⑴ 光电子材料
光电子材料
optoelectronic material
在光电子技术领域应用的,以光子、电子为载体,处理、存储和传递信息的材料。光电子技术是结合光学和电子学技术而发展起来的一门新技术,主要应用于信息领域,也用于能源和国防领域。已使用的光电子材料主要分为光学功能材料、激光材料、发光材料、光电信息传输材料(主要是光导纤维)、光电存储材料、光电转换材料、光电显示材料(如电致发光材料和液晶显示材料)和光电集成材料。
(一)新型光电子材料及相关基础材料、关键设备和特种光电子器件
1、光电子基础材料、生长源和关键设备
研究目标:突破新型生长源关键制备技术,掌握相关的检测技术;突破半导体光电子器件的基础材料制备技术,实现产业化。
研究内容及主要指标:
1) 高纯四氯化硅(4N)的纯化技术和规模化生产技术(B类,要求企业负责并有配套投入)
2) 高纯(6N)三甲基铟规模化生产技术(B类,要求企业负责并有配套投入)
3) 可协变(Compliant)衬底关键技术(A类)
4) 衬底材料制备与加工技术(B类)
重点研究开发外延用蓝宝石、GaN、SiC等衬底材料的高标抛光产业化技术(Epi-ready级);大尺寸(>2")蓝宝石衬底材料制备技术和产业化关键技术。蓝宝石基GaN器件芯片切割技术。
5) 用于平板显示的光电子基础材料与关键设备技术(A类)
大面积(对角线>14〃)的定向排列碳纳米管或纳米棒薄膜生长的关键技术; 等离子体平板显示用的新型高效荧光粉的关键技术。
2、人工晶体和全固态激光器技术
研究目标:研究探索新型人工晶体材料与应用技术,突破人工晶体的产业化关键技术,研制大功率全固态激光器,解决产业化关键技术问题。
研究内容及主要指标:
1) 新型深紫外非线性光学晶体材料和全固态激光器(A类);
2) 面向光子/声子应用的人工微结构晶体材料与器件 (A类);
3) 研究开发瓦级红、蓝全固态激光器产业化技术(B类),高损伤阈值光学镀膜关键技术(B类),基于全固态激光器的全色显示技术(A类);
4) 研究开发大功率半导体激光器阵列光纤耦合模块产业化技术(B类);
5) Yb系列激光晶体技术(A类)。
3、新型半导体材料与光电子器件技术
研究目标:重点研究自组装半导体量子点、ZnO晶体和低维量子结构、窄禁带氮化物等新型半导体材料及光电子器件技术。
研究内容及主要指标:
1) 研究ZnO晶体、低维量子结构材料技术,研制短波长光电子器件 (A类)
2) 自组装量子点激光器技术 (A类)
3) Ⅲ-Ⅴ族窄禁带氮化物材料及器件技术(A类)
4) 光泵浦外腔式面发射半导体激光器(A类)
4、 光电子材料与器件产业化质量控制技术(A类)
研究目标:发展人工晶体与全固态激光器、GaN基材料及器件表征评价技术,解决产业化质量控制关键技术。
研究内容:重点研究人工晶体与全固态激光器、GaN基材料及器件质量监测新方法与新技术,相关产品测试条件与数据标准化研究。
5、光电子材料与器件的微观结构设计与性能预测研究(A类)
研究目标:提出光电子新材料、新器件的构思,为原始创新提供理论概念与设计
研究内容:针对光电子技术的发展需求,结合本主题的研制任务,采用建立分析模型、进行计算机模拟,在不同尺度(从原子、分子到纳米、介观及宏观)范围内,阐明材料性能与微观结构的关系,以利性能、结构及工艺的优化。解释材料制备实验中的新现象和问题,预测新结构、新性能,预报新效应,以利材料研制的创新。低维量子结构材料新型表征评价技术和设备。
(二)通信用光电子材料、器件与集成技术
1、集成光电子芯片和模块技术
研究目标:突破并掌握用于光电集成(OEIC)、光子集成(PIC)与微光电机械(MOEMS)方面的材料和芯片的关键工艺技术,以典型器件的研制带动研究开发工艺平台的建设和完善,探索集成光电子系统设计和工艺制造协调发展的途径,促进芯片、模块和组件的产业化。
研究内容及主要指标:
1) 光电集成芯片技术
(1)速率在2.5Gb/s以上的长波长单片集成光发射机芯片及模块关键技术(A类)
(2) 高速 Si基单片集成光接收机芯片及模块关键技术(A类)
2) 基于平面集成光波导技术的OADM芯片及模块关键技术(A类)
3) 平面光波导器件的自动化耦合封装关键技术(B类)
4) 基于微光电机械(MOEMS)芯片技术的8′8以上阵列光开关关键技术(A类)
