1. 地址总线什么时候是双向
1.数据总线
数据总线是CPU与存储器、CPU与I/O接口设备之间传送数据信息(各种指令数据信息)的总线,这些信号通过数据总线往返于CPU与存储器、CPU与I/O接口设备之间,因此,数据总线上的信息是双向传输的。
2.地址总线
地址总线上传送的是CPU向存储器、I/O接口设备发出的地址信息,寻址能力是CPU特有的功能,地址总线上传送的地址信息仅由CPU发出,因此,地址总线上的信息是单向传输的。
1:数据寄存器,一般称之为通用寄存器组
8086 有8个8位数据寄存器,
这些8位寄存器可分别组成16位寄存器:
AH&AL=AX:累加寄存器,常用于运算;
BH&BL=BX:基址寄存器,常用于地址索引;
CH&CL=CX:计数寄存器,常用于计数;
DH&DL=DX:数据寄存器,常用于数据传递。
2:地址寄存器/段地址寄存器
为了运用所有的内存空间,8086设定了四个段寄存器,专门用来保存段地址:
CS(Code Segment):代码段寄存器;
DS(Data Segment):数据段寄存器;
SS(Stack Segment):堆栈段寄存器;
ES(Extra Segment):附加段寄存器。
当一个程序要执行时,就要决定程序代码、数据和堆栈各要用到内存的哪些位置,通过设定段寄存器CS,DS,SS来指向这些起始位置。
通常是将DS固定,而根据需要修改CS。所以,程序可以在可寻址空间小于64K的情况下被写成任意大小。
所以,程序和其数据组合起来的大小,限制在DS 所指的64K内,这就是COM文件不得大于64K的原因。
3:特殊功能的寄存器
IP(Instruction Pointer):指令指针寄存器,与CS配合使用,可跟踪程序的执行过程;
SP(Stack Pointer):堆栈指针,与SS配合使用,可指向目前的堆栈位置。
BP(Base Pointer):基址指针寄存器,可用作SS的一个相对基址位置;
SI(Source Index):源变址寄存器可用来存放相对于DS段之源变址指针;
DI(Destination Index):目的变址寄存器,可用来存放相对于 ES 段之目的变址指针。
还有一个标志寄存器FR(Flag Register)有以下九个有意义的标志:
OF: 溢出标志位OF用于反映有符号数加减运算所得结果是否溢出。如果运算结果超过当前运算位数所能表示的范围,
则称为溢出,OF的值被置为1,否则,OF的值被清为0.
DF: 方向标志DF位用来决定在串操作指令执行时有关指针寄存器发生调整的方向。
IF: 中断允许标志IF位用来决定CPU是否响应CPU外部的可屏蔽中断发出的中断请求。但不管该标志为何值,
CPU都必须响应CPU外部的不可屏蔽中断所发出的中断请求,以及CPU内部产生的中断请求。具体规定如下:
(1)、当IF=1时,CPU可以响应CPU外部的可屏蔽中断发出的中断请求;
(2)、当IF=0时,CPU不响应CPU外部的可屏蔽中断发出的中断请求。
TF: 状态控制标志位是用来控制CPU操作的,它们要通过专门的指令才能使之发生改变
SF: 符号标志SF用来反映运算结果的符号位,它与运算结果的最高位相同。在微机系统中,有符号数采用补码表示法,
所以,SF也就反映运算结果的正负号。运算结果为正数时,SF的值为0,否则其值为1。
ZF: 零标志ZF用来反映运算结果是否为0。如果运算结果为0,则其值为1,否则其值为0。在判断运算结果是否为0时,可使用此标志位。
AF: 下列情况下,辅助进位标志AF的值被置为1,否则其值为0:
(1)、在字操作时,发生低字节向高字节进位或借位时;
(2)、在字节操作时,发生低4位向高4位进位或借位时。
PF: 奇偶标志PF用于反映运算结果中“1”的个数的奇偶性。如果“1”的个数为偶数,则PF的值为1,否则其值为0。
CF: 进位标志CF主要用来反映运算是否产生进位或借位。如果运算结果的最高位产生了一个进位或借位,那么,其值为1,否则其值为0。)
CPU与外设之间的数据传输有以下三种方式:程序方式、中断方式、DMA方式。
通用串行总线(英语:Universal Serial Bus,简称“USB”)是连接计算机系统与外部设备的一个串口总线标准,也是一种输入输出接口技术规范,被广泛应用于个人电脑和移动设备等信息通讯产品,并扩展至摄影器材、数字电视(机顶盒)、游戏机等其它相关领域。
USB的特点是:即插即用,兼容性好
USB可以连接的外设有鼠标、键盘、游戏手柄、游戏杆、扫描仪、数码相机、打印机、硬盘和网络部件。对数码相机这样的多媒体外设USB已经是缺省接口;由于大大简化了与计算机的连接,USB也逐步取代并口成为打印机的主流连接方式。
2. 一根地址总线对应一个内存单元 还是一个二进制位
一根地址对应一个二进制位。n位宽度的地址总线可寻址范围是2的n次方个地址。
地址总线是这样的:
比如:若只有一根地址总线,那么可以索引地址0、地址1的两个内存地址。
若有两根地址总线,那么可以索引2^2=4个内存地址:00、01、10、11
以此类推,32位地址总线,能够索引2的32次方个地址,即4G内存地址空间。
然后再说这个电脑的位数,电脑的位数通常是指CPU的处理位数,这个不是靠地址总线来决定的,这个位数指的是CPU 通用寄存器的数据宽度,即CPU一次运算可以处理的数据bit长度
3. 单片机的存储器地址是由谁通过地址总线发出的
是CPU发出的,CPU是根据指令发出的地址的
例如:MOV A,@R0
就是CPU通过译码,通过总线发出地址,再把@R0中的内容送到A中
4. 为什么地址总线是单向的,数据总线是双向的希望可以是专业一点的答案!谢谢!
