A. 这是什么液位计
在容器中液体介质的高低叫做液位,测量液位的仪表叫液位计。液位计为物位仪表的一种。
液位计的类型有音叉振动式、磁浮式、压力式、超声波、声呐波,磁翻板、雷达等。
基本信息
中文名称
液位计
外文名称
Level gauge
类型
磁浮式/压力式/超声波/磁翻板
适用介质
各种液体介质
知名厂家
深圳计为自动化
目录
1种类
2变送器
3注意事项
4工作原理
5特点
6参数
7适用范围
8性能优点
9技术指标
10故障排除
折叠编辑本段种类
折叠磁浮子式
一、概述 UHZ-25型磁浮子液位计和UHZ-27型顶装浮球液位计,可配置远传液位变送器,用以实现液位信号远传的数/模显示。
二、结构原理 MY型属模拟式液位变送器,由液位传感器和信号转换器两部分组成。液位传感器由装在φ20不锈钢护管内的若干干簧管和若干电阻构成,护管紧固在测量管(主体管)外侧;信号转换器由电子模块组成,安置在传感器顶端或底端的防爆接线盒内三、主要技术参数1、量程:由测量范围H确定; 2、误差:±10mm; 3、输出信号:4~20mA.DC(两线制); 4、负载电阻:≤550Ω; 5、供电电压:24V.DC; 6、出线口:M20×1.5(内); 7、环境温度:-40~+60℃; 8、防爆等级:dⅡBT1-4; 9、外壳防护等级:IP65。
三、磁浮球液位计特点
磁浮球液位计具有结构简单、使用方便、性能稳定、使用寿命长、便于安装维护等优点。
四、磁浮球液位计的应用
主要广泛运用于石油加工、食品加工、化工、水处理、制药、电力、造纸、冶金、船舶和锅炉等领域中的液位测量。
折叠内浮式
内浮式双腔液位计(粘稠介质液位计),是采用加拿大JKS公司的技术,是一种针对高粘稠介质而研发的专用液位测量仪表。该产品是在磁浮子液位计的基础上进行的技术升级,完全克服磁浮子液位计对粘稠介质长期以来测量不准确、腔体内部的液体与浮子粘附、维护困难等诸多弊病。
内浮式磁性液位计是一种双腔液位计,被测介质与磁性面板端的腔体隔离,容器端腔体内部与浮子经过特殊处理后,确保了浮子跟随液位的变化线性地传递给磁性面板,并清晰准确地指示出液位的高度。它即能现场显示,兼顾报警控制和输出远传信号。是一机多能的液位测量仪表,是测量粘稠介质最佳的液位测量仪表。
折叠磁翻板
UHZ-45高温高压磁翻板液位计是我公司为拓宽UHZ系列磁翻板液位计的使用范围,更广泛地满足电力、供热、供气等行业的要求,采用独特的散热方式,有效地控制了介仪表的工作温度,避免了磁性元件在高温条件下退磁,确保仪表工作可靠,可测量高温450℃,高压25MPa,在国内同行业中处于领先地位。
该液位计适用于高温高压液体容器的液位、界位的测量和控制。清晰的指示出液位的高度,显示直观醒目,指示器与贮罐完全隔离,使用安全、设计合理、结构简单、安装方便可靠、性能稳定、使用寿命长、维修费用低、便于安装维护等优点。
用户可根据工程需要,配合远传变送器使用,可实现就地数字显示,以及输出4~20mA的标准远传电信号,以配合记录仪表,或工业过程控制的需要。也可以配合磁性控制开关或接近开关等使用,对液位监控报警或对进液出液设备进行控制。
技术参数
测量范围:200…….~15000㎜(超过6000mm的或运输条件不允许超过长度的液位计可采购分段制造)
显示精度:±10mm;
工作压力:6.3、10.0、16.0、25.0MPa;
介质温度:-20℃~450℃;
介质密度:≥.0.5g/cm3;
介质密度差:≥.0.15g/cm3(测量界位)
介质粘度:≤0.4Pa·S;
过程连接:DN20/25 PN1.0 (执行标准HG20592~20635-97),如需其它标准可按客户要求制造。
接液材质:316SS、316L等等
(按介质化学性质及使用温度压力选择);
浮子材质:316SS、316L、钛等。
折叠投入式
示意图3
折叠编辑本段故障排除
液位计常规检查及故障解决方法,适用于磁翻板液位计,双色石英管液位计,玻璃管液位计,等