5) 光电子芯片与集成系统(Integrated System)的无生产线设计技术研究(A类)
2、 通信光电子关键器件技术
研究目标:针对干线高速通信系统和密集波分复用系统、全光网络以及光接入网系统的需要,重点进行一批技术含量高、市场前景广阔的目标产品和单元技术的研究开发,迅速促进相应产品系列的形成和规模化生产,显着提高我国通信光电子关键器件产业的综合竞争能力。
研究内容及主要指标:
(1) 速率在10Gb/s以上的高速光探测器组件(PIN-TIA) 目标产品和规模化生产技术,直接调制DFB-LD目标产品和规模化生产技术,光转发器(Transponder)目标产品和规模化生产技术;(均为B类,要求企业负责并有配套投入)
(2) 40通道、0.8nm间隔EDFA动态增益均衡关键技术(A类);
(3) InGaNAs高性能激光器研究(A类);
(4) 光波长变换器关键技术和目标产品(B类);
(5) 可调谐激光器目标产品(A类);
(6) 用于无源光网络(EPON)的突发式光收发模块关键技术和目标产品(B类)。
3、光纤制造新技术及新型光纤
研究目标:研究开发并掌握具有自主知识产权的光纤预制棒制造技术;研究开发新一代通信光纤,推动光纤通信系统在高速、大容量骨干网以及接入网中的应用。
研究内容和主要指标:
1) 光纤预制棒制造新技术(B类,要求企业负责并有配套投入);
2) 新型特种光纤(A类)。
(三)面向信息获取、处理、利用的光电子材料与器件
1.GaN材料和器件技术
研究目标:重点突破用于蓝光激光器衬底的GaN体单晶生长技术。
研究内容及主要指标:
大面积、高质量GaN体单晶生长技术。
2、超高亮度全色显示材料与器件应用技术
研究目标:研究开发用于场致电子发射平板显示器(FED)材料和器件结构,以及超高亮度冷阴极发光管制作和应用的关键技术。
说明:等离子体平板显示器和高亮度、长寿命有机发光器件(OLED)和FED的产业化关键技术将于"平板显示专项"中考虑。
研究内容及主要指标:
1) 超高亮度冷阴极发光管制作和应用的关键技术(A类);
2) 研制FED用的、能够在低电压下工作的新型冷阴极电子源结构、新型冷阴极电子发射材料(A类)。
3、超高密度光存储材料与器件技术
研究目标:发展具有自主知识产权的超高密度、大容量、高速度光存储材料和技术,达到国际先进水平,为发展超高密度光存储产业打下基础。
研究内容及主要指标:
1) DVD光头用光源和非球面透镜等产业化关键技术(B类);
2) 新型近场光存储材料和器件(A类)。
4、光传感材料与器件技术
研究目标:以特殊环境应用为目的,实现传感元器件的产业化技术开发;研究开发新型光电传感器。
研究内容及主要指标:
1) 光纤光栅温度、压力、振动传感器的产业化技术(B类,要求企业负责并有配套投入);
2) 锑化物半导体材料及室温无制冷红外焦平面探测器技术(A类);
3) 大气监测用高灵敏红外探测器及其列阵(A类) ;
4) 基于新概念、新原理的光电探测技术(A类);
5、新型有机光电子材料及器件
研究目标:研究开发新型有机半导体材料及其在光显示等领域的应用。
研究内容及主要指标::
1) 有机非线性光学材料及其在全光光开关中的应用(A类);
2) 有机半导体薄膜晶体管材料与器件技术(A类)。
⑵ 光电信息处理方法
近代光电信息处理技术上的飞跃是光通信、光网络、光存储、光显示和多媒体技术的出现。其主要关键技术是微电子、光电子、光纤、计算机、通信与网络、大规模存储、大面积高分辨显示、多媒体等技术。
微电子技术
微电子技术是光电子信息处理技术的前提。以0.25μm COMS工艺技术为主流的微电子技术已进入大生产,0.1~0.025μm COMS器件在实验室中已制备成功。表1为美国国家半导体协会预测。
光纤与光通信技术
全世界光纤敷设长度正以2000km/h的速度增长。光纤带宽每6个月翻一番。单根光纤的传输容量在今后15年中将增加1000倍。2.5~10b/s光信息传输系统已实用化。Tb/s(1012bit/s)的传输速度已实验成功。随着未来光纤1390nm水吸收峰障碍的消除,将实现1280~1625nm、带宽达40THz的光通信窗口。长距离大容量单信道通信最高速率为10Gb/s。2005年传输速率需达数百Gb/s,2010年传输速率应达1Tb/s。
