‘壹’ 什么是存储器的带宽
主存储器带宽是说的内存的吞吐量,也就是说内存能一次处理的数据宽度。
总线频率也就是前端总线频率。
公式是:总线的频率 * 位宽 /8 = 总线的带宽.
总线带宽是主板南北桥的数据传输速度,是数据在主板上每秒钟传送的信息量。
存储器(Memory)是现代信息技术中用于保存信息的记忆设备。其概念很广,有很多层次,在数字系统中,只要能保存二进制数据的都可以是存储器;在集成电路中,一个没有实物形式的具有存储功能的电路也叫存储器,如RAM、FIFO等;在系统中,具有实物形式的存储设备也叫存储器,如内存条、TF卡等。计算机中全部信息,包括输入的原始数据、计算机程序、中间运行结果和最终运行结果都保存在存储器中。它根据控制器指定的位置存入和取出信息。有了存储器,计算机才有记忆功能,才能保证正常工作。计算机中的存储器按用途存储器可分为主存储器(内存)和辅助存储器(外存),也有分为外部存储器和内部存储器的分类方法。外存通常是磁性介质或光盘等,能长期保存信息。内存指主板上的存储部件,用来存放当前正在执行的数据和程序,但仅用于暂时存放程序和数据,关闭电源或断电,数据会丢失。
‘贰’ 存储器带宽的介绍
存储器带宽(memory bandwidth),是指单位时间里存储器所存取的信息量,也称为存储器在单位时间内读出/写入的位数或字节数。
‘叁’ 内存带宽如何计算
内存带宽计算公式是带宽=内存时钟频率×内存总线位数×倍增系数/8。其中单通道DDR333,运行频率为166MHz,带宽为166×2×64/8 = 2.7GBps;双通道是单通道的两倍,即双通道DDR333的带宽为166×2×64/8×2 = 5.4GBps。
内存带宽就是内存总线所能提供的数据传输能力,但它决定于内存芯片和内存模组而非纯粹的总线设计。单通道内存节制器一般都是64-bit的,8个二进制位相当于1个字节,换算成字节是64/8,再乘以内存的运行频率,如果是DDR内存就要再乘以2,因为它是以SD内存双倍的速度传输数据的。
(3)存储带宽和存储大小的关系扩展阅读:
内存带宽的技术
1、四倍带宽内存技术
四倍带宽内存的两个DDR模块之间采用FET芯片进行连接,而这个FET芯片就起到场效应管的作用,当作延迟开关。这样就简单地完成了串联了两个DDR模块。四倍带宽内存芯片组简单地说就是使用了一个传统的64位DDR SDRAM内存接口,其中再整合进支持QBM模块的内存控制器。
2、双通道DDR技术
双通道内存技术是解决CPU总线带宽与内存带宽的矛盾的低价、高性能的方案。在双通道内存模式下,双通道DDR 266/DDR 333/DDR 400所能提供的内存带宽分别是4.2GB/sec,5.4GB/sec和6.4GB/sec,刚好可以满足800MHz FSB Pentium 4处理器的带宽需求。
‘肆’ 内存数据带宽我要准确简明的答案,,麻烦各位了,紧急,谢了。
内存
在计算机的组成结构中,有一个很重要的部分,就是存储器。存储器是用来存储程序和数据的部件,对于计算机来说,有了存储器,才有记忆功能,才能保证正常工作。存储器的种类很多,按其用途可分为主存储器和辅助存储器,主存储器又称内存储器(简称内存).内存在电脑中起着举足轻重的作用。内存一般采用半导体存储单元,包括随机存储器(RAM),只读存储器(ROM),以及高速缓存(CACHE)。只不过因为RAM是其中最重要的存储器。S(SYSNECRONOUS)DRAM 同步动态随机存取存储器:SDRAM为168脚,这是目前PENTIUM及以上机型使用的内存。SDRAM将CPU与RAM通过一个相同的时钟锁在一起,使CPU和RAM能够共享一个时钟周期,以相同的速度同步工作,每一个时钟脉冲的上升沿便开始传递数据,速度比EDO内存提高50%。DDR(DOUBLE DATA RAGE)RAM :SDRAM的更新换代产品,他允许在时钟脉冲的上升沿和下降沿传输数据,这样不需要提高时钟的频率就能加倍提高SDRAM的速度。
●内存
内存就是存储程序以及数据的地方,比如当我们在使用WPS处理文稿时,当你在键盘上敲入字符时,它就被存入内存中,当你选择存盘时,内存中的数据才会被存入硬(磁)盘。在进一步理解它之前,还应认识一下它的物理概念。
●只读存储器(ROM)