1、先检查电源是否接对,如发现接法不正确应依照操作手册进行修改。
2、用三电压表量测+24V与O/P间之电压,电压应在13V~36V之间,若电压不正常应查看线路或相关设备是否异常。
3. 第2项应先确认正常后,再于4~20MA回路串一只毫安电表,检查电流是否正常,若电流值不正常应更换新品或洽客服人员。
4.用电压表检查IN与COM间之电压,正常应为2.5V左右,若电压过低应再移除EXC导线看看,如果电压恢复正常则表示磁黄模块不正常,若电仍然偏低则表示讯号转换器损坏。若发现以上之现象应按照实际状况更换讯号转换器或洽客服人员。
浮球降至最下方,旗板未归零 旗板跟不上浮球下降的速度,应加装节流装置以减缓液面升降速度。
旗板色片不会翻转,或色片混乱 应确认本体管周遭及内部没有磁性体存在,并于清除之后用磁铁扫过一次,使颜色归于一致。
色片360度翻转 浮球磁场过强,洽客服人员更换浮球。
近接开关不动作用电表检查开关动作是否正常,磁铁靠近时接点应导通且电阻应低于300MΩ以下,磁铁移除后开关应开路且电阻应达10MΩ以上,若未达以上之要求应更换新的近接开关。
浮球连续式液位指示计 讯号转换器之2条线不之如何接到指示计请依照操作手册将讯号转换器里有24V端接到指示计之+24V端,讯号转换器之O/P端接到指示计之AI端,若通电后仍无法正常运作应洽客服人员。
折叠编辑本段注意事项
随着工业的不断发展,液位传感器被愈来愈多的行业所应用,在使用变送器的时候,我们需要注意一些问题,这样不仅仅使我们的测量更加准确,同时也能使我们的液位传感器使用的寿命更长。看看都有哪些需要注意的事项吧: 1、切勿用高于36V电压加到变送器上,否则会导致变送器损坏;
2、切勿用硬物碰触膜片,否则会导致隔离膜片损坏;
3、液位传感器测量的介质不允许结冰,否则将损伤传感器元件隔离膜片,导致变送器损坏,必要时需对变送器进行温度保护,以防结冰;
4、在测量蒸汽或其他高温介质时,其温度不应超过液位传感器使用时的极限温度,高于变液位传感器使用的极限温度必须使用散热装置;
5、测量蒸汽或其他高温介质时,应使用散热管,使液位传感器和管道连在一起,并使用管道上的压力传至变压器。当被测介质为水蒸气时,散热管中要注入适量的水,以防过热蒸汽直接与液位传感器接触,损坏传感器;
6、在压力传输过程中,应注意以下几点,
a、液位传感器与散热管连接处,切勿漏气;
b、开始使用前,如果阀门是关闭的,则使用时,应该非常小心、缓慢地打开阀门,以免被测介质直接冲击液位传感器膜片,从而损坏传感器膜片;
c、管路中必须保持畅通,管道中的沉积物会弹出,并损坏传感器膜片。
B. 寻找温度记录仪
为您推荐这款记录仪吧
1-4路有纸带打印记录仪
本带打印无纸记录仪是以先进的32位CPU为核心、辅以大规模集成电路和图形液晶显示器的新型智能化记录仪表,仪表显示信息量大、操作简单、界面友好,下面是主要功能特点:
◆采用高性能的ARMCortex-M332位的RISC内核,可同时实现多路信号采集、记录、显示和多路报警;
◆采用256M大容量的FLASH闪存芯片存贮历史数据,掉电永不丢失数据;
◆全隔离万能输入,可同时输入多种信号,无需更换模块,通过软件组态即可;
◆显示工程量数据的数值范围更宽,可显示4位数值:-999~9999;
◆剪贴板的复制和粘贴功能方便用户的参数设置;
◆多种选配功能、附加功能可选:选配功能:数据备份、串口通讯、串口打印、报警功能、馈电输出、变送输出等;附加功能:历史曲线。注:选配功能需客户订货时说明,附加功能需定制。
主要参数:
屏幕:128*64点阵蓝屏液晶显示器(LCD);
精度:实时显示:±0.2%F.S.;追忆精度:±0.2%F.S.;(注:热电偶应去掉冷端误差;)
处理器:采用高性能的ARMCortex-M332位的RISC内核,可同时实现多路信号采集、记录、显示和多路报警;