光通信方面,光学时分复用(OTDM)、光学波分复用(OWDM)、码分多址(CDMA)、光学高密度波分复用(ODWDM)均已实用化或正在解决实用化问题。1998年,朗迅公司用100信道的光学波分复用和10Gb/s单通道速率实现了400km、1Tb/s的大容量通信。
当前局域网的交换速率达40Gb/s,2005年达1Tb/s,2010年达5Tb/s。国际上许多着名的计算机公司都或多或少的开展计算机局域网光互连的研究和开发,如IBM、HP、MEC、Sun Microsystems、Micro Optical Devices、Digital Optics Corporation。
微处理器技术
计算机微处理器技术是信息处理的基础。在未来的几年内,微电子技术将推动微处理器飞速发展,计算机中互连密度和长度成数量级地提高。
大规模信息处理技术基础
运算量极大的信息处理工作,如大量图片、信息的高速处理等,往往采用巨型机。
海量并行计算机
利用多个处理器芯片并行工作,可有效提高计算速度。日本总结第五代(并行、智能)计算机失败的原因是:硬件不困难,关键在软件。美国解决了并行软件问题,做出了海量并行计算机,1991年已做到6万个处理器并行工作。1995年做到100万个处理器并行工作。有人估计2010年将可做到1000亿个处理器并行工作。这个数目与人脑神经元的数目大致相同。可认为该种计算机将可模拟人脑高速实时地思维和工作。
美国能源部作为模拟核实验工作的一部分,计划在2004年研制出100Tb/s的超级计算机。IBM公司、MIT、NASA的喷气动力实验室以及加拿大McGill大学的代表对互连的需求作了专题讨论。IBM公司的A.F.Benner认为在这种计算机中采用光互连的主要优点是简单密集的封装和非常高的带宽距离乘积,MIT的L.Rudolph建议用光纤环路延迟解决高速信号的缓存,NASA的T.Sterling建议用光学TDM和WDM组合增加通道的通信容量,McGill大学的T. Szymanski则提出“智能化的光学网络”,并介绍了他们采用光电子COMS技术实现这种网络的工作。
Delaware大学提出全光互连用于大规模并行处理,报导了一个灵活的大规模并行处理全光方案,有250通道,信息传输能力为250Gb/s。建立了完全可调的发射和接收阵列。其实际上可随机地达到250×250交叉开关(crossbar switch),在单层次系统上可连接500个处理器。复用和解复用足够快,能满足大规模并行处理的要求。这种交叉开关能提供每秒2.5Gb个包连接。一个多层系统可提供数千到数百万个同时的包连接,控制的复杂性增加了。计算机模拟证明了单层和两层的开关控制方案。又提出一种“导向器”令牌用作多通道快速总线(E-Bus),其可实现包交换。相信该系统用OEIC技术实现是可行的。
光互连网络与计算机机群系统
光互连在近几年里取得很大的进展,光互连的应用已由LAN进展到系统之间的互连网络(system area network,简称SAM)。光纤链路在计算机集群(Clusters)系统中的应用,将产生第一代光互连高性能并行计算机系统。
计算机集群是采用工作站或微机做计算节点,通过网络连接形成高性能并行计算平台。Clusters或称为NOW(networks of workstations)和COW(clusters of workstations)。由于采用商品计算机做处理器节点,具有价格便宜、易更新性和可扩展性优势,有很高商业前景,Clusters已成为并行计算机(MPPI机)一个重要的体系结构,美国IBM公司的SP系列和中国的曙光2000等均采用这种结构。Clusters主要采用Ethernet、FDDI等局域网络。由于LAN技术发展的目的不是支持这种并行处理系统,较大的通信开销(overheads)和网络延迟(latancy)阻碍了计算机集群系统功能的发挥。虽然Gb/s Ethernet的出现可以改善带宽,但并行系统更需要的是减少网络延迟。
在Clusters网络中,主要问题是增加带宽,减少通信开销和网络延迟。光互连是实现计算机集群系统网络最理想的技术之一。将WDM技术引入计算机互连中,可以实现全光交换节点。因而,光互连的应用对NOW结构的高性能计算机发展有重要的现实意义。宽波长间隔波分复用(coarse WDM即CWDM)将密集波分复用(DWDM)的0.4~0.8nm波长间隔拓宽到20nm以上,并将通信中的典型波长窗口1530nm~1550nm延伸为1310nm~1560nm整个波段,其主要的应用对象是Gb/s Ethernet网络。CWDM主要用于短距离的LAN的传输,采用宽波长间隔,降低了对无源器件制作成本和光电子器件的波长稳定性等要求,可以有效地降低成本,这正适应了计算机网络发展的需求。
