是日本的“地球模拟器”,40亿次。

如果用计算机类比人的大脑,由于人脑是超级巨大的并行运算系统,所有突触以及每个突触上的所有蛋白质,都可以瞬间同时运动,蛋白质之间又只有几纳米距离,电流在这个距离上一秒可运行几千亿次,人脑运算速度的数量级就大得没法形容,大约1后面跟27个零到30个零。要知道,40亿次,才不过是4后面跟10个零而已,差了大约20个数量级。

所以,如果用计算机来模拟人类大脑的功能,以目前研究进展的速度而言,大约还要一百年才能实现。因为根据着�摹澳Χ��伞保�扑慊�脑怂闼俣让?8个月提高一倍,也就是每年大约提高0.57倍,要提高20个数量级就需要100多年。俺这辈子肯定是看不到了。

另外还有一个因素没有考虑,计算机就两种电路状态,开或关,而脑细胞、脑神经、突触、蛋白质以及组成蛋白质的氨基酸都有很多种,运动起来远比电路复杂得多了。所以人类搞清人脑功能的时间还要推后。

---------------

人的大脑是人体中最微妙的智能器官。它重约1.3千克,体积只有1.4立方米,大约由100多亿个神经细胞所组成。每个神经细胞的周围,有1000~10000个突触伸展出去,和相邻的神经细胞的突触相交联。这些突触像电路一样,都具有一个能通过或停止“电子流动”的“闸门”,因此,大脑能够储存10万亿位的信息量。这样的存贮能力可与1万台计算机的存贮容量相媲美。

人脑的思维形式有两种:一种是形式化思维,是人脑演绎能力的表现,具有逻辑的循序的特点:一种是模糊性的思维,是人脑归纳能力的表现,可同时进行综合的整体的思考。尽管在人的一生中,每小时约有1000个神经细胞发生障碍,一年内有近900万个神经丧失功能,然而,即使如此,大脑仍能正常地工作,其主要原因,就是大脑有足够的“后备力量”。一些神经细胞发生故障,另一些“备用”的神经细胞马上顶替上来。

科学家从人脑的功能原理上,受到了启发,研制成功了电子计算机。电子计算机是20世纪最重大的发明之一。它具有非凡的计算能力,现代最快的计算机在1秒钟内,能完成上亿次运算,这样的计算速度和计算过程的可靠性,是人工计算望尘莫及的。计算机还能模仿人的某些感觉和思维功能,按照一定的规则进行判断和推理,代替人的部分脑力劳动。正因为这样,计算机受到了人们的高度重视,被称之为“电脑”,而且在各个领域里得到了广泛的应用。

现代计算机总是按照人规定的程序进行工作的。在这些程序中,人要为计算机预见到一切可能发生的情况,并安排好计算机该如何作出反应。一旦出现了意料之外情况,计算机也会晕头转向,束手无策。

计算机的体积很大,虽然它的元件和人脑细胞的数量一样多,每个元件的体积为1立方厘米,耗能为0.1瓦;众多的元件组装起来,其体积已经是1万立方米的庞然大物了,它是大脑体积的600万倍,所需要的能量高达100万千瓦,相当于一座现代化大型水电站的发电量。

因此,尽管电子计算机的才能非凡,神通广大,在某些方面远胜于人,但人脑仍然是世界上最完善的“天然计算机”。

Ⅶ 人的大脑究竟可以存储多少信息呢

一个人的脑储存信息的容量相当于1万个藏书为1000万册的图书馆

大脑又称端脑,脊椎动物脑的高级的主要部分,由左右两半球组成,在人类为脑的最大部分,是控制运动、产生感觉及实现高级脑功能的高级神经中枢。脊椎动物的端脑在胚胎时是神经管头端薄壁的膨起部分,以后发展成大脑两半球,主要包括大脑皮层和基底核两部。大脑皮层是被覆在端脑表面的灰质、主要由神经元的胞体构成。皮层的深部由神经纤维形成的髓质或白质构成。髓质中又有灰质团块即基底核,纹状体是其中的主要部分。广义的大脑指小脑幕以上的全部脑结构,即端脑、间脑和部分中脑(见中枢神经系统)。
大脑由约140忆个细胞构成,重约1400克,大脑皮层厚度约为2--3毫米,总面积约为2200平方厘米,据估计脑细胞每天要死亡约10万个(越不用脑,脑细胞死亡越多)。 一个人的脑储存信息的容量相当于1万个藏书为1000万册的图书馆,最善于用脑的人,一生中也仅使用掉脑能力的10%。人脑中的主要成分是水,占80%。它虽只占人体体重的2%,但耗氧量达全身耗氧量的25%,血流量占心脏输出血量的15%,一天内流经大脑的血液为2000升。大脑消耗的能量若用电功率表示大约相当于25瓦。