ROM表示只读存储器(Read Only Memory),在制造ROM的时候,信息(数据或程序)就被存入并永久保存。这些信息只能读出,一般不能写入,即使机器掉电,这些数据也不会丢失。ROM一般用于存放计算机的基本程序和数据,如BIOS ROM。其物理外形一般是双列直插式(DIP)的集成块。
●随机存储器(RAM)
随机存储器(Random Access Memory)表示既可以从中读取数据,也可以写入数据。当机器电源关闭时,存于其中的数据就会丢失。我们通常购买或升级的内存条就是用作电脑的内存,内存条(SIMM)就是将RAM集成块集中在一起的一小块电路板,它插在计算机中的内存插槽上,以减少RAM集成块占用的空间。目前市场上常见的内存条有128M/条、256M/条、512M/条等。
●高速缓冲存储器(Cache)
Cache也是我们经常遇到的概念,它位于CPU与内存之间,是一个读写速度比内存更快的存储器。当CPU向内存中写入或读出数据时,这个数据也被存储进高速缓冲存储器中。当CPU再次需要这些数据时,CPU就从高速缓冲存储器读取数据,而不是访问较慢的内存,当然,如需要的数据在Cache中没有,CPU会再去读取内存中的数据。
当你理解了上述概念后,也许你会问,内存就是内存,为什么又会出现各种内存名词,这到底又是怎么回事呢?
在回答这个问题之前,我们再来看看下面这一段。
物理存储器和地址空间
物理存储器和存储地址空间是两个不同的概念。但是由于这两者有十分密切的关系,而且两者都用B、KB、MB、GB来度量其容量大小,因此容易产生认识上的混淆。初学者弄清这两个不同的概念,有助于进一步认识内存储器和用好内存储器。
物理存储器是指实际存在的具体存储器芯片。如主板上装插的内存条和装载有系统的BIOS的ROM芯片,显示卡上的显示RAM芯片和装载显示BIOS的ROM芯片,以及各种适配卡上的RAM芯片和ROM芯片都是物理存储器。
存储地址空间是指对存储器编码(编码地址)的范围。所谓编码就是对每一个物理存储单元(一个字节)分配一个号码,通常叫作“编址”。分配一个号码给一个存储单元的目的是为了便于找到它,完成数据的读写,这就是所谓的“寻址”(所以,有人也把地址空间称为寻址空间)。
地址空间的大小和物理存储器的大小并不一定相等。举个例子来说明这个问题:某层楼共有17个房间,其编号为801~817。这17个房间是物理的,而其地址空间采用了三位编码,其范围是800~899共100个地址,可见地址空间是大于实际房间数量的。
对于386以上档次的微机,其地址总线为32位,因此地址空间可达232即4GB。但实际上我们所配置的物理存储器通常只有1MB、2MB、4MB、8MB、16MB、32MB等,远小于地址空间所允许的范围。
好了,现在可以解释为什么会产生诸如:常规内存、保留内存、上位内存、高端内存、扩充内存和扩展内存等不同内存类型。
各种内存概念
这里需要明确的是,我们讨论的不同内存的概念是建立在寻址空间上的。
IBM推出的第一台PC机采用的CPU是8088芯片,它只有20根地址线,也就是说,它的地址空间是1MB。
PC机的设计师将1MB中的低端640KB用作RAM,供DOS及应用程序使用,高端的384KB则保留给ROM、视频适配卡等系统使用。从此,这个界限便被确定了下来并且沿用至今。低端的640KB就被称为常规内存即PC机的基本RAM区。保留内存中的低128KB是显示缓冲区,高64KB是系统BIOS(基本输入/输出系统)空间,其余192KB空间留用。从对应的物理存储器来看,基本内存区只使用了512KB芯片,占用0000至80000这512KB地址。显示内存区虽有128KB空间,但对单色显示器(MDA卡)只需4KB就足够了,因此只安装4KB的物理存储器芯片,占用了B0000至B10000这4KB的空间,如果使用彩色显示器(CGA卡)需要安装16KB的物理存储器,占用B8000至BC000这16KB的空间,可见实际使用的地址范围都小于允许使用的地址空间。
在当时(1980年末至1981年初)这么“大”容量的内存对PC机使用者来说似乎已经足够了,但是随着程序的不断增大,图象和声音的不断丰富,以及能访问更大内存空间的新型CPU相继出现,最初的PC机和MS-DOS设计的局限性变得越来越明显。
1.什么是扩充内存?