光控飞行
(fly-by-light即FBL,亦称为光飞行)
光控飞行即在飞行和飞行器中采用光信号控制整个系统,这是光纤技术和光互连技术的新应用。在这方面McDonnell Aerospace提出一个FLASH计划,即实现一种FLASH型飞行光控制系统。该研究所发表了下述论文:“飞机的光缆隐线:光飞行控制网络的物理层”,“FLASH光飞行飞机控制系统的研制”,“运输机的FLASH光飞行飞机控制系统的研制”,“FLASH光纤数据总线文件学习”,“军用战术光飞行飞机控制系统的实验研究”,“光飞行飞机控制系统的经济效益集成实验研究”,“用神经网络处理对光飞行(FBL)飞机控制系统进行故障诊断”,金属线控制飞行转换为光飞行的过程和解决方法”等等。此外,美国Berg Electonics研究所、HiRel Connector研究所、Honeywell研究所、Raytheon飞机研究所等也发表了一些成果。
大面积、高分辨显示技术
与可视化紧密联系的显示技术是信息处理必须的手段。高分辨率电视(HDTV)显示约为1000线,今后会出现超高分辨率电视(UDTV)显示大于1000线甚至可达4000~5000线,显示质量会大幅度增高,当然要求计算机的速度也会更高。今后计划的HDTV显示的情况如表4。在未来的超高分辨率显示中平面显示和全息显示将起重要作用。
表1 计划的HDTV显示的情况
年 份 类 别 分辨率 像素数量
1993年 HDTV 1000线 1150×1920个像素
2000年 UDTV-0 1000线 1080×1920个像素
2003年 UDTV-Ⅰ 2000线 2106×3840个像素
2005年 UDTV-Ⅱ 3000线 3240×5760个像素
2010年 UDTV-Ⅲ 4000线 4320×7680个像素
大规模存储技术
光存储是当前存储技术最有生命力的技术,而且在不断发展中。光盘技术中采用烧孔(burnning hole)技术,可使存储量增加上千倍。美国Xerox研究中心预计2020年可实现一个原子存储一位计算机信息。存储技术与当前出现的纳米技术是相关的,它是建立在分子电子学基础之上的。
此外,有光全息存储,DARPA在5年内开发出容量为1万亿位数据,存储速率1000Mb/s。已达到160000帧在LiNbO3晶体中,密度为40~100Gb/in2,适于直接存取图像。近场光存储用 Co/Pt多层磁光膜,其线宽10~50nm、密度1000Gb/in2。光学双光子双稳态三维数字记录能达到Tb/cm2的体密度、40Mb/s传输率, San Diego达100层的记录方法。
⑶ 什么是光存储
光存储是由光盘表面的介质影响的,光盘上有凹凸不平的小坑,光照射到上面有不同的反射,再转化为0、1的数字信号就成了光存储。
光盘只是一个统称,它分成两类,一类是只读型光盘,其中包括CD-Audio、CD-Video、CD-ROM、DVD-Audio、DVD- Video、DVD-ROM等;另一类是可记录型光盘,它包括CD-R、CD-RW、DVD-R、DVD+R、DVD+RW、DVD-RAM、 Double layer DVD+R等各种类型。 随着光学技术、激光技术、微电子技术、材料科学、细微加工技术、计算机与自动控制技术的发展,光存储技术在记录密度、容量、数据传输率、寻址时间等关键技术上将有巨大的发展潜力。在下一个世纪初,光盘存储将在功能多样化,操作智能化方面都会有显着的进展。随着光量子数据存储技术、三维体存储技术、近场光学技术、光学集成技术的发展,光存储技术必将在下一世纪成为信息产业中的支柱技术之一。
光存储的原理