Ⅷ 人脑如何储存信息

大脑神经细胞中的生物分子或大分子或是对应的离子的亚结构(如氨基酸、肽和碱基)是可以部分带电、带磁效应的,客观世界的画面和声光信号可以被人的感官转化为电脉冲,电脉冲又可以将大脑神经细胞中的氨基酸、肽和碱基等磁化,磁化的能量就可以是一种声光信息的存在或表现形式了。就如录音机的磁带和电脑磁盘中的磁化信息一样。

Ⅸ 大脑是怎样记录信息的呢那些信号是怎样被储存起来的怎样表达出来的呢

想看到老鼠的大脑是如何工作的吗?纽约大学医学院的华裔脑神经专家甘文标博士可以告诉你怎么做。甘文标的研究小组近日在英国<<自然>>杂志发表研究报告,描述了他们如何实时观察活体转基因老鼠的大脑随时间和外界环境的改变而发生变化。甘博士认为,他们观察到的老鼠大脑皮层神经细胞的一些微妙变化可能帮助人们理解高等动物包括人类的大脑是如何记录信息、形成记忆和学习知识的。

甘文标博士告诉多维社说,纽约长岛冷泉港(Cold Spring Harbor)实验室的另一个研究小组也作了类似的实验。他们同样观察到活体老鼠大脑神经元细胞微小突起(Spine)随环境和时间变化形成和消失。与甘文标博士的研究小组不同的是,冷泉港实验室的研究观察到神经细胞突起存留时间不长,而甘博士却观察到某些突起一旦形成,绝大多数可以长时间保留,有的甚至保持终生。由此可以推测,这些不断形成并能保留的神经细胞突起,就是动物大脑记录信息的物质基础。

挪威奥斯陆大学的神经科学家奥特森和海尔姆认为,这两个研究小组将“活体大脑的成像带入显微领域,对神经生物学的发展具有深远意义”。一些专业杂志的评论认为,活体大脑显微成像实验为人类进一步研究大脑意识和记忆力的形成提供了非常有力的方法。

据甘文标博士研究小组发表的论文介绍,实验用的是转基因技术培育的特殊老鼠。它们的脑神经细胞基因带有能够发出荧光的物质,在特殊激光的照射下,可以成像显示脑神经细胞突起的形成和消失。为取得清晰的图像而同时不影响老鼠大脑正常工作,研究人员在深度麻醉后的老鼠头骨上开辟出1毫米见方的观察“窗口”,再用微型器械将这片头骨打磨□薄至30至50微米,但并不打穿。同时还不断使用溶液冷却打磨部位,以减少打磨产生的热量,不致伤害大脑皮层。经过这番手术,老鼠大脑上就被打开一个“观察窗”,研究人员定期通过这个“窗口”拍摄脑神经细胞的变化。

据介绍,包括人类的动物大脑神经细胞通过伸向四面八方的轴突和树突相互发生联系,传递信息,并形成神经网络,构成大脑记忆和思维的物质基础。甘文标和同事们的实验使人类第一次观察到活体大脑神经细胞在一段时间内的变化。研究人员发现,相互交错,密如蛛网的脑神经细胞不断有新的突起形成,也不断有旧的突起消失。这些突起与相邻神经细胞的突起联系,构成象集成电路那样的神经线路,来完成某些大脑功能。而当动物受到外界刺激时,突起形成和消失的数量骤然增加。据观察,有些突起只存在很短的时间,例如几个小时,而另外一些则会长时间存在,并有可能固定下来,形成新的神经线路。

甘文标等人的研究还发现,幼年老鼠的大脑发育有一个“关键时期”。在这个期间神经突起形成和消失的变化很大,并为整个大脑神经网络形态的形成打下基础,大脑在此时获得基本的经验和记忆。到4个月大的成年期的老鼠,神经突起仍具有形成和消失的动态变化,但96%的新形成的突起能够保留1个月以上。许多体积较大的突起能够保留更长时间,甚至终生。冷泉港实验室的研究小组却在6到10周大的老鼠身上观察到不同的现象,仅有60%的新突起是稳定的,能够存在8天以上,20%的突起存在不到一天。

加州大学圣迭哥校区的神经生物学家拉里斯奎尔认为,这两个小组观察到的结果虽然不尽相同,但并不一定相互矛盾,因为他们观察的是不同年龄段的老鼠,观察的大脑皮层区域也不同。据了解,甘文标等人的研究是采用1个月大的青年老鼠和4个月大的成年老鼠,观察与视觉有关的脑神经细胞;而冷泉港实验室采用的是6到10周大的少年老鼠,观察的也是另外一部份脑神经细胞。