EMS工作原理
到1984年,即286被普遍接受不久,人们越来越认识到640KB的限制已成为大型程序的障碍,这时,Intel和Lotus,这两家硬、软件的杰出代表,联手制定了一个由硬件和软件相结合的方案,此方法使所有PC机存取640KB以上RAM成为可能。而Microsoft刚推出Windows不久,对内存空间的要求也很高,因此它也及时加入了该行列。
在1985年初,Lotus、Intel和Microsoft三家共同定义了LIM-EMS,即扩充内存规范,通常称EMS为扩充内存。当时,EMS需要一个安装在I/O槽口的内存扩充卡和一个称为EMS的扩充内存管理程序方可使用。但是I/O插槽的地址线只有24位(ISA总线),这对于386以上档次的32位机是不能适应的。所以,现在已很少使用内存扩充卡。现在微机中的扩充内存通常是用软件如DOS中的EMM386把扩展内存模拟或扩充内存来使用。所以,扩充内存和扩展内存的区别并不在于其物理存储器的位置,而在于使用什么方法来读写它。下面将作进一步介绍。
前面已经说过扩充存储器也可以由扩展存储器模拟转换而成。EMS的原理和XMS不同,它采用了页帧方式。页帧是在1MB空间中指定一块64KB空间(通常在保留内存区内,但其物理存储器来自扩展存储器),分为4页,每页16KB。EMS存储器也按16KB分页,每次可交换4页内容,以此方式可访问全部EMS存储器。符合EMS的驱动程序很多,常用的有EMM386.EXE、QEMM、TurboEMS、386MAX等。DOS和Windows中都提供了EMM386.EXE。
2.什么是扩展内存?
我们知道,286有24位地址线,它可寻址16MB的地址空间,而386有32位地址线,它可寻址高达4GB的地址空间,为了区别起见,我们把1MB以上的地址空间称为扩展内存XMS(eXtend memory)。
在386以上档次的微机中,有两种存储器工作方式,一种称为实地址方式或实方式,另一种称为保护方式。在实方式下,物理地址仍使用20位,所以最大寻址空间为1MB,以便与8086兼容。保护方式采用32位物理地址,寻址范围可达4GB。DOS系统在实方式下工作,它管理的内存空间仍为1MB,因此它不能直接使用扩展存储器。为此,Lotus、Intel、AST及Microsoft公司建立了MS-DOS下扩展内存的使用标准,即扩展内存规范XMS。我们常在Config.sys文件中看到的Himem.sys就是管理扩展内存的驱动程序。
扩展内存管理规范的出现迟于扩充内存管理规范。
3.什么是高端内存区?
在实方式下,内存单元的地址可记为:
段地址:段内偏移
通常用十六进制写为XXXX:XXXX。实际的物理地址由段地址左移4位再和段内偏移相加而成。若地址各位均为1时,即为FFFF:FFFF。其实际物理地址为:FFF0+FFFF=10FFEF,约为1088KB(少16字节),这已超过1MB范围进入扩展内存了。这个进入扩展内存的区域约为64KB,是1MB以上空间的第一个64KB。我们把它称为高端内存区HMA(High Memory Area)。HMA的物理存储器是由扩展存储器取得的。因此要使用HMA,必须要有物理的扩展存储器存在。此外HMA的建立和使用还需要XMS驱动程序HIMEM.SYS的支持,因此只有装入了HIMEM.SYS之后才能使用HMA。
4.什么是上位内存?