存储模块:采用大容量并行NANDFLASH闪存芯片存贮历史数据,采用串行FRAM存储芯片存贮系统配置参数等关键信息;
输入规格:全隔离万能输入,1~4通道信号输入(最大可支持4路模拟量输入+1路频率输入);
记录容量:64/128/192/248MB(FLASH容量可选择);
电压输入:0-5V、1-5V、0-20mV、0-100mV;电流输入:0-10mA、4-20mA,(0-20mA需在订货时注明);
性能指标:
电阻输入:Res;频率输入:频率信号(PI)(频率范围:0-5000HZ;输入信号:0-10mA、0-12V、0-24V、4-20mA;其中4-20mA需定制);
热电阻:PT100、Cu50、G53、Cu100、BA1、BA2(要求三线电阻平衡,引线电阻<10Ω)
热电偶:S、B、K、T、R、E、N、J;辐射高温计:F1、F2;钨铼:WRe3-25、WRe5-26;
其它输入信号(如开关量输入)或分度号(如PT1000)需在订货时注明;
配电输出:变送器集中配电+24VDC,标准配电≤30mA(最大负载能力可定制),支持多种规格集中配电(如12VDC、5VDC配电输出);
变送输出:最多支持2路通道的4-20mA标准电流变送输出,负载能力750Ω(最大),方便了显示仪表或DCS/PLC的采集,也实现了信号的长距离传输;
继电器报警输出:2路继电器触点输出(最多可支持4路继电器报警输出),触点容量3A@220VAC/1A@30VDC,可组态上上限、上限、下限、下下限报警;
通讯、打印:通讯接口----RS232C或RS485,支持ModbusRTU协议,波特率----(1200、2400、9600、19200、38400、57600),打印接口----RS232C直接连接微型打印机;
记录间隔:1秒至240秒,共分11档:1/2/4/8/12/24/36/60/120/180/240秒可选;
数据备份和转存:支持USB1.1、2.0优盘,支持1G到16G的U盘进行数据转存,兼容性强,可兼容市面上绝大多数的U盘;
热电偶冷端补偿误差:±1℃;
断电保护:内置FLASH存储器保护参数和历史数据,断电后可永久保存;
集成硬件时钟:掉电后也能准确运行;时钟误差:±1分/月;
供电电源:标配220VAC,50HZ交流电源供电,支持24VDC(22VDC-32VDC)直流电源供电,支持12VDC(11.2VDC-20VDC直流电源供电,直流供电需在订货时注明;环境温度:0~50℃、避免日光直晒;环境湿度:0~85%R.H;
净重:≤1.0Kg
C. 我想用LabViEW做个东西,具体是这样的: 温度传感器测温度实时以波形显示在面板里,问用labVIEW要怎么设计
传统的温度测量仪器,其功能及规格是单一固定的,用户无法根据自己的需要改变。NI公司提出的虚拟仪器概念,彻底打破了传统仪器由厂家定义、用户无法改变的模式,使测控仪器发生了巨大变革。LabVIEW是NI公司开发的一种虚拟仪器平台,而目前利用LabVIEW进行的开发通常都是建立在LabVIEW所支持的价格昂贵的数据采集板卡之上的。为解决这一问题,本系统采用低功耗单片机P89LV51RD2和低功耗温度传感器TMPll2组成温度采集节点,并通过无线通信模块实现单片机系统与上位机的远程通信,不仅取代了价格昂贵的数据采集卡,大大降低了系统成本,而且实现了数据的无线传输。同时,温度采集节点的低功耗特性,降低了ZigBee组网时对电源的要求,便于进行组网实现多点测温。
1 系统的组成及工作原理
图1给出了系统组成框图,该温度测控系统主要由计算机、单片机、温度测量电路、温度控制电路以及无线通信电路组成。TMPll2温度传感器进行温度采集,将温度数字量传送给P89LV51RD2后,通过数码管LED电路进行现场温度显示。同时,P89LV51RD2将温度数据通过无线通信模块SZ05发送给远程计算机,运行于PC机上的LabVIEW控制平台对温度进行实时显示,并进行数据处理、温度报警及数据存储等。另外,控制平台采样输入信号,利用LabVIEW中的PID控制器进行PID控制,将控制量通过无线模块发送给单片机,单片机输出控制量实现温度控制。