按总线的功能(传递信息的内容)分类,计算机中有三种类型的总线,即传送数据信息的数据总线、传送地址信息的地址总线和传送各种控制信息的控制总线。
1、数据总线数据总线是CPU与存储器、CPU与I/O接口设备之间传送数据信息(各种指令数据信息)的总线,这些信号通过数据总线往返于CPU与存储器、CPU与I/O接口设备之间,因此,数据总线上的信息是双向传输的;
2、地址总线地址总线上传送的是CPU向存储器、I/O接口设备发出的地址信息,寻址能力是CPU特有的功能,地址总线上传送的地址信息仅由CPU发出,因此,地址总线上的信息是单向传输的;
3、控制总线控制总线传送的是各种控制信号,有CPU至存储器、I/O接口设备的控制信号,有I/O接口送向CPU的应答信号、请求信号,因此,控制总线是上的信息是双向传输的。控制信号包括时序信号、状态信号和命令信号(如读写信号、忙信号、中断信号)等。
例如:向内存中写入数据是通过内存总线(包括数据总线、地址总线和控制总线)进行的,数据信息需通过数据总线传递至内存中,具体将这些数据信息写入内存的哪些单元则必须向地址总线传送地址信息确定,而哪个时刻开始向内存中写入数据则由控制总线获得的控制信号决定。
5. 如何用地址总线的根数来计算储存器的容量
咨询记录 · 回答于2021-10-16
6. 数据总线、地址总线、控制总线之间的关系,以及分别决定计算机的什么
数据总线、地址总线、控制总线之间的关系是:内容的收发与内容的地址和其信息。
数据总线决定每次传输数据的大小,地址总线决定了cpu所能访问的最大内存空间的大小,控制总线反映了数据的状态和传输方式
数据总线、地址总线、控制总线具有3个基本属性:内容、指向和行为。
7. 16根地址总线的寻址范围,要具体过程
16根地址总线,寻址范围也就是2的16次方。
1Byte =8bit;
16根地址总线可寻址的内存单元个数 =2^16 Byte =65535Byte ,
(65536Byte)/(1024Byte/kB) = 64kB;
单元及I/0接口中的各个不同设备,都有各自不同的地址。地址总线是CPU向主存储器和I/O接口传送地址信息的通路,它是自CPU向外传送的单向总线。地址线的宽度决定了微型计算机的直接寻址能力(即寻找主存储器单元和I/O设备范围)。
早期的微机,一般总线宽度为16根,故其直接寻址范围为216=64KB(1KB=1024B,B是字节Byte的缩写,1B=8b,b是二进制位bit的缩写);
Intel8086具有20根地址总线,其直接寻址范围为220=1MB(1MB=1024KB);Intel80386、80486均为32根地址线,直接寻址范围可达232=4GB(1GB=1024MB)。
(7)地址总线指向存储器扩展阅读:
由于计算机内部的主要工作过程是信息传送和加工的过程,因此在机器内部各部件之间的数据传送非常频繁。为了减少内部数据传送线并便于控制,通常将一些寄存器之间数据传送的通路加以归并,组成总线结构,使不同来源的信息在此传输线上分时传送。
因此,所谓总线,就是一个或多个信息源传送信息到多个目的的数据通路,它是多个部件之间传送信息的一级传输线。
根据总线所处的位置,总线分为内部总线和外部总线两类。内部总线是指CPU内各部件的连线,而外部总线是指系统总线,即CPU与存储器、I/O系统之间的连线。
按总线的逻辑结构来说,总线可分为单向传送总线和双向传送总线。所谓单向总线,就是信息只能向一个方向传送。所谓双向总线,就是信息可以向两个方向传送,即可以发送数据,也可以接收数据。
总线的逻辑电路往往是三态的,即输出电平有三种状态:逻辑“1”、逻辑“0”和“浮空”状态。三态缓冲器是靠在“允许/禁止”输入端来禁止其操作的,禁止时,输出呈现高阻抗状态。在高阻抗状态下,可以认为输出与电路的其他部分被断开。