为了解释上位内存的概念,我们还得回过头看看保留内存区。保留内存区是指640KB~1024KB(共384KB)区域。这部分区域在PC诞生之初就明确是保留给系统使用的,用户程序无法插足。但这部分空间并没有充分使用,因此大家都想对剩余的部分打主意,分一块地址空间(注意:是地址空间,而不是物理存储器)来使用。于是就得到了又一块内存区域UMB。
UMB(Upper Memory Blocks)称为上位内存或上位内存块。它是由挤占保留内存中剩余未用的空间而产生的,它的物理存储器仍然取自物理的扩展存储器,它的管理驱动程序是EMS驱动程序。
5.什么是SHADOW(影子)内存?
对于细心的读者,可能还会发现一个问题:即是对于装有1MB或1MB以上物理存储器的机器,其640KB~1024KB这部分物理存储器如何使用的问题。由于这部分地址空间已分配为系统使用,所以不能再重复使用。为了利用这部分物理存储器,在某些386系统中,提供了一个重定位功能,即把这部分物理存储器的地址重定位为1024KB~1408KB。这样,这部分物理存储器就变成了扩展存储器,当然可以使用了。但这种重定位功能在当今高档机器中不再使用,而把这部分物理存储器保留作为Shadow存储器。Shadow存储器可以占据的地址空间与对应的ROM是相同的。Shadow由RAM组成,其速度大大高于ROM。当把ROM中的内容(各种BIOS程序)装入相同地址的Shadow RAM中,就可以从RAM中访问BIOS,而不必再访问ROM。这样将大大提高系统性能。因此在设置CMOS参数时,应将相应的Shadow区设为允许使用(Enabled)。
6、什么是奇/偶校验?
奇/偶校验(ECC)是数据传送时采用的一种校正数据错误的一种方式,分为奇校验和偶校验两种。
如果是采用奇校验,在传送每一个字节的时候另外附加一位作为校验位,当实际数据中“1”的个数为偶数的时候,这个校验位就是“1”,否则这个校验位就是“0”,这样就可以保证传送数据满足奇校验的要求。在接收方收到数据时,将按照奇校验的要求检测数据中“1”的个数,如果是奇数,表示传送正确,否则表示传送错误。
同理偶校验的过程和奇校验的过程一样,只是检测数据中“1”的个数为偶数。
总 结
经过上面分析,内存储器的划分可归纳如下:
●基本内存 占据0~640KB地址空间。
●保留内存 占据640KB~1024KB地址空间。分配给显示缓冲存储器、各适配卡上的ROM和系统ROM BIOS,剩余空间可作上位内存UMB。UMB的物理存储器取自物理扩展存储器。此范围的物理RAM可作为Shadow RAM使用。
●上位内存(UMB) 利用保留内存中未分配使用的地址空间建立,其物理存储器由物理扩展存储器取得。UMB由EMS管理,其大小可由EMS驱动程序设定。
●高端内存(HMA) 扩展内存中的第一个64KB区域(1024KB~1088KB)。由HIMEM.SYS建立和管理。
●XMS内存 符合XMS规范管理的扩展内存区。其驱动程序为HIMEM.SYS。
●EMS内存 符合EMS规范管理的扩充内存区。其驱动程序为EMM386.EXE等。
内存:随机存储器(RAM),主要存储正在运行的程序和要处理的数据。
‘伍’ 内存容量和带宽是什么意思
CDRAM-Cached DRAM——高速缓存存储器
CVRAM-Cached VRAM——高速缓存视频存储器
DRAM-Dynamic RAM——动态存储器
EDRAM-Enhanced DRAM——增强型动态存储器
EDO RAM-Extended Date Out RAM——外扩充数据模式存储器
EDO SRAM-Extended Date Out SRAM——外扩充数据模式静态存储器
EDO VRAM-Extended Date Out VRAM——外扩充数据模式视频存储器
FPM-Fast Page Mode——快速页模式
FRAM-Ferroelectric RAM——铁电体存储器
SDRAM-Synchronous DRAM——同步动态存储器
SRAM-Static RAM——静态存储器
SVRAM-Synchronous VRAM——同步视频存储器