2 系统硬件设计
2.1 温度测量显示电路
本系统采用TI公司于2009年6月推出的高精度低功耗数字温度传感器TMPll2来实现温度测量。该传器具有如下特点:
◆测温范围为-40~125℃;
◆0~65℃温度范同内精度达O.5℃,-40~125℃范围内精度达1℃;
◆12位分辨率,测量值的读取精度达到0.0625℃;
◆正常操作模式的最大静态电流为10μA,关机模式则为1μA;
◆电源范围1.4~3.6 V;
◆SMBus/两线式串行接口,总线上最多可连接4个该传感器。
从功耗、精度、接口等方面综合考虑,采用P89LV51RD2与TMPll2组成温度测量节点。虽然P89LV51RD2单片机没有专用的I2C总线接口,但可以使用软件模拟I2C总线,来实现单片机与TMPll2的通信。利用单片机的I/O口P1.0和P1.1分别模拟I2C总线的SDA和SCL信号,故只需将单片机的P1.O和P1.1引脚分别与TMPll2的SDA和SCL引脚相连(注意需要上拉)。P89LV51RD2通过I2C总线读取温度数据后,由5个数码管显示温度值,包括百位(或符号位)、十位、个位与2个小数位。
2.2 温度控制电路
温度控制电路如图2所示,它主要由NPN型晶体管Q1、TLP521-1型光电耦合器U1和大功率NMOS管Q2组成。上位机程序控制系统将检测温度值与系统设定值进行比较,按照PID控制算法进行运算,从单片机的P1.2口输出占空比可调的PWM信号,经晶体管Q1驱动后,控制光电耦合器U1的通断,继而控制NMOS管Q2(IRF840A)的通断时间,从而控制加热对象——大功率电阻R的加热时间,使其达到设定的温度值。为方便实验,采用的R为大功率线绕电阻,额定功率10W,额定电阻10Ω,采用+12V直流电源供电。由于流过加热电阻R的电流较大,故为R供电的+12V直流电源必须与为其他模拟器件供电的+12V直流电源分开。
2.3 无线通信电路
无线通信电路采用上海顺舟网络科技有限公司的SZO5系列ZigBee无线数据通信模块来实现。该模块提供RS232、RS485和TTL三种接口标准,传输距离可达100~2 000m。为了提高开发效率,采用该模块的RS232接口,实现单片机与计算机的串行无线通信,使得软件编程变得简单。若系统对距离并无要求,只需使用1根串口线便能实现单片机与计算机的通信,而不必更改软件设计,通用性强,适合各种应用场合。
3 系统软件设计
3.1 上位机软件设计
上位机软件采用LabVIEW图形化编程语言来完成控制平台的设计。LabVIEW提供了一个非常简洁直观的图形化编程环境,设计者可以轻松组建测量系统,构造友好美观的操作界面,无需编写繁琐的计算机程序代码,大大简化了程序设计,提高开发效率。
图3给出了上位机LabVIEW控制平台的温度监控界面(正在进行温度采集显示时的界面)。采用模块化设计思想,该系统主要由数据采集与显示、数据处理与报警、数据存储及PID控制等模块组成。用户通过鼠标在界面上操作,便可实现温度的采集、显示、处理、报警、保存及控制等功能。
(1)数据采集与显示模块
数据采集与显示模块主要是通过计算机串口及无线通信模块接收单片机发送来的温度数据,并进行实时显示。为了保证计算机与单片机的顺利通信,首先应进行串口初始化,如设置串口号COMl、波特率9600、8个数据位、1个停止位,无奇偶校验及流控制。程序运行时,单击“开始采集”按钮,系统便能接收到单片机发送来的温度数据,通过温度仪表控件显示当前采集到的温度值。此外,数据采集模块所接收到的是一组离散的温度信号值,通过波形图表显示控件进行逐点显示并连线,可绘制出温度趋势曲线,拖动曲线图右下方的滑块,并可查看历史温度曲线。
(2)数据处理与报警模块