无论是CD光盘、DVD光盘等光存储介质,采用的存储方式都与软盘、硬盘相同,是以二进制数据的形式来存储信息。而要在这些光盘上面储存数据,需要借助激光把电脑转换后的二进制数据用数据模式刻在扁平、具有反射能力的盘片上。而为了识别数据,光盘上定义激光刻出的小坑就代表二进制的“1”,而空白处则代表二进制的“0”。DVD盘的记录凹坑比CD-ROM更小,且螺旋储存凹坑之间的距离也更小。DVD存放数据信息的坑点非常小,而且非常紧密,最小凹坑长度仅为0.4μm,每个坑点间的距离只是CD-ROM的50%,并且轨距只有0.74μm。 CD光驱、DVD光驱等一系列光存储设备,主要的部分就是激光发生器和光监测器。光驱上的激光发生器实际上就是一个激光二极管,可以产生对应波长的激光光束,然后经过一系列的处理后射到光盘上,然后经由光监测器捕捉反射回来的信号从而识别实际的数据。如果光盘不反射激光则代表那里有一个小坑,那么电脑就知道它代表一个“1”;如果激光被反射回来,电脑就知道这个点是一个“0”。然后电脑就可以将这些二进制代码转换成为原来的程序。当光盘在光驱中做高速转动,激光头在电机的控制下前后移动,数据就这样源源不断的读取出来了。
⑷ 光存储介质都有哪些
尼康 Coolpix 4500 ,有效像素: 400万像素
光学变焦倍数: 4倍光学变焦
传感器类型: CCD传感器
传感器尺寸: 1/1.8英寸
液晶屏尺寸: 1.5英寸
最大分辨率: 2272×1704
存储介质: CF卡,CFⅡ卡,微硬盘,随机附带16M CF
⑸ 光储存是怎么回事
最常见的就是光盘。上面用激光烧录信息,通过反射率的变化,得出0,1序列。
⑹ 近场光学的介绍
近场光学1是研究距离物体表面一个波长以内的光学现象的新型交叉学科。基于非辐射场的探测与成像原理,近场光学显微镜突破常规光学显微镜所受到的衍射极限,在超高光学分辨率下进行纳米尺度光学成像与纳米尺度光谱研究。近场光学显微镜在超高分辨率光学成像,近场局域光谱,高密度数据存储,在生命科学,单分子光谱,量子器件发光机制等领域中有着广泛应用。
⑺ 近场光学的近场光学显微镜的基本类型
近场光学显微镜 的主要目标是获得与物体表面相距小于波长K的近场信息, 即隐失场的探测。虽然已经出现了许多不同类型的近场光学显微仪器, 但它们有一些共同的结构。如同其他扫描探针显微镜( STM、AFM…), 近场光学显微镜包括: ( 1)探针,(2) 信号采集及处理,(3)探针-样品间距 z-的反馈控制,(4) x-y 扫描及(5) 图像处理。这里(4)(5)是已经成熟的扫描探针显微技术。采用计算机控制电子线路,微区的扫描一般由压电技术来实现,控制精度可以优于0. 01nm,丰富的图形处理方法可以将数字图像做平滑、滤波、衬度、亮度处理, 傅里叶变换滤波等。而(1), (2), (3)则与其他技术有区别。
(1) 探针:与 STM 中的金属探针和 AFM 的悬臂探针不同的是, 这里一般采用介电材料探针,可以发射或接受光子,尖端尺度在10~100nm,以能够将收集到的光子传送到探测器, 探针可用拉细的锥形光纤, 四方玻璃尖端,石英晶体等制成,探针的核心问题是小尺度和高的光通过率。
(2) 信息探测:由于光子信息均来自于纳米尺度区域,信号强度一般很低( ~nw/ cm2), 因而需经光电倍增管、光二极管、光子计数或电荷耦合器件(CCD)将光信号转换为电信号而放大。同时利用调制-锁相放大技术抑制噪声。以提高信噪比。
(3) 探针-样品间距控制: 理想的调控方法应当是与光信号的探测完全独立的机制,以使待测信号不受到干扰,避免引入复杂性。而实际方案中则难于避免这一问题,目前常用的方法有:i)隐失场调控:利用隐失场强度随 z-增加而指数下降关系,将探针放入隐失场里,控制范围0~K/ ( 30~40),这种方法中,探测光信号与调控信号有较强相互影响。ii) 切变力调控:当以本征频率振荡的探针靠近样品表面时( < 50 nm),由于振荡的针尖与样品间作用力( Van derWaals,毛细力,表面张力等),其振荡幅度及相位均会有较大变化,利用这个变化可以将探针控制在 z= 5~20 nm 范围,比较成熟的方案有切变力调控方式,双束干涉[,共振音叉和超声共振方式等。
与 STM 中的电子隧道效应相比,光的传播特性使近场光学显微镜有新的特点;首先光子很容易向远处传播,因此易与观察物以外的物体或缺陷发生反射、衍射,这些相互作用将使所观察场的真实情况改变。因此,要找到一种完全独立的探针-样品间距控制方法;其次,如前面所述。在近场区域, 传播分量与非传播分量是共存的, 因而实际强度与 z -的关系并不是理想的指数衰减形式。在许多文献中描述的完美的指数衰减仅能出现在理想平面中, 而实际上这些实验分布已经被传播场所调制。