3D RAM-3 DIMESION RAM——3维视频处理器专用存储器
VRAM-Video RAM——视频存储器
WRAM-Windows RAM——视频存储器(图形处理能力优于VRAM)
MDRAM-MultiBank DRAM——多槽动态存储器
SGRAM-Signal RAM——单口存储器
2.存储器有哪些主要技术指标
存储器是具有“记忆”功能的设备,它用具有两种稳定状态的物理器件来表示二进制数码 “0”和“1”,这种器件称为记忆元件或记忆单元。记忆元件可以是磁芯,半导体触发器、 MOS电路或电容器等。 位(bit)是二进制数的最基本单位,也是存储器存储信息的最小单位,8位二进制数称为一 个字节(Byte),可以由一个字节或若干个字节组成一个字(Word)在PC机中一般认为1个或 2个字节组成一个字。若干个忆记单元组成一个存储单元,大量的存储单元的集合组成一个 存储体(MemoryBank)。 为了区分存储体内的存储单元,必须将它们逐一进行编号,称为地址。地址与存储单元之间 一一对应,且是存储单元的唯一标志。应注意存储单元的地址和它里面存放的内容完全是两 回事。
根据存储器在计算机中处于不同的位置,可分为主存储器和辅助存储器。在主机内部,直接 与CPU交换信息的存储器称主存储器或内存储器。在执行期间,程序的数据放在主存储器 内。各个存储单元的内容可通过指令随机读写访问的存储器称为随机存取存储器(RAM)。另 一种存储器叫只读存储器(ROM),里面存放一次性写入的程序或数据,仅能随机读出。RAM 和ROM共同分享主存储器的地址空间。RAM中存取的数据掉电后就会丢失,而掉电后ROM中 的数据可保持不变。 因为结构、价格原因,主存储器的容量受限。为满足计算的需要而采用了大容量的辅助存储 器或称外存储器,如磁盘、光盘等。 存储器的特性由它的技术参数来描述。
存储容量:存储器可以容纳的二进制信息量称为存储容量。一般主存储器(内存)容量在几 十K到几十M字节左右;辅助存储器(外存)在几百K到几千M字节。
存取周期:存储器的两个基本操作为读出与写入,是指将信息在存储单元与存储寄存器 (MDR)之间进行读写。存储器从接收读出命令到被读出信息稳定在MDR的输出端为止的时间 间隔,称为取数时间TA;两次独立的存取操作之间所需的最短时间称为存储周期TMC。半导 体存储器的存取周期一般为60ns-100ns。
存储器的可靠性:存储器的可靠性用平均故障间隔时间MTBF来衡量。MTBF可以理解为两 次故障之间的平均时间间隔。MTBF越长,表示可靠性越高,即保持正确工作能力越强。
性能价格比:性能主要包括存储器容量、存储周期和可靠性三项内容。性能价格比是一个 综合性指标,对于不同的存储器有不同的要求。对于外存储器,要求容量极大,而对缓冲存 储器则要求速度非常快,容量不一定大。因此性能/价格比是评价整个存储器系统很重要的 指标。
‘陆’ 网速与存储器的容量是怎样计算的
主存储器带宽是说的内存的吞吐量,也就是说内存能一次处理的数据宽度。
总线频率也就是前端总线频率。
公式是:总线的频率 * 位宽 /8 = 总线的带宽.
总线带宽是主板南北桥的数据传输速度,是数据在主板上每秒钟传送的信息量。
‘柒’ 存储单位的带宽存储换算
在我们的记忆中,我们恐怕最熟悉的就是当初用Modem接入互联网时,接入的速度仅仅为56Kbps。在这个单位中,bps是bit Per Second的缩写,翻译成中文就是比特位每秒,也就是表示一秒钟传输多少位(bit)的意思。Kb与KB之间的关系:我们在电脑原理中知道,电脑的最小存储单位是字节Byte,一个字节,是由八位二进制位组成的。由此,我们可以这样认为,一个字节是由8个位组成的,或者说一个字节与八个位所占的空间是相同的。因为,当我们使用100Mb带宽的网络下载时,理论上的速度应该是100除以8等于12.5MB。 1、评估网络性能带宽指标是衡量网络性能行为的重要指标之一,便于运营商掌握网络运行状况以及作为验收网络工程的考察指标。
2、路由优化 利用实际测量得到的可用带宽作为链路的“重量(weight)”指标,能用来进行路由的动态构造,从而得到最优路由。