数据处理主要实现对采集到的温度数据进行直方图统计。单击系统界面上的“创建直方图”按钮,系统便执行相应程序对温度数据进行统计,在波形图控件中显示温度直方图,便于用户进行统计分析。
温度报警模块主要实现高温报警和低温报警。用户在系统界面中设置温度上下限值,当实际温度大于温度上限或小于温度下限时,系统通过指示灯给出高温报警(红灯亮)或低温报警(黄灯亮),提示用户温度超限,以确保人员及设备安全。
(3)数据存储模块
数据存储模块主要实现将采集到的温度数据保存至Excel表格,方便用户日后调出历史温度数据进行查阅分析。首先利用“数组大小”VI获取采集到的温度数组的大小,并判断其能否被10整除,若能整除,执行“条件结构”的“真”分支程序,将采集时间及10个温度数据写入电子表格文件后换行,然后再进行条件判断。这样,温度数据便以10个为l行记录到电子表格文件中,同时每一行的开头均记录下了采集本组数据的日期与时间。
另外,利用“方法节点”和“写入JPEG文件”VI可将温度曲线以JPEG格式存储。用户单击“保存温度曲线”按钮,系统弹出保存对话框,提示用户将温度曲线保存为JPEG图片。
(4)PID控制模块
LabVIEW提供了功能强大的PID控制器,使用户避免了繁琐的PID算法的编写,提高开发效率。进行PID控制时,首先将温度信号输入至PID控制器,并输入温度设定值和PID增益,包括比例系数Kc、积分时间常数Ti及微分时间常数Td。单击“PID控制”按钮,程序按照PID算法对温度进行控制,使温度逼近设定值。
3.2 下位机软件设计
P89LV5lRD2单片机程序采用C语言进行设计。P89LV51RD2内部提供了3个16位定时器/计数器以及1个全双工串行通信口,满足本系统的软件设计要求。图4给出了单片机控制程序流程。
在系统初始化时,设置8位串行口模式1,以及单片机的定时器T2工作在波特率发生器模式,产生串行通信所需的波特率。再令单片机的定时器T0工作在定时器模式,用于产生指定的控制周期。在TO的中断程序中,首先将采集到的温度数据通过无线模块发送给上位机进行实时显示,然后上位机利用LabVIEW中的PID控制器,确定系统输出控制量的大小并发送回单片机,单片机根据控制量输出PWM信号,驱动控制电路对被测对象进行温度控制。
结语
本文设计的温度测控系统以低功耗的单片机系统为采集模块,代替了价格昂贵的数据采集板卡,成本低,并以LabVIEW开发的软件平台进行温度处理与控制,与传统仪器相比,具有界面友好、易于操作及扩展性强等特点。实验表明,本系统可以作为教学实验系统的一部分,嵌入到虚拟仪器实验平台中,供学生学习LabVIEW编程以及虚拟仪器与单片机的通信。另外,可以将多个节点进行组网,形成一个分布式无线网络,实现多点温度测量与控制,具有良好的应用前景。(单片机与嵌入式系统 作者:潘晓烨,胡仁杰 东南大学)
D. 温度传感器有哪几种
主要有接触式温度传感器和非接触式温度传感器。
接触式温度传感器的特点:传感器直接与被测物体接触进行温度测量,由于被测物体的热量传递给传感器,降低了被测物体温度,特别是被测物体热容量较小时,测量精度较低。因此采用这种方式要测得物体的真实温度的前提条件是被测物体的热容量要足够大。
非接触式温度传感器主要是利用被测物体热辐射而发出红外线,从而测量物体的温度,可进行遥测。其制造成本较高,测量精度却较低。优点是:不从被测物体上吸收热量;不会干扰被测对象的温度场;连续测量不会产生消耗;反应快等。
此外,还有微波测温温度传感器、噪声测温温度传感器、温度图测温温度传感器、热流计、射流测温计、核磁共振测温计、穆斯保尔效应测温计、约瑟夫逊效应测温计、低温超导转换测温计、光纤温度传感器等。这些温度传感器有的已获得应用,有的尚在研制中。
E. 想问下温度传感器型号中wzp与wzpb有什么区别 如wzpb-230;wzp-230 是不是一款东西 谢谢
WZP-230是热电阻中较常见的一种型号,具体表示如下:
W-温度仪表
Z-热电阻
P-感温元件材料(P代表铂)
2-固定螺纹,默认M27*2
3-接线盒形式(3代表防水式)
0-保护外套管直径(0代表直径16mm)
WZPB-230除了以上几条不变之外,就是把接线板换成温度变送器。第一个是接线板,第二个是温变
F. 接一个温度模块,需要一个表显示温度和温度报警,请问哪个厂家的好用,推荐一下
温度显示仪表国内的有很多,不会比进口差,我用过虹润的,使用起来很不错,操作简单,性价比高,功能很强大,其他的产品都不错。
G. DS18B20温度传感器的存储器
DS18B20温度传感器的内部存储器包括一个高速暂存RAM和一个非易失性的可电擦除的EEPRAM,后者存放高温度和低温度触发器 TH、TL和结构寄存器。 (4)配置寄存器 该字节各位的意义如下:
表3: 配置寄存器结构
TM R1 R0 1 1 1 1 1
低五位一直都是"1",TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式。在DS18B20出厂时该位被设置为0,用 户不要去改动。R1和R0用来设置分辨率,如下表所示:(DS18B20出厂时被设置为12位)
表4: 温度分辨率设置表
R1 R0 分辨率 温度最大转换时间
0 0 9位 93.75ms
0 1 10位 187.5ms
1 0 11位 375ms
1 1 12位 750ms
4、高速暂存存储器 高速暂存存储器由9个字节组成,其分配如表5所示。当温度转换命令发布后,经转换所得的温度值以二字节补码形式存放在 高速暂存存储器的第0和第1个字节。单片机可通过单线接口读到该数据,读取时低位在前,高位在后,数据格式如表1所示。对应的温度计算: 当符号位S=0时,直接将二进制位转换为十进制;当S=1时,先将补码变为原码,再计算十进制值。表 2是对应的一部分温度值。第九个字节是 冗余检验字节。
表5: DS18B20暂存寄存器分布
寄存器内容 字节地址
温度值低位 (LS Byte) 0
温度值高位 (MS Byte) 1
高温限值(TH) 2
低温限值(TL) 3
配置寄存器 4
保留 5
保留 6
保留 7
CRC校验值 8
H. 温控仪上的“OUT”和“ALM”分别代表什么意思
OUT代表输出,是接接触器的,火线接在COM口,out接接触器线圈一端,另一端接零线。
ALM代表辅助模块,多用于报警输出,一般不接。
I. 天津市中环温度仪表xmt4000说明书
XMT-3000系列智能专家PID
工业控制/调节器
XMT-4000系列智能专家PID
30段可编程工业控制/调节器
J. 温度测量芯片有几种
温度测量芯片有很多种,常见的DS18B20、TMP35、TMP36。
以DS18B20温度测量芯片为例,有TS-18B20、TS-18B20A、TS-18B20B这3种型号。
1、型号TS-18B20;测温范围-55~125;电缆长度 1.5 m;
2、型号TS-18B20A;测温范围-55~125;M10X1 电缆长度1.5m;适用管道 DN15~25;
3、型号TS-18B20B;测温范围-55~125;适用管道DN40~ 60。
(10)带存储模块温度仪表扩展阅读
温度测量芯片的功能特点:
1、通过瞬时接触即可完成数字识别和信息获取,刻有注册号的不锈钢外壳能够耐受恶劣环境 ;
2、温度记录范围:-40℃-85℃ ,温度精度:±0.5℃;
3、工作湿度:0-100%RH,实现防水性(超过了3 ATM防水的要求),可直接放于冰中或水中;
4、数据存储容量:2048个温度数据,数据传输使用1-Wire协议,数据传输速度为125kbps;
5、记录采样间隔:1-255分钟可调节,内置LI电池,无需外接电源,使用年限可达10年;
6、配套数据分析软件:可实现数据排序、数据筛选、图形显示、列表显示、打印等多种功能,并具有软件着作权证书。