3、合理配置网络资源 根据测量得到的每个链路的瓶颈带宽、可用带宽或利用率情况调配资源,以达到充分利用 1、单个分组技术 2、分组对技术 3、分组束技术 4、分组链技术等
‘捌’ 4K占用带宽跟存储空间大不大
有一定联系。 随着UHDTV(4K)的出现,我们需要建立更新,更宽,更快的“路径”。 作为一个参考点,1920×1080@60HZ的显示信号刷新需148.5MHz(包括消隐)。为了计算实际的数据传输速率,乘以颜色深度,再加上2倍的时钟频率。因此,对于8位的1080p信号,数据传输速率(每个颜色通道)是148.5(×)(8+2),或1.485千兆比特每秒(Gb/秒)。 到目前为止,只要考虑了单链接DVI和HDMI接口因素,一切都很好。对于RGB信号,把刚刚那个数据乘以3,你会得到4.455Gb/s,这对于单链接DVI和HDMI的极限仍然能轻松承受:10.2GB/s。 尽管这可能对于雪佛兰和福特的速度足够快,但它却不能满足法拉利。看看一个四驱动HD信号,先抛开消隐,执行同样的计算:3840×2160像素(×)60HZ=497.6MHz。(哇)8-bit色彩编码,这样,一个RGB信号获得的数据速率就是每个彩色通道4.976Gb/s或14.928Gb。 HDMI上限为10.2GB/s,这意味着它几乎不能在30Hz的情况下处理四驱动高清信号。把单链路DVI放一边吧。对于这个问题,双链接DVI可以勉强通过30Hz的四高清信号。怎么办呢? 现在的答案是DisplayPort,它使用分组的信号结构,不同于HDMI(TMDS)。DisplayPort可以真正打通干线,支持最大的数据传输速率18GB/s。这对于处理一个12位版本的四驱动高清信号近乎是足够快的了。 对于那些已经掌握HDMI与EDID、HDCP和带宽对接的人,可以肯定,这些会让你心情大好。HDMI版本1.x的数据传输速率上限是为什么现在有一个HDMI 2.0论坛,参与者忙于辩论并专注于更高的数据传输速率和锁定连接器,更快的HDCP交换,以及一系列你已经认识到的其他的事情和厌恶的格式。 在此期间,在视频电子标准协会(VESA,同样的给你带来了VGA和其后一直试图把它扼杀掉,这距离现今已超过7年)的人们正在辩论是否要突破传统,对DisplayPort采用“光”的压缩包。该系统,目前已知的“视频流”将使数据率飙升到至少25GB/s,也许更高。 这不仅仅意味着,通过一个真正的4K 60Hz刷新率和10位色彩(约19.12Gb/s)的信号(4096×2160像素)速度足够快。事实上,它可以处理四驱动高清与12位色,以60Hz(20.9Gb/s)的速率刷新,对于一个1920×1080p/60 8位信号还有空间。 是的;理论部分已讲述完毕。显示界面制造商的实际挑战是建立一个速度足够快的交换背板来处理这些数据率。就目前而言,逻辑信号格式将是DisplayPort,它被广泛应用于由英特尔和客户支持的苹果公司的许多产品,如惠普,戴尔和联想。 这也意味着,一些客户可能会问,在不那么遥远的将来,关于支持4K显示内容的问题,尤其是当他们看到一些经济实惠的65英寸和更大尺寸的4K显示器。 至于带宽要求,8位颜色和4K成像相结合,应该是在每一个国家都算是重大问题:4K格式要求每像素至少10位,;甚至12更好。所以,在某些时候速度对速度的要求很迫切。 我还没有提及高速数据叠加,可以在DisplayPort物理层(10Gb/s的码流率)上运行。或是走向单一、结构紧凑、高密度显示/音频/以太网/控制/USB/数据接口,如移动高清链接或移动DisplayPort。
‘玖’ 存储器带宽怎么算
带宽=(总线频率×数据位宽)÷8
位宽32 频率1000000000/200=50000000=50MHZ
那么带宽=32×50/8=200
‘拾’ 存储器带宽的计算
周期=200ns,所以主频=5MHz,带宽=5Mhz * 4B=20MB/S
每个周期200纳秒(1纳秒=百万分之一秒),所以每秒钟有5,000,000个周期,每个周期可以访问4个字节,那么每秒钟可以访问“5,000,000 x 4”个字节,带宽就是20,000,000字节/秒,即20MB/S